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We study cosmic Nielsen-Olesen strings in space-times with a positive cosmological constant. For the

free cosmic string in a cylindrically symmetric space-time, we calculate the contribution of the

cosmological constant to the angle deficit, and to the bending of null geodesics. For a cosmic string in

a Schwarzschild–de Sitter space-time, we use Kruskal patches around the inner and outer horizons to show

that a thin string can pierce them.
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I. INTRODUCTION

In this paper, we study cosmic strings in space-times
with a positive cosmological constant. By cosmic string we
will mean a vortex line in the Abelian Higgs model [1].
There are several reasons for studying these. Recent ob-
servations suggest a strong possibility that the Universe is
endowed with a positive cosmological constant, �> 0
[2,3]. This in turn implies that any observer will find a

cosmic horizon at a length scale of��ð1=2Þ. Since� is very
small, and equivalently the length scale of the horizon is
very large, one might be tempted to neglect the effect of �
on local physics. However, there are situations in which
local physics is affected by global topology.

An example comes from black hole no-hair statements.
These say that a static or stationary black hole is charac-
terized by a small number of parameters like its mass,
angular momentum and charges corresponding to long-
range fields. These statements about the uniqueness of
black hole solutions were originally proven for asymptoti-
cally flat space-times [4,5], but later extended to space-
times with �> 0 [6]. It was found that the existence of a
cosmic horizon introduced some subtleties in the proofs of
these statements. For an example which motivates us in this
paper, consider the Abelian Higgs model coupled mini-
mally to gravity. The only asymptotically flat, static,
spherically symmetric black hole has the Higgs field fixed
at the minimum of the potential, and the black hole is
uncharged. On the other hand, in the presence of a cosmic
horizon, there is an additional black hole solution in which
the Higgs field is fixed at the maximum of the potential and
the black hole is charged [6]. The black hole looks like the
Reissner–Nördstrom–de Sitter solution with Higgs field in
the false vacuum. This is of course the opposite of the usual
no-hair statement.

This new solution exists because of different boundary
conditions in the two cases—in the asymptotically flat case
these are imposed at infinity, while for a positive cosmo-
logical constant it is both convenient and sufficient to

impose them at the cosmic horizon. In general, given
some asymptotically flat solution (corresponding to � ¼
0) of matter coupled to gravity, we may find additional
solutions, or qualitatively different ones, when there is a
cosmic horizon (corresponding to �> 0).
We are motivated by these arguments to look at infinitely

long, straight cosmic strings in space-times with �> 0.
While the role of such cosmic strings in cosmological
perturbations and structure formation is ruled out and the
contribution of these strings to the primordial perturbation
spectrummust be less than 9% (for a review and references
see [7]), such strings could exist in small numbers. How
does a positive cosmological constant or a cosmic horizon
affect the physics of the string? It is known that a string
produces a conical geometry, or a deficit angle [8]. It is also
known that a cosmological constant affects the bending of
light [9,10]. Both effects should be present in a string
space-time with �> 0.
We present analytical results for a cosmic string in two

kinds of space-time with a positive cosmological constant.
The first is one with only an infinite straight string, so that
the space-time is cylindrically symmetric with a string on
the axis. We calculate the angle deficit and the bending of
light for this space-time. The other space-time we consider
is the Schwarzschild–de Sitter space-time, and a cosmic
string stretched between the inner and outer horizons. For
this we consider maximally extended (Kruskal) coordinate
patches near the horizons and find that the string can
extend beyond the horizons, i.e. pierce them.

II. FREE COSMIC STRING AND ANGLE DEFICIT

We start with the Ansatz for a cylindrically symmetric
static metric [11]

ds2 ¼ eAð�Þ½�dt2 þ dz2� þ �2eBð�Þd�2 þ d�2; (1)

and first solve for the cosmological constant vacuum Rab �
1
2Rgab þ�gab ¼ 0, with �> 0. There are three Killing

vector fields here, the timelike Killing field ð@tÞa and two
spacelike Killing fields ð@zÞa, ð@�Þa. The orbits of ð@�Þa are
closed spacelike curves which shrink to a point as � ! 0.
We regard the set of points � ¼ 0 as the axis of the space-
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time, and foliate this space-time with ð�;�Þ planes (or-
thogonal to ð@tÞa, ð@zÞa). A convenient coordinatization of
these planes is by setting the metric to be locally flat on the
axis, i.e.

ds2 ���!�!0 � dt2 þ dz2 þ �2d�2 þ d�2: (2)

We can always do this as long as there is no curvature
singularity on the axis. The vacuum solution subject to this
boundary condition is given by [12–14]

ds2 ¼ cos4=3
�

ffiffiffiffiffiffiffi
3�

p
2

ð�dt2 þ dz2Þ

þ 4

3�
sin2

�
ffiffiffiffiffiffiffi
3�

p
2

cos�ð2=3Þ �
ffiffiffiffiffiffiffi
3�

p
2

d�2 þ d�2: (3)

The metric is singular at � ¼ n�ffiffiffiffiffi
3�

p , where n are integers. Of

these points, those corresponding to even n are flat, with
n ¼ 0 being the axis. The points corresponding to odd n
are curvature singularities. The quadratic invariant of
Riemann tensor behaves there as

RabcdR
abcd � �2

ðn�2 � �
ffiffiffiffiffi
3�

p
2 Þ4

; n odd: (4)

The curvature singularity at n ¼ 1 is not protected by a
horizon, so it must be a naked singularity. The singularities
for higher n thus appears to be unphysical, and will not
concern us further.

Our region of interest will be near the axis and far from
the naked singularity at n ¼ 1. In this region, we consider
Einstein’s equations with energy-momentum tensor, Rab �
1
2Rgab þ�gab ¼ 8�GTab. The energy-momentum tensor

Tab corresponds to that of a string solution of the Abelian
Higgs model, which has the Lagrangian

L ¼ �ðDa�ÞyðDa�Þ � 1

4
~Fab

~Fab � �

4
ð�y�� �2Þ2:

(5)

Here Da ¼ ra þ ieAa is the gauge covariant derivative,
~Fab ¼ raAb �rbAa is the electromagnetic field strength
tensor and � is a complex scalar. For convenience of
calculations we will parametrize � and Aa as

� ¼ �Xei�; Aa ¼ 1

e
½Pa �ra��: (6)

The Abelian Higgs model has string like solutions in flat
space-time [1]. For these solutions, the phase � is multiple
valued outside the string,

I
ra�dx

a ¼
I

d� ¼ 2n�; (7)

where the integral is done over a closed loop around the
string and n is some nonzero integer called the winding
number. On the other hand, � is single valued inside the
core, so the Lagrangian inside the core becomes

L ¼ ��2raXraX � �2X2PaP
a � 1

4e2
FabF

ab

� ��4

4
ðX2 � 1Þ2; (8)

where Fab ¼ raPb �rbPa. We will write �0 for the core
radius. Because of the cylindrical symmetry of the space-
time we can take the following Ansätze for X and Pa:

X ¼ Xð�Þ; Pa ¼ Pð�Þra�: (9)

The energy-momentum tensor is taken to be nonzero only
inside the string core, and zero outside. The various non-
vanishing components of energy-momentum tensor Tab for
the Abelian Higgs model in cylindrical coordinates (1) are

Ttt¼
�
�2X02þ�2X2P2e�B

�2
þP02e�B

2e2�2
þ��4

4
ðX2�1Þ2

�
eA;

T��¼
�
�2X02��2X2P2e�B

�2
þP02e�B

2e2�2
���4

4
ðX2�1Þ2

�
;

T��¼
�
��2X02þ�2X2P2e�B

�2
þP02e�B

2e2�2
���4

4
ðX2�1Þ2

�

��2eB;

Tzz¼�
�
�2X02þ�2X2P2e�B

�2
þP02e�B

2e2�2
þ��4

4
ðX2�1Þ2

�

�eA: (10)

Since � ¼ �Xei�, we have along a closed loop of X ¼
constant outside the string core

I
d� ¼ 2n� ¼ 1

i

I d�

�
: (11)

It is clear that� ¼ 0 somewhere inside the loop and hence
X ¼ 0 somewhere inside the loop. For the string solution
the Higgs field should vanish as we approach the axis, and
should approach its vacuum expectation value outside the
string. The gauge field A� should accordingly approach

� 1
e @�� away from the string and a constant on the axis. In

other words, X ! 0, P ! 1 as we approach the axis, while
X ! 1, P ! 0 outside the string core.
We now return to Einstein equations Rab � 1

2Rgab þ
�gab ¼ 8�GTab. The variation of X and P, and thus of
the energy-momentum tensor, near the ‘‘string surface’’ at
� ¼ �0 is a problem of considerable interest and has been
studied numerically in various papers. However, in this
paper we are concerned about the existence of the string
and its behavior near the horizons. Accordingly, we will fix
boundary conditions by assuming X ¼ 0, P ¼ 1 inside the
string core and X ¼ 1, P ¼ 0 outside. This guarantees that
the energy-momentum tensor (10) is identically zero out-
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side the core. The fields are assumed to be smoothed out at
the string surface at � ¼ �0 such that the local conserva-
tion law raT

ab ¼ 0 remains valid. Then we can solve the
Einstein equations to find inside the core (0 � � < �0)

ds2 � cos4=3
�

ffiffiffiffiffiffiffiffi
3�0p
2

ð�dt2 þ dz2Þ

þ 4

3�0 sin
2 �

ffiffiffiffiffiffiffiffi
3�0p
2

cos�ð2=3Þ �
ffiffiffiffiffiffiffiffi
3�0p
2

d�2 þ d�2:

(12)

This solution inside the string is the same as the vacuum
solution of Eq. (3), but with a modified cosmological
constant

�0 ¼ �þ 2�G��4: (13)

The solution for the metric in the vacuum region outside
the string is given by

ds2 ¼ cos4=3
�

ffiffiffiffiffiffiffi
3�

p
2

ð�dt2 þ dz2Þ

þ �2 4

3�
sin2

�
ffiffiffiffiffiffiffi
3�

p
2

cos�ð2=3Þ �
ffiffiffiffiffiffiffi
3�

p
2

d�2 þ d�2:

(14)

This solution differs from the vacuum solution by the
presence of a number �, which is related to the angle
deficit. In [15], where vortices in de Sitter space were
studied perturbatively, the authors argued for the existence
of this �, but did not estimate it. Here we evaluate � in the
following way. We first compute

1

2�

ZZ ffiffiffiffiffiffiffiffi
gð2Þ

q
d�d�ðGt

t þ�Þ (15)

on ð�;�Þ planes. Here gð2Þ is the determinant of the in-
duced metric on these planes. It is clear that � appears due
to the energy-momentum tensor which is confined to the
region � � �0. Then calculating Gt

t from the general
Ansatz (1), we have

Z �0

0

ffiffiffiffiffiffiffiffi
gð2Þ

q
d�ðGt

t þ�Þ ¼
Z �0

0
d�

�
�eB=2

�
A02

4
þ�

�

þ
�
�eB=2

A0

2

�0 þ ð�eB=2Þ00
�
;

(16)

where a prime denotes differentiation with respect to �.
But according to the Einstein equation, Gt

t þ� ¼
8�GTt

t. Substituting the value of Gt
t þ� in Eq. (16),

we get

d

d�
ð�eB=2Þ

��������
�0

0
þ
�
�eB=2

A0

2

���������
�0

0

¼ �4G��
Z �0

0
d��eB=2

�
�þ A02

4

�
; (17)

where

� :¼ �
Z 2�

0

Z �0

0
d�d��eB=2Tt

t

� ���4

�0

�
1� cos2=3

�0

ffiffiffiffiffiffiffiffi
3�0p
2

�
(18)

is the string mass per unit length. To get the approximate

expression for � in Eq. (18) we have used Tt
t ¼ � ��4

4

which is due to our approximation X ¼ 0 and P ¼ 1 inside
the core. Outside the core Tt

t ¼ 0 identically, so we have
used the metric functions in Eq. (12). In evaluating the total
derivative terms in the left-hand side of Eq. (17), we will
use the interior metric of Eq. (12) at � ¼ 0, but the vacuum
metric of Eq. (14) at the string ‘‘surface’’ � ¼ �0. This
requires an explanation. If we assume the energy-
momentum to be nonvanishing only within the string, the
right-hand side of Eq. (16) will have contributions only
from � � �0, as we have written. The integrand on the left-
hand side of Eq. (16) also vanishes outside the string
according to vacuum Einstein equations. When we inte-
grate the left-hand side, we should do so to the surface of
the string, i.e., where the energy-momentum tensor van-
ishes. But at that point we have the vacuum solution of
Eq. (14), so that is what we should use at the upper limit of
integration. Thus we find

1� �

�
cos2=3

�0

ffiffiffiffiffiffiffi
3�

p
2

� 1

3
cos�ð4=3Þ �0

ffiffiffiffiffiffiffi
3�

p
2

sin2
�0

ffiffiffiffiffiffiffi
3�

p
2

�

¼ 4G�þ
Z �0

0
d��eB=2

�
�þ A02

4

�
: (19)

The integrals on the right-hand side of Eq. (19) cannot
be evaluated explicitly, since the integrand cannot be writ-
ten as a total derivative, nor do we know the detailed
behavior of the metric near the string surface at � ¼ �0.
However, we can make an estimate of these integrals using
the value of the metric coefficients inside the core. This
means that we ignore the details of the falloff of the
energy-momentum tensor near � ¼ �0. Then using
Eq. (12) we get from Eq. (19) an expression for �

� ¼ 1� 4G�� 2�
�0 ð1� cos2=3 �0

ffiffiffiffiffiffi
3�0p
2 Þ þ 1

3 ð1� cos�ð4=3Þ �0

ffiffiffiffiffiffi
3�0p
2 Þ þ 2

3 ð1� cos2=3 �0

ffiffiffiffiffiffi
3�0p
2 Þ

ðcos2=3 �0

ffiffiffiffiffi
3�

p
2 � 1

3 cos
�ð4=3Þ �0

ffiffiffiffiffi
3�

p
2 sin2 �0

ffiffiffiffiffi
3�

p
2 Þ

: (20)

This result may be compared with one obtained in [16] where the authors considered point particles as source and solved
Einstein equations in 2þ 1 dimensional de Sitter space. The ‘‘particles’’ may be thought of as punctures created in the
plane by infinitely thin long strings. A conical singularity was found, with an angle deficit � ¼ ð1� 4GmÞ where m is the
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mass of the particle. Our result includes corrections depen-
dent on�, which we may think of as coming from the finite
thickness of the string. The size of the string �0 is of the
order of ð ffiffiffiffi

�
p

�Þ�1, at least when the winding number is
small [17]. This is essentially because the metric is flat on
the axis, so we can approximate �0 by its value in flat
space. Further, the scale of symmetry breaking � is small
compared to the Planck scale in theories of particle physics
in which cosmic strings appear. For example, the grand
unified scale is about 1016 GeV, so that G�2 � 10�3. It is
also reasonable to assume that the string size is small
compared to the cosmic horizon. In other words, we as-
sume �2

0� � 1. Thus we find that �2
0�

0 � 1 as well,
where �0 is given by Eq. (13) .

Then by expandingG� using the expression in Eq. (18),
we find � ¼ �

4 ��
4�2

0 approximately, and thus G� � 1.

We can also find an approximate expression for � from
Eq. (20) under these assumptions,

� � 1� 4G�ð1þ 3
4�

2
0�þG�Þ: (21)

The leading correction to � due to the cosmological con-
stant is of a higher order of smallness, as we can see from
this. The meaning of � is obvious in space-times with
vanishing cosmological constant, for which Eq. (19) was
worked out in [18] to find � � 1� 4G�, where G� � 1
as before, and OðG2�2Þ corrections were ignored. Then
asymptotically we get the conical space-time

ds2 ¼ �dt2 þ d�2 þ dz2 þ �2�2d�2: (22)

In this space-time the azimuthal angle runs from 0 to 2��.
So Eq. (22) is Minkowski space-time minus a wedge which
corresponds to a deficit 2�ð1� �Þ in the azimuthal angle.
The difference of initial and final azimuthal angles of a null
geodesic (i.e., light ray in the geometrical optics approxi-
mation) at � ! 1 is �

� [8,11]. Light bends towards the

string even though the curvature of space-time is zero away
from the axis.

For a positive cosmological constant, the metric in the
exterior of the string is

ds2 ¼ cos4=3
�

ffiffiffiffiffiffiffi
3�

p
2

ð�dt2 þ dz2Þ

þ �2 4

3�
sin2

�
ffiffiffiffiffiffiffi
3�

p
2

cos�ð2=3Þ �
ffiffiffiffiffiffiffi
3�

p
2

d�2 þ d�2;

(23)

with � given in Eq. (20) or Eq. (21). Comparing with the
string-free vacuum solution of Eq. (3) we find that, similar
to the asymptotically flat space-time, the deficit in the
azimuthal angle in space-time with a positive cosmological
constant is also 2�ð1� �Þ, but now with � given by
Eq. (21). However the bending of null geodesics will be
quite different in the cosmic string space-time of (23) from
that in asymptotically flat cosmic string space-time.

Since our space-time (23) has a translational isometry
along z, for the sake of simplicity we can consider null
geodesics on the z ¼ 0 plane. It is well known that if �a is a
Killing field, then for any geodesic with tangent ua, the
quantity gabu

a�b is conserved along the geodesic. Thus
the conserved angular momentum of a future directed null
test particle in the space-time (23) is

L ¼ gabð@�Þaub ¼ �2 4

3�
sin2

�
ffiffiffiffiffiffiffi
3�

p
2

cos�ð2=3Þ �
ffiffiffiffiffiffiffi
3�

p
2

_�;

(24)

while its conserved energy is

E ¼ �gabð@tÞaub ¼ cos4=3
�

ffiffiffiffiffiffiffi
3�

p
2

_t: (25)

The dot denotes differentiation with respect to an affine
parameter and ð@�Þa and ð@tÞa are rotational and time

translational Killing fields, respectively. Then for null geo-
desics on the z ¼ 0 plane it is straightforward to obtain

d�

d�
¼ 3�L

4E�2

cos4=3 �
ffiffiffiffiffi
3�

p
2

sin2 �
ffiffiffiffiffi
3�

p
2 ½1� 3�L2

4E2�2 cot2
�
ffiffiffiffiffi
3�

p
2 �1=2

: (26)

Since ð�;�Þ are smooth functions of the affine parameter
the derivative on the left-hand side of Eq. (26) is well
defined. From the null geodesic equation on the z ¼ 0
plane we have the distance of closest approach to the string

�c ¼ 2ffiffiffiffiffiffiffi
3�

p tan�1

ffiffiffiffiffiffiffi
3�

p
L

2E�
: (27)

Let us consider a null geodesic which starts from some
point ð�max; �1Þ between the string surface and the singu-
larity at � ¼ �ffiffiffiffiffi

3�
p . We will look at till it reaches a point

ð�max; �2Þ. For simplicity of interpretation, we have
chosen the ‘‘initial’’ and ‘‘final’’ radial distances to be
equal. Since the trajectory of the geodesic will be symmet-
ric about the distance of closest approach �c, the change in
the azimuthal angle is

�� ¼ �2 ��1

¼ 3�L

2E�2

Z �max

�c

cos4=3 �
ffiffiffiffiffi
3�

p
2

sin2 �
ffiffiffiffiffi
3�

p
2 ½1� 3�L2

4E2�2 cot
2 �

ffiffiffiffiffi
3�

p
2 �1=2

d�:

(28)

Equation (28) along with the expression for �c determines
the change of� with �. The full expression for the integral
in Eq. (28) is rather messy and we will look at two special
cases only. First, when � is much smaller than the radius of
the cosmological singularity (� � �ffiffiffiffiffi

3�
p ), we have approxi-

mately
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�� � 2

�
sec�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p �E�

L

���������
�max

�c

� 4k

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
�
�23�

4
� k2

1þ k2

�
1=2

��������
�max

�c

; (29)

where k ¼
ffiffiffiffiffi
3�

p
L

2E� . The second term in Eq. (29) is negative

and the repulsive effect of positive � is manifest in this
term. In the� ! 0 limit only the first term survives. In that
case the limit �max ! 1 recovers the well-known formula
�� ¼ �

� . Next, near the singularity � ! �ffiffiffiffiffi
3�

p , we can

approximately write cos�
ffiffiffiffiffi
3�

p
2 � ð�2 � �

ffiffiffiffiffi
3�

p
2 Þ and integrate

Eq. (28) to get

�� � � 6k

�

�
1

7

�
�

2
� �

ffiffiffiffiffiffiffi
3�

p
2

�
7=3

þ k2

26

�
�

2
� �

ffiffiffiffiffiffiffi
3�

p
2

�
13=3 þ . . .

�
�max

�c

: (30)

III. BLACK HOLE PIERCED BYA STRING

If a cosmic string pierces a Schwarzschild black hole,
the resulting space-time has a conical singularity [19] as
well. The authors of [20] showed by considering the equa-
tions of motion of the matter fields that an Abelian Higgs
string (for both self-gravitating and non-self-gravitating
matter) can pierce a Schwarzschild black hole. We will
adapt in this section the method described in [20] to
establish that a Schwarzschild–de Sitter black hole can
be similarly pierced by a Nielsen-Olesen string.

Inside the core of a string, we can derive the equations of
motion for the fields from (8),

raraX � XPaP
a � ��2

2
XðX2 � 1Þ ¼ 0; (31)

raF
ab � 2e2�2X2Pb ¼ 0: (32)

Consider for a moment flat space cylindrical coordinates
ðt; �;�; zÞ and take the scalar field X to be cylindrically
symmetric, X ¼ Xð�Þ. Also assume that the gauge field Pa

can be written as Pa ¼ Pð�Þra�. Then the equations of
motion (31) and (32) become

d2X

d�2
þ 1

�

dX

d�
� XP2

�2
� X

2
ðX2 � 1Þ ¼ 0; (33)

d2P

d�2
� 1

�

dP

d�
� 2e2

�
X2P ¼ 0: (34)

Here we have scaled � by ð ffiffiffiffi
�

p
�Þ�1 to convert it to a

dimensionless radial coordinate. These are the usual equa-
tions which were shown in [1] to have stringlike solutions.
We wish to show that these equations hold also in the
Schwarzschild–de Sitter background space-time if the
string thickness is small compared to the black hole event

horizon, and if we neglect the backreaction of the string on
the metric.
The Schwarzschid–de Sitter metric in the usual spherical

polar coordinates reads

ds2 ¼ �
�
1� 2M

r
��r2

3

�
dt2 þ

�
1� 2M

r
��r2

3

��1
dr2

þ r2d�2: (35)

There are three horizons in this space-time—the black hole
event horizon at r ¼ rH, the cosmological horizon at r ¼
rC and an unphysical horizon at r ¼ rU with rU < 0. If we
assume 2M � 1ffiffiffi

�
p , which we will throughout, we find that

the approximate sizes of the horizons are rH � 2M, rC �ffiffiffi
3
�

q
and rU � �

ffiffiffi
3
�

q
. The string we are looking for is thin

compared to the horizon size, i.e., we will assume also that

1ffiffiffiffi
�

p
�

� 2M � 1ffiffiffiffi
�

p : (36)

We now expand the field equations in the Schwarzschild–
de Sitter background; in other words, we will neglect the
backreaction on the metric due to the string. Then Eq. (31)
becomes

1

r2
@r

�
r2
�
1� 2M

r
��r2

3

�
@rX

�
þ 1

r2sin2	
@	ðsin	@	XÞ

� XP2

r2sin2	
� ��2

2
XðX � 1Þ ¼ 0: (37)

For the string solution the matter distribution will be
cylindrically symmetric. For convenience we take the
string along the axis 	 ¼ 0, although our arguments are
clearly valid for 	 ¼ � as well. We define as before a

dimensionless cylindrical radial coordinate � ¼
r

ffiffiffiffi
�

p
� sin	. For cylindrically symmetric matter distribution

both ðX; PÞ will be functions of � only. With this we can
rewrite (37) as

�
sin2	� 2M

ffiffiffiffi
�

p
�sin3	

�
�

���2

3

��
d2X

d�2
þ 2

�

dX

d�

�

þ
�
2M

ffiffiffiffi
�

p
�sin3	

�2
� 2 ���

3

�
dX

d�
þ

�
1

�

dX

d�
cos2	

� 1

�

dX

d�
sin2	þ d2X

d�2
cos2	

�
� XP2

�2
� 1

2
XðX� 1Þ ¼ 0;

(38)

where �� ¼ �
��2 is a dimensionless number. Under the

approximations of Eq. (36) and because sin	 � 1 inside
the string core, Eq. (38) reduces to Eq. (33), i.e., the flat
space equation of motion for Abelian Higgs model.
Outside the string core (� > 1), we can as before set X ¼
1. Hence we can say that Eq. (38), and hence Eq. (37),
gives rise to a configuration of scalar field X similar to that
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of the Nielsen-Olesen string. A similar calculation for
Eq. (32) in the Schwarzschild–de Sitter background shows
that it reduces to Eq. (34) under the same approximations.
Thus we conclude that the Schwarzschild–de Sitter space-
time allows a uniform Nielsen-Olesen string along the axis
	 ¼ 0 in the region rH < r < rC.

From the calculations so far we cannot conclude how the
string behaves at or near the horizons. The reason is the
following. The two horizons at ðrH; rCÞ appear as two
coordinate singularities in the chart described in Eq. (35).
Clearly we cannot expand the field equations in this coor-
dinate system at or around the horizons. To do the expan-
sion we need to use maximally extended coordinates which
will be free from coordinate singularities for the
Schwarzschild–de Sitter space-time, and has only the cur-
vature singularity at r ¼ 0. Let us construct Kruskal like
patches at the two horizons to remove the two coordinate
singularities.

First we consider radial null geodesics in the vicinity of
the black hole event horizon rH. For these geodesics

dt

dr
¼ � 1

ð1� 2M
r � �r2

3 Þ ¼ � 3r

�ðr� rHÞðr� rUÞðr� rCÞ :

(39)

Equation (39) can be easily integrated to give

t ¼ �r	 þ constant; (40)

where r	 is the tortoise coordinate given by

r	 ¼ 
 ln

��������
r

rH
� 1

��������þ� ln

��������
r

rC
� 1

��������þ� ln

��������
r

rU
� 1

��������:

(41)

The three constants ð
;�; �Þ are given by


 ¼ 3rH
�ðrC � rHÞðrH � rUÞ ;

� ¼ � 3rC
�ðrC � rHÞðrC � rUÞ ;

� ¼ � 3rU
�ðrC � rUÞðrH � rUÞ :

(42)

In ðt; r	Þ coordinates the radial metric becomes

ds2radial ¼
�
1� 2M

r
��r2

3

�
ð�dt2 þ dr2	Þ: (43)

Defining null coordinates ðu; vÞ such that

u ¼ t� r	 and v ¼ tþ r	; (44)

we can write the radial metric (43) as

ds2radial ¼ �
�
1� 2M

r
��r2

3

�
dudv: (45)

Now we define timelike and spacelike coordinates ðT; YÞ
by

T :¼ ev=2
 � e�ðu=2
Þ

2
; Y :¼ ev=2
 þ e�ðu=2
Þ

2
: (46)

ðT; YÞ satisfy the following relations:

Y2 � T2 ¼
�
r

rH
� 1

�
eð�=
Þ lnjðr=rCÞ�1jþð�=
Þ lnjðr=rUÞ�1j;

(47)

T

Y
¼ tanh

�
t

2


�
: (48)

In terms of ðT; YÞ, the full space-time metric of Eq. (35)
becomes

ds2 ¼ 8M
2

r

��������
r

rU
� 1

��������
1�ð�=
Þ��������

r

rC
� 1

��������
1�ð�=
Þ

� ð�dT2 þ dY2Þ þ r2d�2: (49)

The metric (49) is nonsingular at r ¼ rH. Thus ðT; YÞ
define a well-behaved coordinate system around the event
horizon. When r ! rHð� 2MÞ, from Eq. (47) we have

approximately (after scaling r ! ffiffiffiffi
�

p
�r),

r � 2M
ffiffiffiffi
�

p
�þ 2M

ffiffiffiffi
�

p
�

� ½e�ð�=
Þ lnjð2M=rCÞ�1j�ð�=
Þ lnjð2M=rUÞ�1j�
� ðY2 � T2Þ: (50)

Let us expand Eq. (31) in the vicinity of the black hole
event horizon. We use Eq. (50) to get the following ex-
pressions for derivatives of the scalar field Xð�Þ:
@TX ¼ �4M

ffiffiffiffi
�

p
�½e�ð�=
Þ lnjð2M=rCÞ�1j�ð�=
Þ lnjð2M=rUÞ�1j�

� ðY2 � T2ÞT@�X sin	; (51)

@YX ¼ 4M
ffiffiffiffi
�

p
�½e�ð�=
Þ lnjð2M=rCÞ�1j�ð�=
Þ lnjð2M=rUÞ�1j�

� ðY2 � T2ÞY@�X sin	: (52)

Here � ¼ r
ffiffiffiffi
�

p
� sin	 as before. Equation (31) now can be

written on the background metric of Eq. (49) as

ð1� sin2	Þ d
2X

d�2
þ 1

�
ð1� 2sin2	Þ dX

d�
þ A

8M
2���2

�
��������

r

rC
� 1

��������
ð�=
Þ�1

��������
r

rU
� 1

��������
ð�=
Þ�1

�
�
2�2 dX

d�
þ 4� sin	

dX

d�
ðr� 2M

ffiffiffiffi
�

p
�Þ

þ 2�2 d
2X

d�2
sin	ðr� 2M

ffiffiffiffi
�

p
�Þ

�
¼ 0; (53)

where A ¼ 4M
ffiffiffiffi
�

p
�e�ð�=
Þ lnjð2M=rCÞ�1j�ð�=
Þ lnjð2M=rUÞ�1j.

Under the approximations of Eq. (36), the fact that jrUj �ffiffiffi
3
�

q
and (r� 2M

ffiffiffiffi
�

p
�) is an infinitesimal quantity, Eq. (53)

reduces to Eq. (33). Similar arguments hold for Eq. (32).
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For calculations at the cosmological horizon, we have to
use the following chart which is nonsingular as r ! rC,

ds2 ¼ 8M�2

r

��������
r

rU
� 1

��������
1�ð�=�Þ��������

r

rH
� 1

��������
1�ð
=�Þ

� ð�dT02 þ dY02Þ þ r2d�2: (54)

T0 and Y0 are timelike and spacelike coordinates, respec-
tively, well defined around r ¼ rC. They can be derived
exactly in the same manner as for r � rH. Following a
similar procedure as before one can show that Eqs. (31)
and (32), reduce to flat space Eqs. (33) and (34) respec-
tively. Thus the flat space equations of motion hold on both
the horizons. Since the coordinate system described in
Eqs. (49) and (54) is well behaved around the respective
horizons, we can also use them to expand the field equa-
tions in regions infinitesimally beyond the horizons. For
r ! rH � 0 the scalar field Eq. (53) still holds. The only

difference is that the quantity (r� 2M
ffiffiffiffi
�

p
�) is negative

infinitesimal. But it can be neglected as before. Similar
arguments can be given for the region r ! rC þ 0 using
the chart of Eq. (54).

Thus with the boundary conditions on X and P and the
approximations of Eq. (36), the configuration of matter
fields are like the Nielsen-Olesen string within, at, even
slightly beyond the horizons. Hence we conclude that a
Schwarzschild–de Sitter black hole can be pierced by a thin

Nielsen-Olesen string if the backreaction of the matter
distribution to the background space-time can be
neglected.
We end with a brief remark about the backreaction of the

string on the metric. For a Schwarzschild–de Sitter space-
time with a string along the z axis, the metric functions
must be z dependent. If the cosmological constant were
zero, the (Schwarzschild) space-time would be asymptoti-
cally flat, and we could use Weyl coordinates [21] to write
the metric in an explicitly axisymmetric form,

ds2 ¼ �B2dt2 þ �2B�2d�2 þ A2½d�2 þ dz2�; (55)

where the coefficients A, B are functions of ð�; zÞ only. It
would be relatively easy to determine the existence of
cosmic strings from the equations of motion of the gauge
and Higgs fields written in these coordinates, as was done
in [20]. On the other hand, when the cosmological constant
is nonvanishing, it is no longer possible to write the metric
in this form.Wewere unable to find an appropriate general-
ization of the Weyl coordinates, which are needed to solve
Einstein equations coupled to the gauge and Higgs fields.
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