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I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to

black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly

outside their horizon. This suggests that black holes can superconduct.
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I. INTRODUCTION

In [1] it was suggested that black hole horizons could
exhibit spontaneous breaking of an Abelian gauge symme-
try if gravity were coupled to an appropriate matter
Lagrangian, including a charged scalar that condenses
near the horizon. Depending on parameters, it was further
suggested that a flux lattice might arise, providing a par-
ticularly stark example of the limitations of no-hair theo-
rems. (For a review of no-hair theorems, see for example
[2].) The matter Lagrangian suggested in [1] was some-
what complicated, involving two Abelian gauge fields and
a nonrenormalizable coupling of the scalar to one of them.
Here it will be argued that spontaneous symmetry breaking
arises near black hole horizons for theories as simple as
this one:

16�GNL¼ Rþ 6

L2
� 1

4
F2
���j@� � iqA� j2 �m2j j2;

(1)

where I use mostly plus signature and define the matter
fields in such a way that Newton’s constantGN enters as an
overall prefactor. The first two terms in (1) are the Einstein-
Hilbert Lagrangian plus a negative cosmological constant,
which means that the simplest solution to the equations of
motion is anti-de Sitter space. I will focus on four space-
time dimensions, although the mechanism to be described
seems likely to work in other dimensions. Recent work
including [3–6] has suggested the possibility that charged
black holes in four-dimensional anti-de Sitter space (AdS4)
may provide useful analogies to phenomena observed in
layered or thin-film superconductors above the transition
temperature, in particular, the large Nernst effect observed
in [7] and later works.

The remaining terms in (1) are the Abelian Higgs
Lagrangian, except that the potential is missing the usual
j j4 term. This term can be added without changing the
story much. A novelty relative to the usual Ginzburg-
Landau story is that one can keep m2 constant and positive
and still get the symmetry breaking to happen. The way it
happens is that an electrically charged black hole makes an
extra contribution to the scalar potential which makes the
 ¼ 0 solution unstable, provided that q is large enough,
and that m2 is not too positive, and that the black hole is

sufficiently highly charged and sufficiently cold. To see
this, let us consider configurations of the form

ds2 ¼ gttdt
2 þ grrdr

2 þ ds22 A�dx
� ¼ �dt

 ¼  ðrÞ; (2)

where all fields are assumed to depend only on r. The
‘‘transverse’’ metric ds22 could be proportional to the met-
ric on a unit two-sphere, or it could be proportional to the
flat metric d~x2 onR2. Suppose  is too small to back-react
significantly upon the geometry. To investigate the effec-
tive potential experienced by the scalar, one may restrict
attention to the last two terms in (1). They are

16�GNL ¼ �gttq2�2j j2 � grrj@r j2 �m2j j2: (3)

So the effective mass of  is

m2
eff ¼ m2 þ gttq2�2: (4)

Because gtt is negative outside the horizon and diverges to
�1 near the horizon, it seems inevitable that m2

eff should

become negative there if � is nonzero. In fact, the story is
slightly more subtle: as I explain at the end of section III,
for to be nonzero at the horizon, one must choose a gauge
where � ¼ 0 there.1 If q is big, and the electric field
outside the horizon is big (meaning that � rises very
quickly from 0 to finite values), and m2 is small, then it
seems clear that m2

eff can still become negative a little

outside the horizon. It is less clear that it is possible for
m2

eff to be negative enough for long enough to produce an

unstable mode in  . What I want to argue is that this is
possible in asymptotically AdS4 geometries. The actual
computation I will do is to find marginally stable pertur-
bations around solutions that do not break the Uð1Þ sym-
metry. Such marginally stable modes exist on codimension
one surfaces of parameter space provided q is big enough.
Logically speaking, this is not quite enough to guarantee
the existence of an instability for sufficiently small tem-
peratures. But it is highly suggestive.

1It is argued in [8] that � must vanish at a horizon even if one
does not consider nonzero  : roughly, the argument is that the
one-form�dt is ill-defined at the horizon because dt has infinite
norm there.
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It has long been understood that extremal black holes
can exhibit perfect diamagnetism [9–11], but the reasons
for it are essentially geometrical, whereas the proposals of
[1] and of the current paper focus on a charged scalar
condensate that develops slightly outside the horizon of
nonextremal black holes. Interaction of black holes with
charged scalar condensates and flux vortices have also
been considered previously [12], but in contexts where
the gauge symmetry is broken at asymptotic infinity,
whereas in [1] and in the present paper, it is only broken
near the horizon.

The organization of the rest of this paper is as follows. In
section II I present the charged black hole backgrounds of
interest and discuss two scaling symmetries associated
with them. Section III summarizes the marginally stable
linearized perturbations around these solutions that break
the Uð1Þ symmetry. Conclusions and directions for future
work are summarized in section IV.

II. THE REISSNER-NORDSTROM BLACK HOLE
IN AdS4

The electrically charged black hole in AdS4 is

ds2 ¼ �fdt2 þ dr2

f
þ r2d�2

2;k

where f ¼ k� 2M

r
þ Q2

4r2
þ r2

L2

� ¼ Q

r
� Q

rH
 ¼ 0:

(5)

It is a solution to the equations of motion following from
the Lagrangian (1). In (5), d�2

2;k is a metric of constant

curvature, with scalar curvature equal to 2k. If k ¼ 0, then
d�2

2;k is the line element of flat R2. If k > 0, then d�2
2;k is

the metric of a two-sphere, S2, of radius 1=
ffiffiffi

k
p

. If k < 0 (a
case I will not consider below), then d�2

2;k is the metric of

the hyperbolic plane with radius of curvature 1=
ffiffiffiffiffiffiffi�kp

.2 The
asymptotically AdS4 region is at large r. A regular black
hole horizon occurs if f has a positive root, let us say at
r ¼ rH. Let us assume that a horizon exists and regard M
as determined by rH and the other parameters in (5)
through the equation fðrHÞ ¼ 0. The parameters M and
Q are not precisely the mass and the charge of the black
hole; rather, they are quantities with dimensions of length
to which the mass and charge (or mass density and charge
density if k ¼ 0) are related through factors of GN and/or
k.
Before entering into a discussion of perturbations

around (5), it is helpful to consider two scaling symmetries.
Let us say that a quantity X has a charge � under a
particular scaling symmetry if its scale transformation is

X ! ��X: (6)

Then the two scaling symmetries of interest are character-
ized by the following charge assignments:

t r k M Q ds2 �dt  L m q GN

first symmetry 1 �1 �2 �3 �2 0 0 0 0 0 0 0
second symmetry 1 1 0 1 1 2 1 0 1 �1 �1 2

(7)

We are always interested in having a black hole horizon, so
rH � 0; also, we are always interested in having nonzero
charge, so Q � 0. So an efficient use of the scaling sym-
metries (7) is to set rH ¼ Q ¼ 1. Then one sees that the
solutions (5) modulo the scaling symmetries are a two-
parameter family, labeled by k and L. One can pass to the
flat space limit by taking L! 1 with k finite, and one can
pass to the Poincaré patch of AdS4 by taking k! 0 with L
finite.

III. MARGINALLY STABLE MODES

Amarginally stable perturbation is one where  depends
only on r and is infinitesimally small (that is, it does not
backreact on the other fields). The main interest attaches to

the first marginally stable mode that appears as one lowers
the temperature, which corresponds to raising L if one fixes
rH ¼ Q ¼ 1 as described following (7). The simplest pos-
sibility is for the appearance of this mode to signal a second
order phase transition to an ordered state where  is non-
zero. I will assume that  is everywhere real, because
phase oscillations in the r direction would only raise the
energy of the mode, making it less likely to become
unstable.
The equation of motion for  following from the

Lagrangian (3) is

� 1
ffiffiffiffiffiffiffi�gp @r

ffiffiffiffiffiffiffi�gp
grr@r þm2

eff ¼ 0; (8)

where m2
eff is as specified in (4). The factors of

ffiffiffiffiffiffiffi�gp
arise

because the action is S ¼ R

d4x
ffiffiffiffiffiffiffi�gp

L. It is straightfor-

ward to show that (8) takes the following form:

2It is an interesting case, though: quotienting the hyperbolic
plane by a discrete subgroup, one can obtain smooth surfaces of
any genus g > 1. A superconducting medium on such a surface
has some interesting topological excitations.
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 00 þ �1þ ð8r� 4Þkþ 4ð4r3 � 1Þ=L2

ðr� 1Þð�1þ 4krþ 4rðr2 þ rþ 1Þ=L2Þ 
0

� 4r2

ðr� 1Þð�1þ 4krþ 4rðr2 þ rþ 1Þ=L2Þm
2
eff ¼ 0;

(9)

where I have set rH ¼ Q ¼ 1, and

m2
eff ¼ m2 � 4q2ðr� 1Þ

�1þ 4krþ 4rðr2 þ rþ 1Þ=L2
: (10)

Evidently, (9) now depends on four parameters: k, L, m,
and q. They are subject only to the constraint

� 1þ 4kþ 12=L2 � 0; (11)

which guarantees that r ¼ 1 is the largest root of f and that
the denominators in (9) and (10) are positive for r > 1.3

When the inequality (11) is saturated, the black hole is
extremal in the sense of having zero temperature.

Finding a marginally stable mode comes down to solv-
ing a boundary value problem. One boundary is the hori-
zon, and the other is asymptotic infinity (i.e. either anti-de
Sitter space or flat space). The horizon is at r ¼ 1, which is
a regular singular point of the differential Eq. (9). The
leading order solutions there are

 ¼  0 þ ~ 0 logðr� 1Þ; (12)

where  0 and ~ 0 are arbitrary integration constants. The

appropriate horizon boundary condition is ~ 0 ¼ 0, because
otherwise  is singular. Let us take advantage of the
linearity of (9) to set  0 ¼ 1, keeping in mind that it would
really be more proper to treat  0 as a parameter whose
smallness justifies the neglect of backreaction. One can
easily develop  in a series solution: the first three terms
are

 ðrÞ ¼ 1þ 4m2

�1þ 4kþ 12=L2
ðr� 1Þ

� 2ðð1þ 12=L2Þm2 � 2m4 þ 2q2Þ
ð�1þ 4kþ 12=L2Þ2 ðr� 1Þ2

þO½ðr� 1Þ2�: (13)

The boundary condition at asymptotic infinity is simple if
m2 > 0: one must have  ! 0. In AdS4, m

2 < 0 is also an
interesting case, because then  corresponds to some

relevant operator in the dual conformal field theory. But
specifying the appropriate behavior near the conformal
boundary in this case involves some technical issues that
I prefer to postpone. If m2 > 0, then the presence of
marginally stable modes obviously can only be due to the
second term in (4). The following choice of parameters
provides a good example of the phenomenon:

k ¼ 0 m2L2 ¼ 4 qL ¼ 10: (14)

I prefer to hold m2L2 and qL fixed as I vary L because
these combinations are invariant under the scaling symme-
tries (7). What this means is that I hold the theory fixed (up
to scalings which affect none of the classical equations of
motion) while varying L. Alternatively, one could hold L
and Q fixed while varying rH: that is, keep charge density
fixed as one lowers the entropy and temperature. As shown
in Fig. 1(a), there are multiple marginally stable modes at
different values of L. For the parameter choice indicated in
(14), there appears to be an infinite tower of these modes at
larger and larger values of L (meaning lower and lower
temperature if one prefers to hold L and Q fixed instead of

rH and Q), converging to the limiting value L ¼ 2
ffiffiffi

3
p

at
which the black hole becomes extremal. The marginally
stable mode that occurs for the smallest value of L, call it
L ¼ L�, is the important one, as it can be expected to be
unstable for L > L�. Probably this mode condenses, and
the other modes do not matter to the phase structure of the
black hole. Nonzero k does not change the story much, as
shown in Fig. 1(b), except that, for the choice of parame-
ters studied, there appear to be only two marginally stable
modes.
The story in AdS4 does not appear to change qualita-

tively when m2 < 0, provided one satisfies the
Breitenlohner-Freedman bound [13], m2L2 >�9=4,
which guarantees that perturbations of  do not make the
AdS4 vacuum unstable. But there is one complication,
namely, the choice of boundary condition at the conformal
boundary. The asymptotic behavior of solutions of (9) at
large r is

 � A 

r3��
þ B 

r�
; (15)

where � is determined by

m2L2 ¼ �ð�� 3Þ: (16)

According to the gauge-string duality [14–16], when  is
associated with an operatorO of dimension�, one should

choose A ¼ 0 to describe states of the theory in the

absence of a deformation of the Lagrangians by O . The

difficulty is that there are two solutions to (16), namely

�� ¼ 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 4m2L2
p

2
; (17)

3If one tries to go to values of L and k that violate the
inequality (11), there may still be a horizon, just for some value
r > 1. When this happens, it does not mean that the solutions are
new solutions. Instead, it means that the scaling symmetry
should be used anew to send the horizon to r ¼ 1. Then one
will recover solutions in a range of parameters specified in (11).
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and switching from �þ to �� effectively swaps A and

B . When m2L2 >�5=4, one finds �� < 1=2, which is

disallowed by unitary. But for �9=4<m2L2 <�5=4,
either solution to (16) is permitted by unitarity, and choos-
ing one or the other corresponds to selecting one of two
possible boundary theories, distinguished by the dimension
of O [17]. I considered the case m2L2 ¼ �2, which is in

this window, and I chose the large r asymptotics corre-
sponding to an expectation value of an operator with
dimension � ¼ 2 (i.e. I used �þ not ��). See Fig. 1(c).

Unsurprisingly, it turns out that a smaller value of q
suffices to tip the system into an instability well away
from extremality—which is to say, well above zero
temperature.
The story changes drastically in the limit L! 1 with

k ¼ 1, which describes a Reissner-Nordstrom black hole in
asymptotically flat spacetime. Consider the effective mass
in this case:

m2
eff ¼ m2 � 4q2 þ 4ð�1þ 4kÞq2r

�1þ 4kr
; (18)

where as usual I have used the scaling symmetries to set
rH ¼ Q ¼ 1. The bound (11) now translates to k � 1=4,
and for this range of k, the last term in (18) is seen to be
monotonically decreasing with r. So if  is stable at
infinity, it is stable at the horizon. Therefore, no near-
horizon symmetry breaking is possible in this case.
It is interesting to consider the extremal limit k ¼ 1=4 in

asymptotically flat space a bit more carefully. One sees
from (18) that m2

eff is constant, but it could be positive or

negative depending on whether m is bigger or smaller than
2q. What this indicates is that if a particle is so highly
charged that its gravitational attraction to the black hole is
overcome by its electrostatic repulsion, then there is an
instability: the black hole superradiates the highly charged
particles to bring its charge-to-mass ratio down until the
charged particles are no longer repelled from it. One might
ask why this does not happen in the asymptotically AdS4
examples: after all, the value qL ¼ 10 that I used when
m2L2 ¼ 4 is pretty big. The difference is that massive

k 0, m2L2 4, qL 10

L 1.11

L 1.54

L 1.94
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2 4 6 8 10
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FIG. 1 (color online). Examples of marginally stable modes in
an asymptotically AdS4 geometry.
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FIG. 2. The Penrose diagram of a static black hole horizon.
Each point in the regions on the right and the top represents a
two-dimensional slice at constant t and r of the metric (5). The
other two regions arise from continuing the metric to a spacetime
whose only failures to be geodesically complete arise from
curvature singularities. The region on the right connects to
asymptotic infinity and corresponds to r > rH. Contours of
constant t are shown in this region.
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particles cannot escape from AdS4, no matter how highly
charged they are: the conformal boundary is inaccessible to
particles with m2 > 0. A heuristic view of what happens is
that the highly charged quanta try to escape, fail, and so
have no choice but to condense inside AdS4. This intuition
does not work so well when m2 < 0, because tachyons can
reach the boundary of AdS4. The boundary conditions at
the conformal boundary then become important, and one
can loosely think of the one I chose in the discussion below
(16) as perfectly reflecting.

Last, let us turn to the issue of why a preferred gauge
choice is to set � ¼ 0 at the horizon when  is nonzero
there. Suppose I made a different choice: � ¼ �H at the
horizon. Because of the term �gttj@t � iq� j2 in the
Lagrangian, the energy of a scalar configuration with  �
0 at the horizon will be infinite unless  has a time-
dependence  / eiq�Ht. It does not seem so bad to repeat
the analysis of this section in such a gauge. But consider
the global spacetime. As shown in Fig. 2, the future horizon
is at t ¼ þ1, the past horizon is at t ¼ �1, and the
intersection of the two is where t runs from �1 to þ1.
This illustrates in a standard way the fact that t is not a
good coordinate at the horizon. The trouble with  /
eiq�Ht is that  is then ill-defined on the horizon—that is,
on the past and future horizons as well as their intersection.

IV. CONCLUSIONS

Modulo two logical gaps (points 1 and 2 in the list
below) I have shown that the Abelian Higgs model exhibits
spontaneous symmetry breaking near the horizon of elec-
trically charged black holes in AdS4, provided the charges
of the black hole and the scalar are large enough and their
masses are small enough. This suggests that black hole
horizons can superconduct when they get cold enough—
although it would be more precise to say that a super-
conducting layer forms slightly outside the horizon.
There are two known mechanisms by which such sponta-
neous symmetry breaking can occur. One was suggested in
[1], and it hinges on a nonrenormalizable coupling in the
matter Lagrangian. This mechanism can be made to work
in asymptotically flat space, and the charge of the scalar
field can be small. The mechanism described in this paper
employs only renormalizable interactions among the mat-
ter fields. (Gravity, of course, is nonrenormalizable in the
usual sense.) But it does not work in flat space, so the four-
part no-hair conjecture proposed at the end of [1] is not
jeopardized.

It is interesting to inquire whether there are any lessons
from gravity about what it takes to superconduct in a field
theory dual to an asymptotically AdS4 background. If one
relies entirely on the mechanism described in this paper (as
opposed to the one suggested in [1]) then the main feature
of interest is that the charge q of the scalar field needs to be
large enough. This charge is not to be confused with the
charge of a Cooper pair; nor is the gauge field F�� to be

confused with the one associated with photons. Instead,
one must rely upon the translation of AdS4 to field theory
quantities provided by the gauge-string duality. The gauge
field in AdS4 is associated via this dictionary with a
conserved current Jm in the field theory, and this current
is the electrical current. (Roman indices likem run over the
2þ 1 dimensions of the boundary theory, while Greek
indices like � run over the 3þ 1 dimensions of AdS4.)
The complex scalar  is associated with a complex opera-
tor O in the field theory, which most naturally would be

the operator that destroys a Cooper pair. What q controls is
an overall factor on the three-point function hJO O�

 i.
More accurately, q controls a ratio of three-point and
two-point functions:

hJO O
�
 i2

hJJihO O
�
 i2

/ q2: (19)

To phrase this even more precisely, one could take advan-
tage of the fact that the conformal invariance plus the
conservation of J dictates the functional form of all the
correlators appearing in (19), up to overall normalization
factors and possibly contact terms.4 A ratio analogous to
(19) can be formed from the overall normalization factors,
and it is that ratio which is controlled by q. So the punch
line is that this ratio needs to be sufficiently large in order
for spontaneous symmetry breaking to take place by the
mechanism described in this paper.
The mechanism suggested in [1] involved two gauge

fields and was formulated with asymptotically flat space in
mind, but it seems clear that it can be made to work in
AdS4. Also, it may be possible to set the gauge fields equal
and use only one.5 The gauge coupling can be small—in
fact the calculation as presented in [1] is well-controlled
only in the limit of weak gauging. The crucial nonrenor-
malizable interaction is ‘2j j2F2

��, and the coefficient ‘2

has to be sufficiently large in order for spontaneous sym-
metry breaking to occur. Presumably there is some relation
analogous to (19) of roughly the form

hJJO O
�
 i

hJJihO O
�
 i

/ ‘2: (20)

It is more complicated to give precise meaning to (20) than
to (19): conformal invariance does not entirely fix the form
of four-point functions, and from the gravity side, both the
nonrenormalizable coupling and the renormalizable gauge

4Of course, what I mean is that conformal invariance controls
the form of the zero-temperature limit of the correlators of
interest. At finite temperature, the discussion here can be under-
stood as applying to correlators measured on length scales
significantly smaller than the inverse temperature.

5I thank C. Herzog for discussions on these points.
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coupling would contribute to the four-point function in
question. Nevertheless, one sees again in (20) the theme
that mixed correlators of J andO have to be large enough

compared to the two-point functions of these operators in
order for spontaneous symmetry breaking to occur.

In discussing the gravity side, I have regarded the spon-
taneous breaking of an Abelian gauge symmetry as the
characteristic property of a superconductor.6 In the dual
field theory, what was a gauge symmetry becomes a global
symmetry, and it is the global symmetry which is sponta-
neously broken when O develops an expectation value,

corresponding to nonzero  on the gravity side. The global
symmetry in the boundary theory can be weakly gauged
‘‘by hand,’’ in the sense of introducing an additional Uð1Þ
gauge boson on the boundary and coupling it to the current
Jm, as discussed, for example, in [5]. If the coupling is
weak, it cannot appreciably affect the phase transition,
which becomes again a spontaneous breaking of an
Abelian gauge symmetry.

Let us end with an assessment of two logical gaps in the
arguments of this paper (points 1 and 2 below); a point on
which I feel some genuine confusion (point 5); and several
directions for future work (points 3, 4, and 6):

(1) Does the existence of a marginally stable mode
imply an instability? Generically the answer is
yes: if one continuously varies parameters, encoun-
tering a marginally stable fluctuation usually means
that on one side or the other, the fluctuation becomes
unstable. If one relies on this genericity argument,
then the unstable mode has to be on the side of low
temperatures, because the scaling symmetries relate
the high-temperature (large rH) limit with the Q!
0 limit, where it seems obvious that no instability
can occur.

(2) Are solutions with  � 0 entropically favored over
the ones with  ¼ 0? It seems like common sense
that they should be, because the unstable modes
(assuming they are unstable) want to condense,
and area theorems say they can do so only if the
endpoint (assuming there is a static endpoint) has
higher entropy. But there is no substitute for an
explicit calculation on this point. For example, in
the microcanonical ensemble, one could compare
the entropy of broken and unbroken solutions at
fixed energy and charge.

(3) My exploration of when marginally stable modes
arise was anything but exhaustive. The differential
Eq. (9) depends on four parameters, but instead of
trying to scan the full parameter space, I looked
along just three one-dimensional curves inside it.
Interesting threshold effects might exist for special

parameter choices where marginal modes barely
exist. The aim of this paper has been to give a proof
of principle (modulo points 1 and 2) that the mecha-
nism described below (4) really works; further work
is needed to establish the full range of behaviors that
this mechanism exhibits.

(4) Does the breaking of the gauge invariance of the
Lagrangian (1) really mean that the dual theory
superconducts? Recall that F�� is not the gauge

field associated with real-world photons. This is
not likely to be a problem, because nonzero  trans-
lates via the gauge-string dictionary into an expec-
tation value for O , and such an expectation value

would break the Uð1Þ gauge invariance of a gauge
field in the boundary theory under which O is

charged. To be really sure that superconductivity
occurs, one should compute a two-point correlator
hJJi in the broken phase. This is a harder calculation
than the ones presented here because one must first
construct a solution in the broken phase of the non-
linear equations following from (1) and then perturb
the gauge field (and maybe the other fields too)
around it. Through such a calculation, one could in
principle access the frequency and wave vector
dependence of hJJi, not just the transport coeffi-
cients available from its infrared behavior.

(5) Do black holes have anything to do with real super-
conductors? Unlike the situation with quantum
chromodynamics, where there is a good understand-
ing from D-brane constructions of how one gets
interacting gluons, the duality of gravitational sys-
tems and strongly correlated electron systems is not,
as yet, supported by a first principles construction in
which the underlying degrees of freedom (e.g. the
electrons) are manifest. So I am not sure how seri-
ously to take the analogies between black holes and
superconducting materials presented to date, includ-
ing the one in this paper. Naturally, I hope that black
holes might provide some useful hints about the
correct description of high Tc superconductivity in
a regime that standard field theory techniques can-
not access. But this is only a hope.

(6) Can the infrared dynamics of the condensate whose
existence I have argued for be described by an
effective theory like Ginzburg-Landau? Does it
lead to a type I or a type II superconductor? Is the
transition to superconductivity first order or second
order? Can one construct flux vortices explicitly?
Can one calculate, or estimate, Hc1 and Hc2? Do the
results of such calculations bear any quantitative
resemblance to real-world superconductors? Can
the mechanism described here be realized in a string
theory or M-theory construction?

I look forward to addressing some of these issues in
future work.

6It has been argued in [18] that the key experimental properties
of superconductors, such as vanishing dc resistance and the
Meissner effect, follow from effective field theory considerations
applied to a spontaneously broken Abelian gauge symmetry.
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