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We give an analytical solution representing circular magnetic monopole loops joining a pair of merons

in the four-dimensional Euclidean SU(2) Yang-Mills theory. This is achieved by solving the differential

equation for the adjoint color (magnetic monopole) field in the two-meron background field within the

recently developed reformulation of the Yang-Mills theory. Our analytical solution corresponds to the

numerical solution found by Montero and Negele on a lattice. This result strongly suggests that a meron

pair is the most relevant quark confiner in the original Yang-Mills theory, as Callan, Dashen, and Gross

suggested long ago.
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I. INTRODUCTION

The dual superconductivity picture [1] for quark con-
finement [2] was proposed long ago, and it is now believed
to be a promising mechanism for quark confinement. The
dual superconductivity is supposed to be realized as an
electric-magnetic dual of the ordinary superconductivity.
For this to be possible, there must exist magnetic mono-
poles to be condensed for causing the dual Meissner effect,
just as the Cooper pairs exist and they are condensed to
cause the Meissner effect in the ordinary superconductiv-
ity. The idea of dual superconductivity is intuitively easy to
understand, but upgrading this idea into a quantitative
theory was not so easy, as can be seen from the fact that
we are still involved in this work.

The possible topological soliton in pure Yang-Mills
theory [3] (with no matter fields) is only the Yang-Mills
instanton [4–7] with a finite action integral and integer
Pontryagin index in D ¼ 4 dimensional Euclidean space-
time where the continuous map U: S3 ! SUð2Þ ’ S3 is
classified by the homotopy �3ðS3Þ ¼ Z.1 However, we
have some arguments suggesting that Yang-Mills instan-
tons do not confine quarks in four dimensions, e.g., [8].
This is in sharp contrast to theD ¼ 3 case. For instance, in
the Georgi-Glashow model, pointlike magnetic monopoles
exist as instantons in three dimensions, leading to the area
law of the Wilson loop average [9].

In view of this, ’t Hooft [10] has proposed an explicit
prescription which enables one to extract (Abelian) mag-

netic monopoles from the Yang-Mills theory as gauge-
fixing defects, which is called the Abelian projection
method. In this prescription, the location of an Abelian
magnetic monopole in SUð2Þ Yang-Mills theory is speci-
fied by the simultaneous zeros (of first order) in RD of a

three-component field ~�ðxÞ ¼ f�AðxÞgA¼1;2;3, which we

call the monopole field hereafter. As a result, an Abelian
magnetic monopole is a topological object of codimension
3 if they exist at all, characterized by a continuous map
S2 ! SUð2Þ=Uð1Þ ’ S2 with �2ðS2Þ ¼ Z. Therefore, an
Abelian magnetic monopole is represented by a point in
D ¼ 3, as expected. InD ¼ 4 dimensions the world line of
a magnetic monopole must draw a closed loop, not merely
an open line, due to the topological conservation law of the
magnetic monopole current. (A magnetic current extend-
ing from an infinity to another infinity can be also identi-
fied with a closed loop.) It is known that large magnetic
monopole loops are the most dominant configurations
responsible for confinement. See e.g., [11] for a review.
The second obstacle is the lack of information as to how

the magnetic monopole is related to the original Yang-
Mills field in a gauge-invariant manner. In the ’t Hooft

proposal, the monopole field ~�ðxÞ is an arbitrary composite
operator of the Yang-Mills field AA

�ðxÞ as long as it trans-

forms according to the adjoint representation under the
gauge transformation, e.g., �A ¼ F A

12 (a component of
the field strength F A

��). The maximal Abelian gauge

(MAG) [12] is well known to be the most effective choice
in practical calculations, corresponding to a specific choice
for the monopole field in the Abelian projection method.
The MAG is given by minimizing the gauge-fixing func-
tional written in terms of the off-diagonal gluon fields Aa�
(a ¼ 1, 2): FMAG ¼ R

d4x 1
2 ½ðA1

�Þ2 þ ðA2
�Þ2� using the

gauge degrees of freedom to transform the gauge field
variable as close as possible to the maximal torus group
Uð1Þ.
It is important to establish the relationship between the

Abelian magnetic monopole in question and an original
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1The Yang-Mills instanton can be also regarded as a solution

with a finite energy in D ¼ 4þ 1 Minkowski spacetime. Here
we use a topological soliton as implying a solution of the Yang-
Mills field equation (of motion) having an invariant under the
continuous deformation of the solutions, e.g., characterized by
nontrivial Homotopy class.
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Yang-Mills field. For this purpose, some works have al-
ready been devoted to constructing explicit configurations
of the magnetic monopole loops from appropriately chosen
configurations of the Yang-Mills field. In fact, Chernodub
and Gubarev [13] have pointed out that one instanton or the
set of instantons arranged along a straight line induce an
Abelian magnetic monopole current along a straight line
going through centers of instantons within MAG. In this
case, the magnetic monopole is given by the standard static
hedgehog configuration. However, this solution yields a
divergent value for the gauge-fixing function of MAG:
FMAG ¼ R

d4x 1
2 ½ðA1

�Þ2 þ ðA2
�Þ2�. Therefore, it must be ex-

cluded in four dimensions.
A laborious and important work has been done by

Brower, Orginos, and Tan (BOT) [14] who investigated
within the MAG whether the magnetic monopole loop
represented by a circle with a nonzero and finite radius
can exist for some given instanton configurations or not.
They concluded the absence of such a stable magnetic
monopole loop for a one-instanton Yang-Mills back-
ground: a circular magnetic monopole loop centered on
an instanton is inevitably shrunk to the center point if one
imposes the condition of minimizing the MAG functional
FMAG. While an instanton-anti-instanton pair seems to
support a stable magnetic monopole loop, although it is
not a solution of the Yang-Mills equation of motion. These
results suggest that instantons are not the topological ob-
jects responsible for quark confinement from the viewpoint
of the dual superconductivity. Moreover, these conclusions
heavily rely on their hard work of numerically solving
partial differential equations. See e.g., [15] for the corre-
sponding result obtained from numerical simulations on a
lattice.

Subsequently, Bruckmann, Heinzl, Vekua, and Wipf
(BHVW) [16] have performed a systematic and analytical
treatment to this problem within the Laplacian Abelian
gauge (LAG) [17], which has succeeded in shedding new
light on the relationship between an Abelian magnetic
monopole and an instanton from a different angle. In the

LAG, zeros of an auxiliary Higgs field ~�ðxÞ induce topo-
logical defects in the gauge potential upon diagonalization.
It is important to notice that the nature of the defects
depends on the order of the zeros. For first-order zeros,
one obtains magnetic monopoles. The defects from zeros
of second order are Hopfion, which are characterized by a
topological invariant called the Hopf index [18] for the
Hopf map S3 ! SUð2Þ=Uð1Þ ’ S2 with nontrivial homo-
topy �3ðS2Þ ¼ Z. They have solved the eigenvalue prob-
lem of the covariant Laplacian �D�½A�D�½A� in the

adjoint representation in the background of a single instan-

ton A (in the singular gauge): �D�½A�D�½A� ~�ðxÞ ¼
� ~�ðxÞ and have obtained the auxiliary Higgs field ~�ðxÞ
as the (normalizable) ground state wave function having
the lowest eigenvalue �. Consequently, they have found

that the auxiliary Higgs field ~�ðxÞ is given by the standard

Hopf map: S3 ! S2 in the neighborhood of the center of an
instanton and by a constant, e.g., (0, 0, 1) after normaliza-
tion in the distant region far away from the center where
two regions are separated by the scale of the instanton size
parameter �. The zeros of the auxiliary Higgs field ~�ðxÞ
agree with the origin. This results enable one to explain the
BOT result without numerical calculations. In BHVW,
however, R4 was replaced by a four sphere S4 of a finite
radius in order to obtain a finite LAG functional (conver-
gent integral). See also [19–23] for relationships among
various topological objects.
In the course of studying the relationship between

Abelian magnetic monopole and center vortices [24], mer-
ons [25] are recognized as important objects [26,27].
Merons [25,28] are solutions of the Yang-Mills field equa-
tion and are characterized by one-half topological charge,
i.e., having half-integer Pontryagin index. These configu-
rations escaped from the above consideration since they
have infinite action due to their singular behaviors.
However, once they receive an ultraviolet regularization
which does not influence quark confinement, they can have
finite action and contribute to the functional integration
over the Yang-Mills field in calculating the Wilson loop
average, based on action and entropy arguments in the
strong coupling region above a critical value. In fact,
Callan, Dashen, and Gross [29] have discussed that merons
are the most dominant quark confiner. In fact, Reinhardt
and Tok [30] have investigated the relationship among
Abelian magnetic monopoles and center vortices in various
Yang-Mills background fields: one meron, one instanton,
an instanton-anti-instanton pair, using both the LAG and
the Laplacian center gauge (LCG). It has been pointed out
that the Abelian magnetic monopole and meron pair are
mediated by sheets of center vortices [26]. In fact, Montero
and Negele [31] have obtained an Abelian magnetic mono-
pole loop and center vortices for two merons (meron pair)
by using numerical simulations on a lattice, see also [32]
for related works.
The third obstacle in these approaches lies in the fact

that topological objects such as Abelian magnetic mono-
poles and center vortices are obtained as gauge fixing
defects. Therefore, they are not free from criticism of
gauge artifacts.2 Recently, we have given a gauge-invariant
(gauge independent) definition of magnetic monopoles
[34–36] and vortices [37] in Yang-Mills theory in the
framework of a new reformulation of Yang-Mills theory
based on change of field variables founded in [38]. The
lattice version has been constructed to support them by
numerical simulations [39]. These are suggested from a
non-Abelian Stokes theorem for the Wilson loop operator
[36,40,41].
This paper is organized as follows. In Secs. II and III, we

investigate how the gauge-invariant magnetic monopoles

2There is an approach to gauge-invariant Abelian confinement
mechanism, see [33].
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are obtained analytically for a given Yang-Mills back-
ground field in four dimensions. In Secs. IV and V, we
show that the previous results [14,16,30] obtained for one-
meron and one-instanton are easily reproduced within our
reformulation. In Sec. VI, we give a new result for gauge-
invariant magnetic monopole loops in Yang-Mills theory:
It is shown in an analytical way that there exist circular
magnetic monopole loops joining two merons. This will be
the first analytical solution of stable magnetic monopole
loops constructed from the Yang-Mills field with nontrivial
but finite Pontryagin index. (Bruckmann and Hansen [23]
constructed a ring of magnetic monopoles by superposing
infinitely many instantons on a circle. This configuration
has infinite action and infinite Pontrayagin index.) The
analytical solution for magnetic monopole loops given in
this paper corresponds to the numerical solution found by
Montero and Negele [31] on a lattice.

The result in this paper has rather interesting implica-
tions to the quark confinement mechanism. As mentioned
above, the gauge-invariant magnetic monopole is a com-
plicated object obtained by the nonlinear change of varia-
bles from the original Yang-Mills field, although they are
fundamental objects necessary for the naive dual-
superconductivity scenario of quark confinement. In other
words, the result in this paper indicates that a meron pair is
the most relevant quark confiner if viewed from the origi-
nal Yang-Mills theory, as Callan, Dashen, and Gross [29]
suggested long ago.

II. REDUCTION CONDITION

In a previous paper [34], we have given a prescription for
obtaining the gauge-invariant magnetic monopole from the
original Yang-Mills field A�ðxÞ.

(i) For a given SU(2) Yang-Mills field A�ðxÞ ¼
AA
�ðxÞ �A2 , the color field nðxÞ is obtained by solving

the differential equation:

n ðxÞ �D�½A�D�½A�nðxÞ ¼ 0; (2.1)

which we call the reduction differential equation
(RDE). Here the color field has the unit length

n ðxÞ � nðxÞ ¼ 1: (2.2)

(ii) Once the color field nðxÞ is known, the gauge-
invariant ‘‘magnetic monopole current’’ k is con-
structed by applying the exterior derivative d, the
coderivative (adjoint derivative) � and Hodge star
operation � to f:

k :¼ � � f ¼ �df; (2.3)

where f is the gauge-invariant twoform defined from
the gauge connection oneform A by

f	
ðxÞ :¼ @	½nðxÞ �A
ðxÞ� � @
½nðxÞ �A	ðxÞ�
þ ig�1nðxÞ � ½@	nðxÞ � @
nðxÞ�:

(2.4)

The current k is conserved in the sense that �k ¼ 0.
In D ¼ 4 dimensions, especially, we have

k� ¼ 1
2���	
@�f	
; (2.5)

and the magnetic charge qm is defined by

qm ¼
Z
d3 ~��k�; (2.6)

where �x� denotes a parametrization of the 3-
dimensional volume V and d3 ~�� is the dual of the

3-dimensional volume element d3��1�2�3 :

d3 ~�� :¼ 1

3!
���1�2�3

d3��1�2�3 ;

d3��1�2�3 :¼ �
1
2
3

@ �x�1

@�
1

@ �x�1

@�
1

� @ �x�1

@�
1

d�1d�2d�3: (2.7)

See [35,36] for the SUðNÞ (N � 3) case.
The RDE in our reformulated Yang-Mills theory has the

same form as that considered in BOT [14], but its reasoning
behind the RDE is quite different from the previous one, as
can be seen from its derivation in Appendix A, see [34] for
more details. We now give a new form of the RDE (eigen-
valuelike equation):

�D�½A�D�½A�nðxÞ ¼ �ðxÞnðxÞ: (2.8)

This implies that solving the RDE (2.1) is equivalent to
looking for the color field nðxÞ such that applying the
covariant Laplacian �D�½A�D�½A� of a given Yang-

Mills field A�ðxÞ to the color field nðxÞ becomes parallel

to itself. It should be remarked that �ðxÞ is non-negative,
i.e.,

�ðxÞ � 0; (2.9)

since �D�½A�D�½A� is a non-negative (positive definite)

operator. The equivalence between (2.1) and (2.8) is shown
as follows. Let e1ðxÞ, e2ðxÞ, e3ðxÞ � nðxÞ be local ortho-
normal basis in SU(2) color space, i.e.,

e jðxÞ � ekðxÞ ¼ �jk‘e‘ðxÞ; ejðxÞ � ekðxÞ ¼ �jk:

(2.10)

Then we can write the left-hand side of (2.8) using three
scalar functions cjðxÞ as
�D�½A�D�½A�nðxÞ ¼ c1ðxÞe1ðxÞ þ c2ðxÞe2ðxÞ

þ c3ðxÞe3ðxÞ: (2.11)

Now (2.1) is written as
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0 ¼ nðxÞ � ½�D�½A�D�½A�nðxÞ�
¼ c1ðxÞe2ðxÞ � c2ðxÞe1ðxÞ: (2.12)

By taking the inner product of both sides of this equation
with e1ðxÞ or e2ðxÞ, we obtain c2ðxÞ � 0 or c1ðxÞ � 0,
respectively. Thus we obtain �D�½A�D�½A�nðxÞ ¼
c3ðxÞe3ðxÞ ¼: �ðxÞnðxÞ.

An advantage of the new form (2.8) of RDE is as
follows. Once the color field nðxÞ satisfying (2.8) is known,
the value of the reduction functional Frc is immediately
calculable as an integral of the scalar function �ðxÞ over the
spacetime RD as

Frc ¼
Z
dDx

1

2
ðD�½A�nðxÞÞ � ðD�½A�nðxÞÞ

¼
Z
dDx

1

2
nðxÞ � ð�D�½A�D�½A�nðxÞÞ

¼
Z
dDx

1

2
nðxÞ � �ðxÞnðxÞ ¼

Z
dDx

1

2
�ðxÞ; (2.13)

where we have used (2.2) in the last step.
Thus, the problem of solving the RDE has been reduced

to another problem: for a given Yang-Mills fieldA�ðxÞ, we
look for the unit vector field nðxÞ such that
�D�½A�D�½A�nðxÞ is proportional to nðxÞwith the small-

est value of the reduction functional Frc which is an
integral of the scalar function �ðxÞ over the spacetime
RD. For the integral (2.13) to be convergent, �ðxÞ must
decrease rapidly for large x2.

Our method should be compared with the conventional
one of the Laplacian Abelian gauge (LAG) [16]. LAG is
performed by searching for the field configuration�which
minimizes the functional

FLAG :¼
Z
dDx

1

2
ðD�½A��ðxÞÞ2; (2.14)

provided that�ðxÞ is square-integrable (and hence normal-
izable), i.e.,

Z
dDx�ðxÞ ��ðxÞ<1: (2.15)

The field configuration�minimizing the functional can be
viewed as the ground state with the lowest eigenvalue � in
the eigenvalue equation for the covariant Laplacian
�D�½A�D�½A�:

�D�½A�D�½A��ðxÞ ¼ ��ðxÞ: (2.16)

Once the eigenvalue problem is solved, the functional
reads

FLAG :¼
Z
dDx

1

2
�ðxÞ � ½�D�½A�D�½A��ðxÞ�

¼ 1

2
�
Z
dDx�ðxÞ ��ðxÞ ¼ 1

2
�: (2.17)

Therefore, the lowest eigenvalue � gives the smallest value
of the LAG functional FLAG. It should be remarked that �
is non-negative, i.e., � � 0, since�D�½A�D�½A� is a non-
negative (positive definite) operator. In LAG, the variable �
is regarded as the Lagrange multiplier for incorporating a
constraint (2.15) in the minimization problem:

FLAG :¼
Z
dDx

1

2
ðD�½A��ðxÞÞ2

� �

�Z
dDx

1

2
�ðxÞ ��ðxÞ � 1

�
: (2.18)

This is not the case for the reduction functional Frc.

III. SIMPLIFYING THE RDE USING SYMMETRIES

In what follows, we restrict our considerations to the
four-dimensional D ¼ 4 Euclidean Yang-Mills theory.

A. CFtHWAnsatz for Yang-Mills field

First, we adopt the Corrigan-Fairlie-’tHooft-Wilczek
(CFtHW) Ansatz [5–7]:

gA�ðxÞ ¼ �A
2
gAA

�ðxÞ ¼ �A
2
A��f�ðxÞ;

f�ðxÞ :¼ @� ln�ðxÞ;
(3.1)

where A�� ¼ ðþÞA
�� is the symbol defined by

A�� � ðþÞA
�� :¼ �A��4 þ �A���4 � ��4�A�

¼
8<
:
�Ajk ð� ¼ j; � ¼ kÞ
�Aj ð� ¼ j; � ¼ 4Þ
��Ak ð� ¼ 4; � ¼ kÞ

: (3.2)

Similarly, we can define �A�� ¼: ð�ÞA
�� as

�A
�� � ð�ÞA

�� :¼ �A��4 � �A���4 þ ��4�A�

¼
8<
:
�Ajk ð� ¼ j; � ¼ kÞ
��Aj ð� ¼ j; � ¼ 4Þ
þ�Ak ð� ¼ 4; � ¼ kÞ

: (3.3)

Note that A�� is self-dual, i.e., A�� ¼ �A�� :¼
1
2 ���	


A
	
, while �A�� is anti-self-dual, i.e., � �A�� ¼

� �A��.
Under this Ansatz, the RDE is greatly simplified:

f½�@�@� þ 2f�f���AB þ 2�ABC
C
��f�ðxÞ@�gnBðxÞ

¼ �ðxÞnAðxÞ: (3.4)

See Appendix B for the derivation.
The Yang-Mills field in the CFtHW Ansatz satisfies

simultaneously the Lorentz gauge:

@�A
A
�ðxÞ ¼ 0; (3.5)

and the maximal Abelian gauge (MAG):
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D�½A3�A�
�ðxÞ :¼ ð@� � igA3

�ÞðA1
�ðxÞ � iA2

�ðxÞÞ ¼ 0:

(3.6)

B. Symmetry

In order to further simplify the equation, we make use of
the Euclidean rotation group SOð4Þ. This symmetry ena-
bles one to separate the RDE into the angular and radial
parts. We define the generators of four-dimensional
Euclidean rotations as

L�� ¼ �iðx�@� � x�@�Þ; �; � 2 f1; 2; 3; 4g: (3.7)

Indeed, it is straightforward to check that L�� satisfies the

Lie algebra of SOð4Þ. The angular part is expressed in
terms of angular momentum derived from the decomposi-
tion:

soð4Þ ffi suð2Þ þ suð2Þ: (3.8)

In analogy with the Lorentz group, one introduces the
angular momentum and boost generators:

L j :¼ 1
2�jk‘Lk‘; Kj :¼ Lj4; j; k; ‘ 2 f1; 2; 3g;

(3.9)

and their linear combinations:

MA :¼ 1

2
ðLA �KAÞ ¼ � i

2
�A��x�@�; A 2 f1; 2; 3g;

NA :¼ 1

2
ðLA þKAÞ ¼ � i

2
A��x�@�; A 2 f1; 2; 3g:

(3.10)

The operatorsMA and NA generate two independent SUð2Þ
subgroups with Casimir operators ~M2 :¼ MAMA and
~N2 :¼ NANA having eigenvalues MðMþ 1Þ and NðN þ
1Þ, respectively:
~M2 :¼ MAMA ! MðMþ 1Þ; M 2

�
0;
1

2
; 1;

3

2
; � � �

�
;

~N2 :¼ NANA ! NðN þ 1Þ; N 2
�
0;
1

2
; 1;

3

2
; � � �

�
:

(3.11)

Here it is important to note that the eigenvalues M and N
are half-integers.

The generators for isospin S ¼ 1 are

ðSAÞBC :¼ i�ABC ¼ ðSCÞAB: (3.12)

It is easy to see that ~S2 is a Casimir operator and ~S2 has the
eigenvalue

~S 2 :¼ SASA ! SðSþ 1Þ ¼ 2; (3.13)

since

ð ~S2ÞAB ¼ ðSCÞADðSCÞDB ¼ i�DCAi�BCD ¼ 2�AB: (3.14)

Now we introduce the conserved total angular momen-

tum ~J by

~J ¼ ~Lþ ~S; (3.15)

with the eigenvalue

~J 2 ! JðJ þ 1Þ; J 2 fLþ 1; L; jL� 1jg; (3.16)

where ~L ¼ ~M or ~L ¼ ~N. Using the representations (3.7)
and (3.9), we find that

~N 2 � ~M2 ¼ 0 ¼ ~L � ~K: (3.17)

Thus, a complete set of commuting observables is given by

the Casimir operators, ~J2, ~L2, ~S2 and their projections, e.g.,
Jz, Lz, Sz.
By using

~S � ~L ¼ ð ~J2 � ~L2 � ~S2Þ=2; (3.18)

the RDE is rewritten in the form:

f�@�@��AB þ 2fðxÞð ~J2 � ~L2 � ~S2ÞAB
þ x�x�f

2ðxÞð ~S2ÞABgnBðxÞ ¼ �ðxÞnAðxÞ; (3.19)

where the spherical symmetry allows us to take

f�ðxÞ :¼ @� ln ~�ðx2Þ ¼ x�fðxÞ: (3.20)

The symmetry consideration suggests that nðxÞ is sepa-
rated into the radial and angular part: In the vector (com-
ponent) form:

n AðxÞ ¼  ðRÞYAðJ;LÞðx̂Þ; (3.21a)

or in the Lie algebra valued form:

n ðxÞ ¼ nAðxÞ�A ¼  ðRÞYAðJ;LÞðx̂Þ�A;
R :¼ ffiffiffiffiffiffiffiffiffiffiffi

x�x�
p 2 Rþ; x̂� :¼ x�=R 2 S3

(3.21b)

where ~YðJ;LÞðx̂Þ ¼ fYAðJ;LÞðx̂ÞgA¼1;2;3 denote the vector

spherical harmonics on S3 characterized by

~L 2YAðJ;LÞðx̂Þ ¼ LðLþ 1ÞYAðJ;LÞðx̂Þ; (3.22)

~J 2YAðJ;LÞðx̂Þ ¼ JðJ þ 1ÞYAðJ;LÞðx̂Þ; (3.23)

~S 2YAðJ;LÞðx̂Þ�A ¼ SðSþ 1ÞYAðJ;LÞðx̂Þ�A; (3.24)

with S ¼ 1. The explicit form of the vector spherical
harmonics is given later.
In this form, the covariant Laplacian reduces to the

diagonal form and RDE reduces to

½�@�@� þ VðxÞ�nAðxÞ ¼ �ðxÞnAðxÞ;
VðxÞ :¼ 2fðxÞ½JðJ þ 1Þ � LðLþ 1Þ � 2� þ 2x2f2ðxÞ:

(3.25)
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This equation does not necessarily mean that the left-hand
side of the RDE becomes automatically proportional to
nðxÞ, since @�@�nðxÞ is not guaranteed to be proportional

to nðxÞ. If this is the case, we have
�ðxÞ ¼ VðxÞ þ ½�@�@�nAðxÞ�=nAðxÞ
for anyA; no sum overA:

(3.26)

Moreover, it is possible to rewrite the Laplacian in terms
of the radial coordinate R and the angular coordinates:

�@�@�¼�@R@R� 3

R
@Rþ2ð ~M2þ ~N2Þ

R2
; R :¼ ffiffiffiffiffiffiffiffiffiffiffi

x�x�
p

;

(3.27)

which reads

� @�@� ¼ �@R@R � 3

R
@R þ 4 ~L2

R2

¼ � 1

R3

@

@R

�
R3 @

@R

�
þ 4 ~L2

R2
: (3.28)

Thus, we arrive at another expression of RDE:�
�@R@R � 3

R
@R þ ~VðxÞ

�
nAðxÞ

¼ �ðxÞnAðxÞ;
~VðxÞ :¼ 4LðLþ 1Þ

x2
þ VðxÞ

¼ 4LðLþ 1Þ
x2

þ 2fðxÞ½JðJ þ 1Þ
� LðLþ 1Þ � 2� þ 2x2f2ðxÞ: (3.29)

If the left-hand side of the RDE becomes proportional to
nðxÞ, �ðxÞ is given by3

�ðxÞ ¼ ~VðxÞ �  ðRÞ�1 1

R3

@

@R

�
R3 @

@R
 ðRÞ

�
: (3.30)

C. Unit vector condition and angular part

In rewriting RDE due to SOð4Þ symmetry, we have not
yet used the fact that nðxÞ has the unit length

1 ¼ nðxÞ � nðxÞ ¼ nAðxÞnAðxÞ
¼  ðRÞ ðRÞYAðJ;LÞðx̂ÞYAðJ;LÞðx̂Þ: (3.31)

If the vector spherical harmonics happens to be normalized
at every spacetime point as

1 ¼ YAðJ;LÞðx̂ÞYAðJ;LÞðx̂Þ; (3.32)

then we can take without loss of generality

 ðRÞ � 1; (3.33)

and nðxÞ is determined by the vector spherical harmonics
alone:

n AðxÞ ¼ YAðJ;LÞðx̂Þ: (3.34)

The degeneracy of the state YAðJ;LÞ is given by ð2J þ 1Þ�
ð2Lþ 1Þ. In this case, the lowest value of �ðxÞ is obtained
by minimizing ~VðxÞ at every x. However, (3.32) is not
guaranteed for any set of ðJ; LÞ except for some special
cases, as we see shortly.4

IV. ONE-INSTANTON CASE

In order to treat meron and instanton (in the regular
gauge) simultaneously, we adopt the form:

f�ðxÞ ¼ x�fðxÞ; fðxÞ ¼ 2�

x2 þ s2
: (4.1)

For a given set of ðJ; LÞ, we have calculated the ‘‘poten-
tial’’ ~VðxÞ and the ‘‘eigenvalue’’ �ðxÞ, which are enumer-
ated in the following table. Note that ðJ; LÞ ¼ ð0; 0Þ is
excluded by selection rules for S ¼ 1.

J L S degeneracy 1-instanton (zero size) ~VðxÞ 1-meron ~VðxÞ
1 0 1 3 8=x2 2=x2

1=2 1=2 1 4 3=x2 1=x2

3=2 1=2 1 8 15=x2 7=x2

0 1 1 3 0 2=x2

1 1 1 9 8=x2 6=x2

2 1 1 15 24=x2 14=x2

A. One instanton in the regular (or nonsingular) gauge

One-instanton configuration in the regular gauge with
zero size, i.e., � ¼ 1, s ¼ 0, is expressed by

fðxÞ ¼ 2

x2
; (4.2)

which leads to

VðxÞ ¼ 4

x2
½JðJ þ 1Þ � LðLþ 1Þ�;

~VðxÞ ¼ 4

x2
JðJ þ 1Þ � 0:

(4.3)

For one instanton with zero size in the regular gauge,
therefore, ðJ; LÞ ¼ ð0; 1Þ gives the lowest value of ~VðxÞ at
every x. Hence the lowest value of �ðxÞ is obtained �ðxÞ ¼

3The second term of the right-hand side of (3.30) does not
contribute to �ðxÞ if and only if  ðRÞ ¼ C1 þ C2=R

2. If  ðRÞ 

R��, then the second term contributes �ð2� �Þ=R2. This in-
creases �ðxÞ for 0< �< 2, while it decreases �ðxÞ for � < 0 and
� > 2.

4Usually, the orthonormality of the vector spherical harmonics
is given with respect to the integral over S3 with a finite volume:

Z
S3
d�YAðJ;LÞðx̂ÞYAðJ0;L0Þðx̂Þ ¼ �JJ0�LL0 : (3.35)
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~VðxÞ ¼ 0 if we can set  ðRÞ � const from (3.30). This is
the lowest possible value, since �ðxÞ � 0. For this to be
satisfied, the corresponding vector harmonics must be
orthonormal (3.32). The vector spherical harmonics
Yð0;1Þðx̂Þ is 3-fold degenerate and is written as a linear

combination of three degenerate states (B ¼ 1, 2, 3)5:

Y ð0;1Þðx̂Þ ¼
X3
B¼1

âBYð0;1Þ;ðBÞðx̂Þ

¼ â1

x̂21 � x̂22 � x̂23 þ x̂24
2ðx̂1x̂2 � x̂3x̂4Þ
2ðx̂1x̂3 þ x̂2x̂4Þ

0
B@

1
CA

þ â2

2ðx̂1x̂2 þ x̂3x̂4Þ
�x̂21 þ x̂22 � x̂23 þ x̂24

2ðx̂2x̂3 � x̂1x̂4Þ

0
@

1
A

þ â3

2ðx̂1x̂3 � x̂2x̂4Þ
2ðx̂2x̂3 þ x̂1x̂4Þ

�x̂21 � x̂22 þ x̂23 þ x̂24

0
@

1
A; (4.4)

where âB are coefficients of the linear combination.
Hereafter the vector with the hat symbol denotes a unit
vector, e.g., âBâB ¼ 1. It is easy to check that Yð0;1Þðx̂Þ are
orthonormal at every point:

Y ð0;1Þ;ðBÞðx̂Þ � Yð1;0Þ;ðCÞðx̂Þ :¼ YAð0;1Þ;ðBÞðx̂ÞYAð1;0Þ;ðCÞðx̂Þ ¼ �BC:

(4.5)

Thus the solution is given by the linear combination of
triplet of vector spherical harmonics Yð0;1Þðx̂Þ, which is

written in the manifestly Lorentz covariant Lie algebra
valued form using Pauli matrices �A and

�e � ¼ ði�A; 1Þ; e� :¼ ð�i�A; 1Þ; (4.6)

as

nðxÞ :¼ nAðxÞ�A ¼ âBY
A
ð0;1Þ;ðBÞðx̂Þ�A

¼ âBx	 �e	�Bx
e
=x
2; (4.7)

or in the vector component

n AðxÞ ¼ âBY
A
ð0;1Þ;ðBÞðx̂Þ ¼ âBx	x
 �B	�

A
�
=x

2; (4.8)

where we have used the formula:

tr ½�A �e	�Be
� ¼ �2 �B	�
A

�: (4.9)

It is directly checked that (4.7) is indeed the solution of
the RDE. Explicit calculations show that (4.7) satisfies

� @�@�nAðxÞ ¼ 8

x2
nAðxÞ; (4.10)

and

2�ABC
C
��f�ðxÞ@�nBðxÞ ¼ �8fðxÞnAðxÞ ¼ � 16

x2
nAðxÞ:
(4.11)

Then, for ðJ; LÞ ¼ ð0; 1Þ, we arrive at

VðxÞ ¼ �8

x2
; ~VðxÞ ¼ 0; (4.12)

and

�ðxÞ ¼ VðxÞ þ ½�@�@�nAðxÞ�=nAðxÞ � 0

for anyA; no sum overA:
(4.13)

Thus this solution is an allowed one, since the solution
gives a finite (vanishing) value for the functional Frc ¼ 0.
The solution gives a map Yð0;1Þ;ðBÞ from S3 to S2, which is

known as the standard Hopf map. Therefore, the only zeros

of �AðxÞ in the solution nAðxÞ ¼ �AðxÞ=j�ðxÞj ¼
�AðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�BðxÞ�BðxÞ

p
are the origin and the set of magnetic

monopoles consists of the origin only, in other words, the
magnetic monopole loop is shrunk to a single point.
Therefore, we have no monopole loop with a finite and
nonzero radius for the Yang-Mills field of one instanton
with zero size in the regular gauge.
For one instanton with size �, i.e., � ¼ 1, s ¼ �, we

must examine

fðx2Þ ¼ 2

x2 þ �2
(4.14)

and

VðxÞ ¼ 4

x2 þ �2
½JðJ þ 1Þ � LðLþ 1Þ� � 8�2

ðx2 þ �2Þ2 :
(4.15)

The lowest �ðxÞ is realized for a distinct set of ðJ; LÞ
depending on the region of x. This case is obtained by
the one-instanton limit of the two meron case to be dis-
cussed later.

B. One instanton in the singular gauge

For one instanton in the singular gauge, we must take

gA�ðxÞ ¼ �A
2

�A��x�fðx2Þ; fðx2Þ ¼ 2�2

x2ðx2 þ �2Þ :
(4.16)

The results in the previous section hold by replacing A��
by �A��. In this case, we have

5This degeneracy corresponds to the Gribov copies associated
with the reduction (partial) gauge fixing from the enlarged gauge
symmetry SUð2Þ � SUð2Þ=Uð1Þ to the original gauge symmetry
SUð2Þ, see [34]. These Gribov copies are true Gribov copies, but
are different from those in fixing the original gauge symmetry
SUð2Þ.
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VðxÞ ¼ 4�2

x2ðx2 þ �2Þ ½JðJ þ 1Þ � LðLþ 1Þ � 2�

þ 8�4

x2ðx2 þ �2Þ2 : (4.17)

Apart from the detailed analysis, we focus on the zero size
limit �! 0 (or the distant region x2 ! 1):

VðxÞ ’ 0; ~VðxÞ ’ 4LðLþ 1Þ
x2

: (4.18)

It is easy to see that the solution is given at ðJ; LÞ ¼ ð1; 0Þ,
i.e., nðxÞ ¼ Yð1;0Þ (a constant vector) given in (4.19), which
has the lowest value of �ðxÞ: �ðxÞ � 0. For ðJ; LÞ ¼ ð1; 0Þ,
the state is 3-fold degenerate: nðxÞ ¼ Yð1;0Þ is written as a

linear combination of them: Writing Yð1;0Þ as a column

vector: Yð1;0Þ ¼ ðY1
ð1;0Þ; Y

2
ð1;0Þ; Y

3
ð1;0ÞÞT (T denotes transpose)

Y ð1;0Þ ¼
X3
	¼1

ĉ	Yð1;0Þ;ð	Þ ¼ ĉ1

1
0
0

0
@

1
Aþ ĉ2

0
1
0

0
@

1
Aþ ĉ3

0
0
1

0
@

1
A:

(4.19)

It constitutes the orthonormal set:

Y ð1;0Þ;ð	Þ � Yð1;0Þ;ð
Þ :¼ YAð1;0Þ;ð	ÞY
A
ð1;0Þ;ð
Þ ¼ �	
: (4.20)

Therefore, the solution is given by a constant:

n AðxÞ ¼
X3
	¼1

ĉ	Y
A
ð1;0Þ;ð	Þ ¼ ĉA: (4.21)

In this limit, @�nAðxÞ ¼ 0, @�@�nAðxÞ ¼ 0 and

�ðxÞ ¼ VðxÞ ¼ 2x2f2ðxÞ ¼ 8�4

x2ðx2 þ �2Þ2 : (4.22)

One instanton in the singular gauge yields a finite reduction
functional:

Frc ¼
Z
d4x�ðxÞ<1: (4.23)

V. ONE-MERON AND MAGNETIC MONOPOLE
LINE

In order to discuss the one-meron configuration, i.e.,
� ¼ 1

2 , s ¼ 0, we have

fðx2Þ ¼ 1

x2
; (5.1)

which yields

VðxÞ ¼ 2

x2
½JðJ þ 1Þ � LðLþ 1Þ � 1�;

~VðxÞ ¼ 2

x2
½JðJ þ 1Þ þ LðLþ 1Þ � 1�> 0:

(5.2)

For one meron, we find that ðJ; LÞ ¼ ð1=2; 1=2Þ gives the

lowest ~VðxÞ. This suggests that the solution might be given
by

Yð1=2;1=2Þðx̂Þ ¼
X4
�¼1

b̂�Yð1=2;1=2Þ;ð�Þðx̂Þ

¼ b̂1

�x̂4
x̂3

�x̂2

0
BB@

1
CCAþ b̂2

�x̂3
�x̂4
x̂1

0
BB@

1
CCA

þ b̂3

x̂2

�x̂1
�x̂4

0
BB@

1
CCAþ b̂4

x̂1

x̂2

x̂3

0
BB@

1
CCA; (5.3)

where a unit four-vector b̂� (� ¼ 1, 2, 3, 4) denotes four

coefficients of the linear combination for 4-fold generate
Yð1=2;1=2Þ;ð�Þðx̂Þ (� ¼ 1, 2, 3, 4).

However, a subtle point in this case is that YAð1=2;1=2Þ;ð�Þðx̂Þ
are nonorthonormal sets at every spacetime point:

Y ð1=2;1=2Þ;ð�Þðx̂Þ � Yð1=2;1=2Þ;ð�Þðx̂Þ
:¼ YAð1=2;1=2Þ;ð�Þðx̂ÞYAð1=2;1=2Þ;ð�Þðx̂Þ � ���: (5.4)

Nevertheless, we find that the unit vector field

n AðxÞ ¼ b�
A
��x�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2x2 � ðb � xÞ2

q

¼ b̂�
A
��x̂�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb̂ � x̂Þ2

q
; (5.5)

constructed from

Y ð1=2;1=2Þ;ð�Þðx̂Þ ¼ A��x̂� ð� ¼ 1; 2; 3; 4Þ; (5.6)

can be a solution of RDE. In fact, explicit calculations
show that (5.5) satisfies

� @�@�nAðxÞ ¼ 2

x2 � ðb̂ � xÞ2 nAðxÞ; (5.7)

and

2�ABC
C
��f�ðxÞ@�nBðxÞ ¼ �4fðxÞnAðxÞ ¼ � 4

x2
nAðxÞ:

(5.8)

Then, for ðJ; LÞ ¼ ð1=2; 1=2Þ, we conclude that

VðxÞ ¼ �2

x2
; ~VðxÞ ¼ 1

x2
; (5.9)

and

�ðxÞ ¼ ½�@�@�nAðxÞ�=nAðxÞ þ VðxÞ
for anyA; no sum overA

¼ 2ðb̂ � xÞ2
x2½x2 � ðb̂ � xÞ2� : (5.10)

The solution (5.5) is of the hedgehog type. The magnetic
monopole current is obtained as simultaneous zeros of
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b̂�
A
��x� ¼ 0 for A ¼ 1, 2, 3. Taking the 4th vector in (5.3)

b̂� ¼ ��4, the magnetic monopole current is located at

x1 ¼ x2 ¼ x3 ¼ 0, i.e., on the x4 axis. Whereas, if the 3rd

vector in (5.3) is taken b̂� ¼ ��3, the magnetic monopole

current flows at x1 ¼ x2 ¼ x4 ¼ 0, i.e., on the x3 axis. In
general, it turns out that the magnetic monopole current k�
is located on the straight line parallel to b̂� going through

the origin. Note that the expression (5.10) for �ðxÞ is
invariant under a subgroup SOð3Þ of the Euclidean rotation
SOð4Þ. In other words, once we select b̂�, SOð4Þ symmetry

is broken to SOð3Þ just as in the spontaneously broken
symmetry. This result is consistent with a fact that the
magnetic monopole current k� flows in the direction of

b̂� and the symmetry is reduced to the axial symmetry, the

rotation group SOð3Þ, about the axis in the direction of a

four vector b̂�.

It is instructive to point out that the Hopf map Yð0;1Þ also
satisfies the RDE. Therefore, it is necessary to compare the
value of the reduction functional of ðJ; LÞ ¼ ð1=2; 1=2Þ
with that of ðJ; LÞ ¼ ð0; 1Þ. In the ðJ; LÞ ¼ ð0; 1Þ case, we
find

�ð0;1ÞðxÞ ¼ 2

x2
¼ 2

x21 þ x22 þ x23 þ x24
: (5.11)

For instance, we can choose b̂� ¼ ��3 without loss of

generality:

�ð1=2;1=2ÞðxÞ ¼ 2x23
½x21 þ x22 þ x23 þ x24�½x21 þ x22 þ x24�

:

(5.12)

Note that the integral of �ð1=2;1=2ÞðxÞ over the whole space-
time R4 is obviously smaller than that of �ð0;1ÞðxÞ, although
�ð0;1ÞðxÞ< �ð1=2;1=2ÞðxÞ locally inside a cone with the sym-

metric axis b̂�, i.e., ðb̂ � x̂Þ2 � 1=2.

The reduction functional in ðJ; LÞ ¼ ð1=2; 1=2Þ case
reads

Frc ¼
Z
d4x

1

2
�ð1=2;1=2ÞðxÞ

¼
Z
dx3

Z
dx1dx2dx4

x23
½x21þx22þx23þx24�½x21þx22þx24�

¼ 4�
Z L3

�L3

dx3x
2
3

Z 1

0
dr

1

½r2þx23�
¼ 4�

Z L3

�L3

dx3x
2
3

1

jx3j arctan
r

jx3j
��������
r¼1

r¼0

¼ 4�
Z L3

�L3

dx3x
2
3

1

jx3j
�

2
¼ 4�2

Z L3

0
dx3x3; (5.13)

where we have defined r2 :¼ x21 þ x22 þ x24. �ð1=2;1=2ÞðxÞ is
zero on the x3 ¼ 0 hyperplane, i.e., three-dimensional
space x1, x2, x4 which is orthogonal to the magnetic

current. Therefore, in the three-dimensional space, the
magnetic current looks like just a point magnetic charge.
Although Frc remains finite as long as L3 is finite, it

diverges for L3 ! 1, i.e., when integrated out literally in
the whole spacetime R4. In the next section, we see that
this difficulty is resolved for two meron configuration.

VI. TWO MERONS AND MAGNETIC-MONOPOLE
LOOP

A. Meron pair solution

The meron configuration is given by

gAM
� ðxÞ ¼ gAA

�ðxÞ�A2 ¼ �A
2
A��

x�
x2
: (6.1)

We define the topological charge QP using the topological
charge density DPðxÞ:

QP ¼
Z
d4xDPðxÞ; DPðxÞ :¼ 1

16�2
trðF�� � F��Þ:

(6.2)

The meron (6.1) has one half unit of topological charge
QP ¼ 1=2 concentrated at the origin:

DPðxÞ ¼ 1
2�

4ðxÞ: (6.3)

This single meron solution

gAM
� ðxÞ ¼ gAA

�ðxÞ�A2 ¼ S��
x�
x2
;

S�� :¼ � i

4
ð �e�e� � e� �e�Þ ¼ A��

�A
2
;

(6.4)

can be rewritten in another form:

gAM
� ðxÞ ¼ 1

2iUðxÞ@�U�1ðxÞ; (6.5)

where6

UðxÞ ¼ �e	x	ffiffiffiffiffi
x2

p ; U�1ðxÞ ¼ e	x	ffiffiffiffiffi
x2

p : (6.7)

While, the single antimeron solution

gA
�M
� ðxÞ ¼ gAA

�ðxÞ�A2 ¼ �S��
x�
x2
;

�S�� :¼ � i

4
ðe� �e� � �e�e�Þ ¼ �A��

�A
2
;

(6.8)

can be written in the form

gA
�M
� ðxÞ ¼ 1

2iU
�1ðxÞ@�UðxÞ: (6.9)

Note that the meron and antimeron configurations are not
of the pure gauge form, which has important implications
to confinement.

6These relations are easily checked by using the formulas:

�e �e� ¼ ��� þ iA���A; e� �e� ¼ ��� þ i �A���A: (6.6)
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The single meron and antimeron solutions given in the
above are singular both at the origin x2 ¼ 0 and at infinity
x2 ¼ 1. Using the conformal symmetry of the classical
Yang-Mills action, it can be shown that in addition to a
meron at the origin, there is a second meron at infinity with
another half unit of topological charge. In fact, the confor-
mal invariance of Yang-Mills theory allows us to displace
(map) those singularities to arbitrary points which we
define to be the origin and d� 2 R4. Explicitly, the con-

formal transformation7

x� ! z� ¼ 2a2
ðxþ aÞ�
ðxþ aÞ2 � a�; (6.10)

yields the new solutions

gAM
� ðxÞ ! 1

2iUðzÞ@�U�1ðzÞ :¼ gAM �M
� ðxÞ;

gA
�M
� ðxÞ ! 1

2iU
�1ðzÞ@�UðzÞ :¼ gA

�MM
� ðxÞ;

(6.11)

where8 @� :¼ @=@x� � @=@z�. It is shown [28] that

gAM �M
� corresponds to a meron located at x ¼ �a and an

antimeron at x ¼ a. Conversely, gA
�MM
� has a meron at x ¼

a and an antimeron at x ¼ �a. These gAM �M
� (gA

�MM
� ) are

meron-antimeron (antimeron-meron) solutions. The
meron-antimeron solution has the explicit expression for
a ¼ ð0; 0; 0; TÞ:

gAM �M
� ðxÞ ¼

� 2T
�2
x4�‘x‘ ð� ¼ 4Þ

2T
�2
½�jk‘Txk�‘ þ 1

2 ðT2 � x2Þ�j þ xj�‘x‘� ð� ¼ jÞ ;

�2 ¼ ðT2 þ x2 � 2Tx4ÞðT2 þ x2 þ 2Tx4Þ ¼ ðT2 þ x2Þ2 � 4T2x24:

(6.12)

It is also shown [28] that the meron-meron (antimeron-
antimeron) solution is given by performing a singular
gauge transformation UðyþÞ which changes the antimeron
(meron) at x ¼ �a into a meron (antimeron) at the same
point, leading from a M �M ( �MM) to a MM ( �M �M ) one
where y� :¼ x� a. In fact, the singular gauge transfor-
mation

gAM �M
� ðxÞ ! U�1ðyþÞgAM �M

� ðxÞUðyþÞ
þ iU�1ðyþÞ@�UðyþÞ

:¼ gAMM
� ðxÞ; (6.13)

leads to the dimeron solution

gAMM
� ðxÞ ¼ �S��

�
y�þ
y2þ

þ y��
y2�

�

¼ ��A
2

�
A��

ðxþ aÞ�
ðxþ aÞ2 þ A��

ðx� aÞ�
ðx� aÞ2

�
:

(6.14)

The antidimeron solution gA
�M �M
� is obtained in a similar

way.
The gauge field gAMM

� ðxÞ for a meron pair has infinite

action density at x ¼ f0; dg and the logarithmic singularity
of the action integral comes from the delta function con-
centration of topological charge:9

DPðxÞ ¼ 1
2�

4ðxþ aÞ þ 1
2�

4ðx� aÞ: (6.15)

B. Smeared meron pair

In order to eliminate the singularity in a meron pair
configuration, we introduce an Ansatz of finite action by
replacing the meron pair configuration (6.14) by a smeared
configurations following Callan, Dashen, and Gross [29]
(See the left panel of Fig. 1):

A sMM
� ðxÞ ¼ �A

2
A��x�

8>>>><
>>>>:

2
x2þR2

1

I:
ffiffiffiffiffi
x2

p
< R1

1
x2

II:R1 <
ffiffiffiffiffi
x2

p
< R2

2
x2þR2

2

III:
ffiffiffiffiffi
x2

p
>R2

;

(6.16)

where in the region (II) the field is identical to the meron
field, while at the inner (outer) radius R1ðR2Þ it joins
smoothly onto a standard instanton field. Here the radii
R1 and R2 of the inner sphere and the outer sphere are
arbitrary.
The topological charge QP is spread out around the

origin (I) and infinity (III): The scale size is chosen such
that the net topological charge inside I (outside II) is one-
half unit, which agrees with the topological charge carried
by each meron. This field (6.16) satisfies the equation of
motion everywhere except on the two spheres.10 In fact, it
is the solution of the equation of motion under the con-

8This is obtained from the transformation law: gAM
� ðxÞ !

@�z�gA
M
� ðzÞ.

10Although this patching of instanton caps is continuous, the
derivatives are not, and therefore the equation of motion are
violated at the boundaries of the regions, @I ¼ @II and @II ¼

7This conformal transformation is obtained by combining (a) a
translation x� ! x� þ a�, (b) an inversion x� ! �x�=x2, (c) a
dilatation (scale transformation) x� ! �2a2x�, and (d) a trans-
lation x� ! x� � a�. The transformation is constructed so that
the origin x ¼ 0 is transformed to a, while x ¼ 1 to �a. In
addition, x ¼ a is transformed to 0.

9Similar to instantons, a meron pair can be expressed in
singular gauge by performing a large gauge transformation about
the midpoint of the pair, resulting in a gauge field that falls off
faster at large distance A
 x�3.
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straint that there be one-half unit of topological charge both
in the inner and outer spheres, i.e., QI

P ¼ 1=2 ¼ QIII
P . In

other words, the singular meron fields for I and III are
replaced by instanton caps, each containing topological
charge 1=2 to agree with (6.16).

The Yang-Mills action of the new configuration is cal-
culated to be

SsMM
YM ¼ 8�2

g2
þ 3�2

g2
ln
R2

R1

; (6.17)

where the first constant term comes from the two half-
instantons in (I) and (III)11 and the second logarithmic term
comes from the pure meron region (II) in between.
Furthermore, if we let jR1 � R2j # 0, this configuration
becomes standard instanton. This is the one-instanton limit
ðR2=R1 # 1Þ. The one meron limit is obtained by R2 " 1 or
R1 # 0 ðR2=R1 " 1Þ.

We perform the conformal transformation of the con-
figuration about some point d in the region II between R1

and R2:

x� ! d� þ �2
ðx� dÞ�
ðx� dÞ2 ; (6.18)

with � an arbitrary scale factor. Because of conformal
invariance, this produces an another acceptable solution
of the equation of motion. The geometry before and after
the conformal transformation is described in Fig. 1. The
conformal transformation maps a sphere into another
sphere. Therefore, the regions I and III, i.e., inner and outer
spheres are transformed to two spheres, i.e., regions I’ and
III’ with center coordinates xI0 , xIII0 and the scale sizes R0

1,
R0
2, and the field in region I’ and III’ is an instanton, since

the conformal transformation of an instanton is again an
instanton. Region II is transformed to region II’ and the
field in II’ is given by

A II0
� ðxÞ ¼ �A

2

�
A��

ðx� xI0 Þ�
ðx� xI0 Þ2

þ A��
ðx� xIII0 Þ�
ðx� xIII0 Þ2

�
;

(6.19)

where

xI0 ¼ R2d

R2 � R1

> d; xIII0 ¼ � R1d

R2 � R1

< 0: (6.20)

The corresponding field strength FII0
�� falls at infinity as

jxj�4, leading to a convergent action integral. Since the
topological charge Qp is conformal invariant, after trans-

formation we have two spherical regions I’, III’ of net
topological charge one-half surrounded by an infinite re-
gion II’ of zero topological charge density DPðxÞ ¼ 0.
Therefore, the transformed configuration is a smeared
version of two merons at position xI0 and xIII0 .
The smoothed meron configuration may be thought of as

describing various stages in a sequence of deformations of
the instanton, leading from the instanton at one extreme to
two widely separated smeared merons at the other. In a
sense the meron is to be regarded as a constituent of the
instanton. This is realized by holding R1 fixed and increas-
ing R2 from R1 to infinity 1. For definiteness, we choose
� ¼ d :¼ ffiffiffiffiffiffiffiffiffiffiffi

R1R2

p
, see Fig. 2. With these choices, the con-

figuration is two half instantons of scale size R1 and
separation d ¼
between the centers of the instanton configuration. The
action is

SsMM ¼ 8�2

g2
þ 6�2

g2
ln
d

R1

: (6.21)

As R2 ! R1, the regions I’ and III’ grow without limit in
radius and move toward each other, while the centers of the
instanton configurations approach each other and the re-
gion II’ vanishes. In the limit the configuration is just given
an instanton of scale size � ¼ d ¼ R1 split in half through
a center.

FIG. 1. The concentric sphere geometry for a smeared meron
(left panel) is transformed to the smeared two meron configura-
tion (right panel) by the conformal transformation including the
inversion about the point d.

FIG. 2. Meron pair separated by d ¼ ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
regulated with

instanton caps. The smeared two meron configuration is obtained
by the conformal transformation where d is the scale parameter
of the inversion. The centers of the sphere are xI0 ¼ R2d

R2�R1
, and

xIII0 ¼ � R1d
R2�R1

. The original positions of the two merons are not

the centers of the sphere, nor are they the positions of maximum

action density, which occurs with the spheres at ðMIÞ� ¼
R2
1

R2
1
þd2 d�, ðMIIÞ� ¼ R2

2

R2
2
þd2 d�, with Smax ¼ 48

g2
ðR1þR2Þ4

d8
. The radius

of the sphere is R ¼ R1R2

R2�R1
.

11There is no angular dependence in this patching, and so the
conformal symmetry of the meron pair is retained. For example,
under a dilatation x� ! �z�, both R1 and R2 get multiplied by
1=�, but the ratio and hence the action remain invariant.
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C. Magnetic monopole loop joining the smeared meron pair

Now we consider the solution of RDE for a smeared (regularized) meron pair configuration based on the finite action
Ansatz. For this purpose, we estimate the value of �ðxÞ in each region. For a set of ðJ; LÞ, �ðxÞ is calculated in each region
as follows, see the next table.

J L S degeneracy I:<
ffiffiffiffiffi
x2

p
<R1 � ¼ 1, s ¼ R1 II:R1 <

ffiffiffiffiffi
x2

p
<R2 � ¼ 1=2, s ¼ 0 III:

ffiffiffiffiffi
x2

p
>R2 � ¼ 1, s ¼ R2

1 0 1 3 8x2

ðx2þR2
1
Þ2

2
x2

8x2

ðx2þR2
2
Þ2

1=2 1=2 1 4 2
x2�ðb̂�xÞ2 � 8R2

a

ðx2þR2
aÞ2

2
x2�ðb̂�xÞ2 � 2

x2
2

x2�ðb̂�xÞ2 � 8R2
a

ðx2þR2
2
Þ2

0 1 1 3 8x2

ðx2þR2
1
Þ2

2
x2

8x2

ðx2þR2
2
Þ2

For ðJ; LÞ ¼ ð1; 0Þ,

�ðxÞ ¼ VðxÞ ¼ 2x2f2ðxÞ ¼ 8�2x2

ðx2 þ s2Þ2 ¼
� 8x2

ðx2þR2
aÞ2 I; III

2
x2

II
:

(6.22)

For ðJ; LÞ ¼ ð1=2; 1=2Þ,

�ðxÞ ¼ 2

x2 � ðb̂ � xÞ2 þ
8�2x2

ðx2 þ s2Þ2 �
16�

x2 þ s2

¼
� 2
x2�ðb̂�xÞ2 �

8R2
a

ðx2þR2
aÞ2 I; III

2
x2�ðb̂�xÞ2 � 2

x2
II

: (6.23)

For ðJ; LÞ ¼ ð0; 1Þ,

�ðxÞ ¼ 8

x2
þ 8�2x2

ðx2 þ s2Þ2 �
8�

x2 þ s2
¼

� 8R2
a

x2ðx2þR2
aÞ2 I; III

2
x2

II
:

(6.24)

Comparing the above results, we find, in order to make
the spacetime integral of �ðxÞ in each region as small as
possible, that ðJ; LÞ ¼ ð1; 0Þ is selected for small x, i.e., the
region I, ðJ; LÞ ¼ ð0; 1Þ is for large x, i.e., the region III,
while in the intermediate region II, ðJ; LÞ ¼ ð1=2; 1=2Þ can
give the smallest value of �ðxÞ. The result is summarized as

�ðxÞ ¼

8>>>><
>>>>:

8x2

ðx2þR2
1
Þ2 I: 0<

ffiffiffiffiffi
x2

p
<R1; ðJ; LÞ ¼ ð1; 0Þ;nAðxÞ ¼ YAð1;0Þ ¼ const

2ðb̂�xÞ2
x2½x2�ðb̂�xÞ2� II:R1 <

ffiffiffiffiffi
x2

p
< R2; ðJ; LÞ ¼ ð12 ; 12Þ;nAðxÞ ’ YAð1=2;1=2Þ ¼ hedgehog

8R2
2

x2ðx2þR2
2
Þ2 III:R2 <

ffiffiffiffiffi
x2

p
; ðJ; LÞ ¼ ð0; 1Þ;nAðxÞ ¼ YAð0;1ÞðxÞ ¼ Hopf

: (6.25)

As we have already shown in the previous section, the
magnetic current exists only for ðJ; LÞ ¼ ð1=2; 1=2Þ.
Therefore, in the smeared meron pair configuration, the
magnetic current flows only in the region II, while there is
no magnetic current in regions I and III. See the left panel
of Fig. 3. For the magnetic current parallel to d�, the

transformed magnetic current comes from infinity, goes
through two merons and goes away to infinity, constituting
the straight line, see the right panel of Fig. 3. For the
magnetic current orthogonal to d� flowing from @I (@III)

to @III (@I), the transformed magnetic current draws a piece
of a circle beginning at @I0 (@III0) and ending at @III0 (@I0).
Every magnetic current flowing in II is transformed to a
circular magnetic monopole loop connecting I0 and III0.
See Fig. 3. This is easily understood by considering inter-
sections between magnetic lines and concentric spheres in
II from a fact that the conformal transformation maps a
sphere to another sphere and preserves the angle between
two vectors.

Note that �ðxÞ obtained in (6.25) is always finite. In
addition, due to the rapid decrease of �ðxÞ, �ðxÞ
Oðx�6Þ
in region III and the asymptotic behavior �ðxÞ 
Oðx2Þ in

FIG. 3 (color online). A magnetic monopole line in II con-
necting I and III along the direction of b̂� in a smeared meron

(left panel) is transformed to a circular magnetic monopole loop
in II’ connecting I’ and III’ connecting two merons. The mag-
netic monopole world line going through the center of inversion
d in (II) (left panel) is inverted to the straight line connecting two
merons (right panel), which is to be understood as the limit of the
circle with infinite radius. Here the conformal transformation
maps a sphere to another sphere and preserves the angle between
two vectors. The angle between two magnetic monopole lines in
the left panel is preserved after the transformation in the right
panel. This is also the case for the angles between magnetic lines
and concentric spheres in II.
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region I, the reduction functional becomes finite:

Frc ¼
Z
R4
d4x�ðxÞ<1; (6.26)

as far as R1, R2 > 0. Therefore, this is an allowed solution.
Thus we have obtained circular magnetic monopole loops
with a nonzero radius r � d=2 joining a meron pair sepa-
rated by a distance d.

It should be remarked that the reduction functional
(2.13) is conformal invariant [42]. Therefore the color field
in the region (II’) for the meron pair is given by the
conformal transformation (6.10) and a subsequent singular
gauge transformation UðyþÞ (6.13):

�nðxÞII0 ¼ 2a2

ðxþ aÞ2 b̂�
A
��z�U

�1ðyþÞ�A

�UðyþÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � ðb̂ � zÞ2

q
; (6.27)

where z is given by (6.10) and yþ is the same as that in
(6.13). The color field in the region (III’) for the meron pair
can be obtained by applying the conformal transformation
(6.10) and the gauge transformation (6.13) to the standard
Hopf map. The color field in the region (I’) for the meron-
meron is trivial.

The location of the magnetic monopole is dictated by the

simultaneous zeros of b̂�
A
��z� for A ¼ 1, 2, 3:

0¼ b̂�
A
��½2a2ðx�þ a�Þ � ðxþ aÞ2a�� ðA¼ 1;2;3Þ;

(6.28)

since the gauge transformation UðyþÞ does not change the
zeros. Without loss of generality, we can fix the direction of
connecting two merons as a� :¼ d�=2 ¼ ��4T. For a� ¼
��4T, b̂�

A
��a� ¼ �Ajkb̂kaj þ aAb̂4 � b̂Aa4 ¼ �b̂AT and

(6.28) reads

b̂ Ax
2 þ 2Tb̂k�Ajkxjþ 2Tb̂4xA� b̂AT

2 ¼ 0 ðA¼ 1;2;3Þ:
(6.29)

It is instructive to see two special cases. If b̂� is parallel

to a�, i.e., b̂� ¼ ��4 (or b̂ ¼ 0), we find from (6.29) that

the simultaneous zeros are given by xA ¼ 0 (A ¼ 1, 2, 3),
i.e., the magnetic current is located on the x4 axis which is
parallel to a�. The magnetic monopole current denotes a

straight line going through two merons at ð0;�TÞ. See a
horizontal line in the right panel of Fig. 3. This straight line
can be identified with the maximal circle with infinite
radius in the general case discussed below.

If b̂� is perpendicular to a� (or b̂� ¼ ��‘b̂‘, ‘ ¼ 1, 2,

3), i.e., b̂4 ¼ 0, the simultaneous zeros are obtained on a
circle

x2‘ þ x24 ¼ T2: (6.30)

In this case, the circular magnetic monopole loop has its

center at the origin 0 in z space and the radius T ¼
ffiffiffiffiffi
a2

p

joining two merons at ð0;�TÞ on the plane spanned by a�
and b̂‘. See a minimal circle in the right panel of Fig. 3.
In general, it is not difficult to show that the simulta-

neous zeros are given by

x � b̂¼ 0 and

�
xþ T

b̂4

jb̂j
b̂

jb̂j
�
2 þ x24 ¼ T2

�
1þ b̂24

jb̂j2
�
;

(6.31)

where b̂ is the three-dimensional part of unit four vector b̂�
(b̂�b̂� ¼ b̂24 þ jb̂j2 ¼ 1Þ. These equations express circular
magnetic monopole loops joining two merons at �a� on

the plane specified by a� and b̂ where a circle has the

center at x ¼ �T b̂4
jb̂j

b̂
jb̂j ¼ �

ffiffiffiffiffi
a2

p
b̂4
jb̂j

b̂
jb̂j and x4 ¼ 0 with the

radius T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b̂24

jb̂j2
r

¼
ffiffiffiffi
a2

p
jb̂j ð� TÞ. See a larger circle in the

right panel of Fig. 3. The horizontal straight line can be
identified with the limit of infinite radius of the circle.
Finally, we can reproduce the one-instanton case by

considering the one-instanton limit R2 ! R1 of the meron
pair. In the one-instanton limit, the region II’ vanishes and
the magnetic monopole loop disappears. This reproduces
the previous result [14] that a circular magnetic monopole
loop is shrank to the center of an instanton in a one-
instanton background field. Thus the instanton cannot be
the quark confiner which is consistent with the dual super-
conductivity picture for quark confinement where the mag-
netic monopole loop must be the dominant configuration
responsible for confinement.

VII. CONCLUSION AND DISCUSSION

In this paper, we have examined in an analytical way
whether circular loops of magnetic monopoles [34,36]
exist or not for a given background of Yang-Mills field in
the four-dimensional Euclidean SU(2) Yang-Mills theory.
As Yang-Mills background fields, we have examined some
known solutions of the Yang-Mills field equation of mo-
tion, i.e., one instanton, one meron, and two merons. The
analysis has been performed using the recently developed
reformulation of Yang-Mills theory [34,35].
Consequently, we have obtained a new analytical result

that there exist circular magnetic monopole loops sup-
ported by a pair of merons smeared (ultraviolet regular-
ized) in the sense of Callan, Dashen, and Gross [29],
although the corresponding numerical solution has already
been found by Montero and Negele [31] on a lattice.
Moreover, we have reproduced some of the previous re-
sults in the same reformulation, which have been obtained
in specific (partial) gauge fixing procedures called MAG,
LAG, and MCG in which topological objects such as
Abelian magnetic monopoles and center vortices are re-
garded as gauge-fixing defects. We have obtained the
corresponding gauge-invariant results: (1) One-instanton
configuration cannot support a (gauge-invariant) magnetic
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monopole loop. (2) One-meron configuration induces a
(gauge-invariant) magnetic monopole current along a
straight line going through the meron. However, neither
one-instanton nor one-meron supports circular magnetic
monopole loops.

As we have shown in this paper, a meron pair is a first
topological object which is found to be consistent with the
dual superconductor picture of quark confinement.
Therefore, the meron pair configurations are candidates
for field configurations to be responsible for deriving the
area law of the Wilson loop average. A detailed analysis
will be given in a subsequent paper [43] which forms also a
relationship with the recent papers [36,37].
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APPENDIX A: DERIVING THE REDUCTION
DIFFERENTIAL EQUATION

The infinitesimal form of the enlarged gauge transfor-
mation for �A� and �� is given by [34]

�!A�ðxÞ ¼ D�½A�!ðxÞ; ���ðxÞ ¼ g�ðxÞ � �?ðxÞ
ð! 2 SUð2Þ;�? 2 SUð2Þ=Uð1ÞÞ;

(A1)

where the subscript? denotes the components perpendicu-
lar to �.
We wish to minimize the functional

R½A;�� ¼
Z
dDx

1

2
ðD�½A��Þ � ðD�½A��Þ; (A2)

with respect to the enlarged gauge transformation as

0 ¼ �R½A;�� ¼
Z
dDxD�½A�� � �ðD�½A��Þ ¼

Z
dDxD�½A�� � ðD�½A���þ g�A� ��Þ

¼
Z
dDxfD�½A�� � ðD�½A�ðg�� �?Þ þ gðD�½A�!Þ ��g

¼
Z
dDxfD�½A�� � ðD�½A�ðg�� �?Þ þ gD�½A�ð!��Þg ¼ g

Z
dDxD�½A�� �D�½A�f�� ð�? �!Þg

¼ g
Z
dDxðD�½A��Þ �D�½A�f�� ð�? �!?Þg: (A3)

The integration by parts yields

0 ¼ �R½A;��
¼ �g

Z
dDxðD�½A�D�½A��Þ � f�� ð�? �!?Þg

¼ g
Z
dDxð�? �!?Þ � ð��D�½A�D�½A��Þ:

(A4)

Therefore, this functional is invariant if !? ¼ �?.
Thus, if �? � !?, the minimization of the functional is
achieved by � and A satisfying the differential equation:

� �D�½A�D�½A�� ¼ 0: (A5)

This equation gives two conditions, since it is perpendicu-
lar to �ðxÞ.

APPENDIX B: SIMPLIFYING THE COVARIANT
LAPLACIAN

From the definition of the covariant derivative, we have

D�½A�D�½A��¼ @�ðD�½A��ÞþgA��ðD�½A��Þ
¼ @�ð@��þgA���Þ

þgA��ð@��þgA���Þ
¼ @�@��þg@�A���þ 2gA��@��

þgA��ðgA���Þ
¼ @�@��þg@�A���þ 2gA��@��

þðgA� ��ÞgA��ðgA� �gA�Þ�:
(B1)

We adopt the Ansatz

gAA
�ðxÞ ¼ A��f�ðxÞ ¼ A��@� ln�ðxÞ: (B2)

First, the Yang-Mills field satisfies the Lorentz condition,
i.e., divergenceless:
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@�A
A
�ðxÞ ¼ g�1A��@�f�ðxÞ ¼ g�1A��@�@� ln�ðxÞ ¼ 0;

(B3)

where we have used A�� ¼ �A��. Moreover, we find

ðgA� ��ÞgA� ¼ ðgAB
��

BÞgA�

¼ B�
f
�
BB�	f	

¼ ð�AB�	
 þ �ABC
C
	
Þf	f
�B

¼ f	f	�
A; (B4)

and

ðgA� � gA�Þ� ¼ B�	f	
B
�
f
�

A ¼ 3f	f	�
A; (B5)

where we have used A�	
B
�
 ¼ �AB�	
 þ �ABC

C
	
.

Finally, we have

ð2gA� � @��ÞA ¼ 2�ACBA
C
�@��B

¼ 2�ACB
C
��f�@��B: (B6)

Thus we arrive at

ð�D�½A�D�½A��ÞA ¼ �@�@��A þ 2f	f	�A

� 2�ACB
C
��f�@��B: (B7)
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