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A class of thick branes in the background of sine-Gordon kinks with a scalar potential Vð�Þ ¼
pð1þ cos2�q Þ was constructed by R. Koley and S. Kar [Classical Quantum Gravity 22, 753 (2005)]. In this

paper, in the background of the warped geometry, we investigate the issue of localization of spin-1=2

fermions on these branes in the presence of two types of scalar-fermion couplings: � ���� and

� �� sin��. By presenting the mass-independent potentials in the corresponding Schrödinger equations,

we obtain the lowest Kaluza-Klein modes and a continuous gapless spectrum of Kaluza-Klein states with

m2 > 0 for both types of couplings. For the Yukawa coupling � ����, the effective potential of the right

chiral fermions for positive q and � is always positive; hence only the effective potential of the left chiral

fermions could trap the corresponding zero mode. This is a well-known conclusion which is discussed

extensively in the literature. However, for the coupling � �� sin��, the effective potential of the right

chiral fermions for positive q and � is no longer always positive. Although the value of the potential at the

location of the brane is still positive, it has a series of wells and barriers on each side, which ensures that

the right chiral fermion zero mode could be trapped. Thus we may draw the following remarkable

conclusion: for positive � and q, the potentials of both the left and right chiral fermions could trap the

corresponding zero modes under certain restrictions.
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I. INTRODUCTION

The suggestion that extra dimensions may not be com-
pact [1–8] or large [9,10] can provide new insights for
solving the gauge hierarchy problem [10], the cosmologi-
cal constant problem [4,7,11], etc. In the framework of
brane scenarios, gravity is free to propagate in all dimen-
sions, while all the matter fields are confined to a 3-brane
[4,6,10,12,13]. In Ref. [1], an alternative scenario of the
compactification was proposed. In this scenario, the inter-
nal manifold does not need to be compactified to the
Planck scale anymore, which is one of the reasons why
this new compactification scenario has attracted so much
attention. Among all of the brane world models, there is an
interesting and important model in which extra dimensions
comprise a compact hyperbolic manifold [8]. The model is
known to be free of the usual problems that plague the
original Arkani-Hamed-Dimopoulos-Dvali models and
share many common features with Randall-Sundrum
(RS) models.

In the brane world scenario, an important question is the
localization of various bulk fields on a brane by a natural
mechanism. It is well known that massless scalar fields
[14] and gravitons [1] can be localized on branes of differ-
ent types, and that spin-1 Abelian vector fields can not be
localized on the RS brane in five dimensions, but can be

localized in some higher-dimensional cases [15]. Spin-1=2
fermions do not have normalizable zero modes and hence
cannot be localized in five and six dimensions [14–20].
Recently, an increasing interest has been focused on the

study of thick brane scenarios based on gravity coupled to
scalars in higher-dimensional space-time [21–27]. A virtue
of these models is that the branes can be obtained naturally
rather than introduced by hand [21]. Besides, these scalar
fields provide the ‘‘material’’ of which the thick branes are
made. In Ref. [28], exact solutions of the Einstein-scalar
equations with a sine-Gordon potential and a negative
cosmological constant were constructed. In this system
the scalar field configuration is in fact a kink, which
provides a thick brane realization of the brane world as a
domain wall in the bulk. The warped background space-
time has a nonconstant but asymptotically negative Ricci
curvature. Such a configuration was also illustrated in
several examples in the literature [17,18].
The localization problem of spin-1=2 fermions on thick

branes is interesting and important. Localization of fermi-
ons in general space-times has been studied, for example,
in [29]. In five dimensions, with the scalar-fermion cou-
pling, there may exist a single bound state and a continuous
gapless spectrum of massive fermion Kaluza-Klein (KK)
states [30–33], while for some other brane models, there
exist finite discrete KK states (mass gap) and a continuous
gapless spectrum starting at a positive m2 [34,35]. In
Ref. [36], it was found that fermions can escape into the
bulk by tunneling, and the rate depends on the parameters
of the scalar potential. In Ref. [28], the authors obtained
trapped discrete massive fermion states on the brane,
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which in fact are quasibound and have a finite probability
of escaping into the bulk. It is also interesting to note that in
Ref. [37] fermion modes in sine-Gordon kink and kink-
antikink systems were also studied in some 1þ
1-dimensional scalar field theories. It was shown that there
exist discrete bound states. However, when the wall and
antiwall approach each other, the system cannot support
fermion bound states and the discrete states merge into the
continuous spectrum of the Dirac equation.

It is known that, under the Yukawa coupling � ����,
only one of the effective potentials of the left and right
chiral fermions could trap the corresponding zero mode for
positive q and �. In this paper, we will reinvestigate the
localization issues of fermions on the branes obtained in
Ref. [28] in the presence of different types of scalar-
fermion couplings, by presenting the mass-independent
potentials in the corresponding Schrödinger equations.

We will show that, for the coupling � �� sin��, not only
the potential of the left chiral fermions but also the poten-
tial of the right ones could trap the corresponding zero
modes for positive � and q under certain different restric-
tions for each case. Besides, instead of a discrete massive
KK mode, there exists a continuous gapless spectrum of
KK states with m2 > 0. The shapes of the potentials also
suggest that the massive KK modes asymptotically turn
into plane waves, which represent delocalized massive KK
fermions.

The paper is organized as follows: In Sec. II, we first
give a brief review of the thick brane arising from a sine-
Gordon potential in a 5-dimensional space-time. Then, in
Sec. III, we study localization of spin-1=2 fermions on the
thick brane with two different types of scalar-fermion
interactions by presenting the shapes of the potentials of
the corresponding Schrödinger problem. Finally, a brief
conclusion and discussion are presented.

II. REVIEW OF THE SINE-GORDON KINK AND
THE THICK BRANES

Let us consider thick branes arising from a real scalar
field with a sine-Gordon potential

Vð�Þ ¼ p

�
1þ cos

2�

q

�
: (1)

This special potential was considered in Ref. [28], and
different choices of Vð�Þ can be found elsewhere [22]. In
this model, the bulk sine-Gordon potential provides a thick
brane realization of the Randall-Sundrum scenario, and the
soliton configuration of the scalar field dynamically gen-
erates the domain wall configuration with warped geome-
try. The action for such a system is given by

S¼
Z
d5x

ffiffiffiffiffiffiffi�gp �
1

2�2
5

ðR�2�Þ�1

2
gMN@M�@N��Vð�Þ

�
;

(2)

where �2
5 ¼ 8�G5 with G5 the 5-dimensional Newton

constant, and � is the 5-dimensional cosmological con-
stant. The line element which results in a 4-dimensional
Poincaré invariance of the action (2) is assumed as

ds2 ¼ e2AðyÞ���dx�dx� þ dy2; (3)

where e2AðyÞ is the warp factor and y stands for the extra
coordinate. The scalar field is considered to be a function
of y only. The field equations, which are derivable from (2)
with the ansatz (3), reduce to the following coupled non-
linear differential equations:

A00 ¼ ��2
5

3
�02; (4)

A02 ¼ ��2
5

12
ð�02 � 2VÞ þ�

6
; (5)

�00 þ 4A0�0 ¼ dV

d�
: (6)

For the sine-Gordon potential (1), the solution can be
calculated [28] as

AðyÞ ¼ �� ln coshky; (7)

�ðyÞ ¼ 2q arctanðexpkyÞ � �q

2
; (8)

where � and k are given by

� ¼ 1

3
�2
5q

2; k ¼
ffiffiffiffiffiffiffiffiffiffi
6j�jp
6�

: (9)

The parameters q and � are free to choose, and p is given
by

p ¼ j�j
2�4

5

�
�2
5

3
þ 1

4q2

�
: (10)

Observing the forms of (7) and (8), one can find that the
configuration of �ðyÞ is a kink for positive q, and the warp
factor AðyÞ is a smooth function. Besides these properties,
more detailed discussions can be found in Ref. [28].
Extensive work has been done on nonsupersymmetric

[21,23,24,38] as well as supersymmetric [39–41] domain
walls in different models. In Ref. [40], Maru et al. con-
structed an analytic non-Bogomol’nyi-Prasad-Sommerfeld
solution of the sine-Gordon domain wall in a 4-
dimensional global supersymmetric model. In Ref. [41],
this sine-Gordon domain wall solution was extended to a
solution in 4-dimensional supergravity and its stability was
examined. In these papers, although the sine-Gordon do-
main wall had been considered in supersymmetric theories,
the properties of the solution itself are also valid in the
purely bosonic sector. In the following, we will reconsider
the issue of localization of spin-1=2 fermions on the 3-
brane in the presence of two types of kink-fermion cou-
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plings in the background of the sine-Gordon kink (8) and
the corresponding warped geometry.

III. LOCALIZATION OF FERMIONS ON THE
THICK BRANES

Now, let us investigate whether spin-1=2 fermions can
be localized on the brane. We will analyze the spectrum of
fermions for the thick branes by presenting the mass-
independent potentials in the corresponding Schrödinger
equations. In order to get the mass-independent potentials,
we will follow Ref. [1] and change the metric given in (3)
to a conformally flat one,

ds25 ¼ e2Að���dx�dx� þ dz2Þ; (11)

by performing the coordinate transformation

dz ¼ e�AðyÞdy: (12)

In five dimensions, fermions are four-component spin-

ors, and their Dirac structure is described by �M ¼ eM�M�
�M

with f�M;�Ng ¼ 2gMN . In this paper, �M; �N; � � � denote the
local Lorentz indices, and �

�M are the flat gamma matrices
in five dimensions. In our setup, �M ¼ ðe�A��; e�A�5Þ,
where �� and �5 are the usual flat gamma matrices in the
Dirac representation. The Dirac action of a massless
spin-1=2 fermion coupled to the scalar is

S1=2 ¼
Z
d5x

ffiffiffiffiffiffiffi�gp ð ���MDM�� � ��Fð�Þ�Þ; (13)

where the covariant derivative DM is defined as DM� ¼
ð@M þ 1

4!
�M �N
M � �M� �NÞ� with the spin connection !M ¼

1
4!

�M �N
M � �M� �N and

!
�M �N
M ¼ 1

2e
N �Mð@Me �N

N � @Ne
�N
MÞ � 1

2e
N �Nð@Me �M

N � @Ne
�M
MÞ

� 1
2e
P �MeQ

�Nð@PeQ �R � @QeP �RÞe �R
M: (14)

With the metric (11), the nonvanishing components of the
spin connection !M are

!� ¼ 1
2ð@zAÞ���5: (15)

Then the equation of motion is given by

f��@� þ �5ð@z þ 2@zAÞ � �eAFð�Þg� ¼ 0; (16)

where ��@� is the Dirac operator on the brane.

Now we study the above 5-dimensional Dirac equation.
From the equation of motion (16), we will search for the
solutions of the general chiral decomposition

�ðx; zÞ ¼ X
n

 LnðxÞ	LnðzÞ þ
X
n

 RnðxÞ	RnðzÞ (17)

with  LnðxÞ ¼ ��5 LnðxÞ and  RnðxÞ ¼ �5 RnðxÞ the
left-handed and right-handed components of a 4-
dimensional Dirac field; the sum over n can be both dis-
crete and continuous. Here, we assume that  LðxÞ and
 RðxÞ satisfy the 4-dimensional massive Dirac equations

��@� LnðxÞ ¼ mn RnðxÞ and ��@� RnðxÞ ¼ mn LnðxÞ.
Then 	LðzÞ and 	RðzÞ satisfy the following coupled equa-
tions:

f@z þ 2@zAþ �eAFð�Þg	LnðzÞ ¼ mn	RnðzÞ; (18a)

f@z þ 2@zA� �eAFð�Þg	RnðzÞ ¼ �mn	LnðzÞ: (18b)

In order to obtain the standard 4-dimensional action for the
massive chiral fermions, we need the following orthonor-
mality conditions for 	Ln and 	Rn :Z 1

�1
e4A	Lm	Rndz ¼ 
LR
mn: (19)

Defining ~	L ¼ e2A	L, we get the Schrödinger-like
equation for the left chiral fermions,

½�@2z þ VLðzÞ�~	Ln ¼ m2
n ~	Ln; (20)

where the effective potential is given by

VLðzÞ ¼ e2A�2F2ð�Þ � eA�@zFð�Þ � ð@zAÞeA�Fð�Þ:
(21)

For the right chiral fermions, the corresponding potential
can be written out easily by replacing �! �� from the
above potential,

VRðzÞ ¼ e2A�2F2ð�Þ þ eA�@zFð�Þ þ ð@zAÞeA�Fð�Þ:
(22)

It can be seen clearly that, for the left (right) chiral fermion
localization, there must be some kind of Yukawa coupling.
This situation can be compared with the one in the RS
framework [14], where an additional localization method
[42] was introduced for spin 1=2 fields. Furthermore,
Fð�ðzÞÞmust be an odd function of�ðzÞ when we demand
that VLðzÞ or VRðzÞ is Z2 even with respect to the extra
dimension z. In this paper, we consider two cases,
Fð�ðzÞÞ ¼ �ðzÞ and Fð�ðzÞÞ ¼ sin�ðzÞ, as examples.
For each case, we get a continuous spectrum of KK modes
with positive m2 > 0. However, it is shown that only the
massless chiral modes could be localized on the brane.

A. Fð�Þ ¼ �

Here, we face the difficulty that for general � we cannot
obtain the function yðzÞ in an explicit form. But we can
write the potentials as a function of y:

VLðzðyÞÞ ¼ 1

4
q�cosh�2�ðkyÞ

�
� 8ekyk

1þ e2ky
þ q�ð�

� 4 arctanekyÞ2 � 2k�ð�� 4 arctanekyÞ

� tanhky

�
; (23)

VRðzðyÞÞ ¼ VLðzðyÞÞj�!��: (24)

This potential for the left chiral fermions has the asymp-
totic behavior VLðy ¼ �1Þ ¼ 0 and VLðy ¼ 0Þ ¼ �kq�,
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where k > 0. For q� > 0, this is in fact a volcano-type
potential [43,44]. The effective potential for the left chiral
fermions is shown in Fig. 1. For positive �, zðyÞ is a
monotonous function, which means that the potential for
arbitrary, positive � provides no mass gap to separate the
zero mode from the excited KK modes.

In the following, without loss of generality, we mainly
discuss the case � ¼ 1, for which one can invert the

coordinate transformation dz ¼ e�AðyÞdy, namely,

y ¼ arcsinhðkzÞ=k; (25)

and get the explicit forms of the potentials and the kink
�ðzÞ,

VLðzÞ ¼ �

�
q2�ð�� 4 arctanearcsinhkzÞ2

4ð1þ k2z2Þ

� 2kqearcsinhkz

ð1þ k2z2Þð1þ e2arcsinhkzÞ

� k2qzð�� 4 arctanearcsinhkzÞ
2ð1þ k2z2Þ3=2

�
; (26)

VRðzÞ ¼ VLðzÞj�!��; (27)

�ðzÞ ¼ 2q arctanearcsinhðkzÞ � �q

2
: (28)

The values of the potentials for the left chiral and right
chiral fermions at y ¼ 0 are given by

VRð0Þ ¼ �VLð0Þ ¼ kq�: (29)

Both potentials have the asymptotic behavior VL;Rðz ¼
�1Þ ¼ 0. But for a given coupling constant �, the values
of the potentials at z ¼ 0 are the opposite. The shape of the
kink �ðzÞ and the above two potentials are shown in Fig. 2
for given values of positive � and q. It can be seen that
VLðzÞ is indeed a volcano-type potential. Hence, the po-
tential provides no mass gap to separate the fermion zero
mode from the excited KK modes, and there exists a

continuous gapless spectrum of the KK modes for both
the left chiral and right chiral fermions.
For positive q and �, only the potential for left chiral

fermions has a negative value at the location of the brane,
which could trap the left chiral fermion zero mode solved
in (18a) by setting m0 ¼ 0:

~	L0ðzÞ ¼ e2A	L0ðzÞ / exp

�
��

Z z
dz0eAðz0Þ�ðz0Þ

�
: (30)

In order to check the normalization condition (19) for the
zero mode (30), we need to check whether the inequality

Z
dz exp

�
�2�

Z z
dz0eAðz0Þ�ðz0Þ

�
<1 (31)

is satisfied. For the integral
R
dzeA�, we only need to

consider the asymptotic characteristic of the function
eA� for z! 1. Noting that arctanz! �=2 when z!
1, we have

e A� ¼ 4q arctanearcsinhkz � q�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2z2

p ! q�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2z2

p ; (32)

Z
dzeA�! q�

2k
arcsinhkz: (33)

Now, the normalization condition (31) is changed toR
dz expð� �q�

k arcsinhkzÞ<1. Hence the condition on

the free parameters � and q is

�q >
k

�
: (34)

In fact, we can solve the problem in the y coordinate easily.
In this coordinate, the condition (31) becomes

Z
dy exp

�
�AðyÞ � 2�

Z y
dy0�ðy0Þ

�
<1: (35)

When y! 1, we have AðyÞ ! �ky and �ðyÞ ! q�=2,
and so ð�AðyÞ � 2�

R
y dy0�ðy0ÞÞ ! ðk� �q�Þy. Then

we can get the restriction condition (34) for localizing
the zero mode of the left chiral fermions.
The zero mode (30) represents the lowest energy eigen-

function (ground state) of the Schrödinger equation (20)
since it has no zeros, and it is the only bound state. Since
the ground state has the lowest mass square m2

0 ¼ 0, there
is no tachyonic left chiral fermion mode. The potential (26)
provides no mass gap to separate the fermion zero mode
from the excited KK modes. In Fig. 3, we plot the left
chiral fermion potential VLðzÞ, the corresponding zero
mode, and the massive KK modes. We see that the zero
mode is bound on the brane, while the massive modes
propagate along the extra dimension. Those massive
modes with lower energy experience an attenuation due
to the presence of the potential barriers near the location of
the brane.
In the case q� > 0, the potential for the right chiral

fermions is always positive, which shows that it cannot

FIG. 1. The shape of the potential VLðzðyÞÞ for the case
Fð�Þ ¼ �. The parameters are set to k ¼ 1, q ¼ 1, � ¼ 1,
and � ¼ 1 for the thick line, and � ¼ 1:2 and � ¼ 2 for the
thin line.
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trap the right chiral zero mode. But for the case of negative
q�, things are the opposite and only the right chiral zero
mode can be trapped on the brane. For arbitrary q� � 0,
the two potentials suggest that there is no mass gap but a
continuous spectrum of KK modes with m2 > 0.

B. Fð�Þ ¼ sin�

For the case Fð�Þ ¼ sin�, the potential as a function of
y for the left chiral fermions is

VLðzðyÞÞ ¼ �1
2�cosh

�1�2�ðkyÞ½�ðcosð2�ðyÞÞ � 1Þ coshky
þ 2kq cos�ðyÞ � �q sin�ðyÞ sinhky�: (36)

For different values of q, Fð�ðyÞÞ has different behaviors,
which should result in different types of the potential VL.
According to the expression of Fð�Þ,

Fð�ðyÞÞ ¼ sin

�
2q arctaneky � �q

2

�
; (37)

we have Fjy!1 ! sinq�2 . So, when y! 1, Fð�ðyÞÞ has
different limits for different values of q:

Fðy! 1Þ> 0 for 4n < q < 4nþ 2; (38)

Fðy! 1Þ ¼ 0 for q ¼ 2n; (39)

Fðy! 1Þ< 0 for 4nþ 2< q< 4nþ 4; (40)

where n is an arbitrary integer. The shapes of Fð�ðyÞÞ ¼
sin�ðyÞ for various values of q are shown in Fig. 4.
Considering that � does not change the characteristics of

the effective potentials acting on the left and right chiral
fermions, we mainly focus on the case � ¼ 1, for which
one can get the explicit forms of the potentials in the z
coordinate,

VLðzÞ ¼ �

�
k2z sin�ðzÞ
ð1þ k2z2Þ3=2 þ

�sin2�ðzÞ
1þ k2z2

� 2kqearcsinhkz cos�ðzÞ
ð1þ e2arcsinhkzÞð1þ k2z2Þ

�
; (41)

VRðzÞ ¼ VLðzÞj�!��; (42)

where �ðzÞ is given by Eq. (28). The values at y ¼ 0 are
given by

VLð0Þ ¼ �VRð0Þ ¼ �kq�: (43)

Both potentials have the asymptotic characteristic
VL;Rjz!�1 ! 0. But for a given coupling constant �, the
values of the potentials at z ¼ 0 are the opposite. It can be
seen from (41) and (42) that the shapes of the potentials are

z

φ z

z

VL,R z

FIG. 2. The shape of the kink [�ðzÞ with positive k] and the potentials VLðzÞ (thick line) and VRðzÞ (thin line) for the left and right
chiral fermions for the case Fð�Þ ¼ � and � ¼ 1 in the z coordinate. The parameters are set to k ¼ 1, q ¼ 1, and � ¼ 1.

FIG. 3. The shape of the potentials VLðzÞ (26) (dashed lines), the zero mode (30), and the massive modes for the left chiral fermions
for the case Fð�Þ ¼ �. The parameters are set to k ¼ 1, q ¼ 2, and � ¼ 1. In the right figure, we setm2 ¼ 1 and 10 for the thick black
line and the thin gray line, respectively.
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determined by sin�ðzÞ and cos�ðzÞ, which depend closely
on the value of q.

For general q, VL is not a volcano-type potential any-
more. Here we only discuss the case of positive � and q,
which results in a negative potential at the location of the
brane since k is positive. In order to localize fermions on
the brane, we also need at least a potential barrier on each
side. In fact, for 4n < q � 4nþ 2 or q ¼ 4nþ 3, the
potential for the left chiral fermions has nþ 1 finite posi-
tive barriers on each side, in which the last one on each side
vanishes asymptotically from above. The potential is al-
ways positive at long distances, so it can trap the zero
mode. The shapes of the potential for this case are shown
in Fig. 5. For 4nþ 2< q � 4nþ 4 but q � 4nþ 3, the
potential for the left chiral fermions has also nþ 1 finite
positive barriers on each side, but the last barrier on each
side vanishes asymptotically from below. The potential is
always negative at long distances, which indicates that it
cannot trap the zero mode. See Fig. 6 for the shapes of the
potential. Hence, in order to get a potential for the left
chiral fermions that can trap some fermion KK modes, we
first need the following condition:

4n < q � 4nþ 2ðn � 0Þ or q ¼ 4nþ 3ðn � 0Þ:
(44)

Next we discuss the relation of the potential VRðzÞ to the
parameter q. We also limit our discussion on positive� and
q, which results in a positive potential at the location of the
brane for VRðzÞ. This seems to show that the potential could
not trap any KK modes of the right chiral fermions. But the
result is the opposite. For 4n < q � 4nþ 2 but q � 4nþ
1, the potential for the right chiral fermions has 2nþ 1
finite barriers and 2nþ 2 finite wells; among them, a
positive barrier is at the location of the brane. The potential
vanishes asymptotically from below at long distances,
which indicates that it cannot trap the zero mode. For 4nþ
2< q � 4nþ 4, the potential has 2nþ 3 finite barriers
and 2nþ 2 finite wells. For q ¼ 4nþ 1, the potential has
2nþ 1 finite barriers and 2n finite wells. For both cases,
the potential vanishes asymptotically from above at long
distances, which indicates that it cannot trap the zero
mode. Hence, in order to get a potential for the right chiral
fermions that can trap some fermion KK modes, we need
the following condition:

4nþ 2< q � 4nþ 4ðn � 0Þ or q ¼ 4nþ 1ðn > 0Þ:
(45)

This is a remarkable result which is very different from the
case considered in the previous subsection, where the
potential for the right chiral fermions with positive � and
q cannot trap any KK modes because it is always positive.

FIG. 5. The shapes of the potential VLðzÞ (41) for 4n < q � 4nþ 2 or q ¼ 4nþ 3. The potential has a negative value at the location
of the thick brane, and nþ 1 finite positive barriers on each side which vanish asymptotically from above when far away from the
brane.

FIG. 4. The shape of Fð�Þ ¼ sin� for various values of q in the y coordinate. For q ¼ 9:5, which is between 4n and 4nþ 2, F tends
to a positive constant when z! 1 and tends to a negative constant when z! �1. For q ¼ 6, which is an even number, F tends to
zero when z! �1.
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The shapes of the potential VRðzÞ for various values of q
are shown in Figs. 7 and 8.

Now we examine the zero modes for the left and right
chiral fermions. By setting m0 ¼ 0 and Fð�Þ ¼ sin�,
from Eq. (18) we find that the left and right zero modes
have the following formalized solutions:

~	L0ðzÞ / exp

�
��

Z z
dz0eAðz0Þ sin�ðz0Þ

�
; (46)

~	R0ðzÞ / exp

�
þ�

Z z
dz0eAðz0Þ sin�ðz0Þ

�
: (47)

Using the same method as in the previous subsection, we
can obtain the restriction on the free parameters � and q
from the normalization condition (19) for the zero modes
(46) and (47). In the y coordinate, the restriction condition
for the zero modes is

Z
dy exp

�
�AðyÞ � ð�Þ2�

Z y
dy0 sin�ðy0Þ

�
<1: (48)

When y! 1, we have AðyÞ ! �ky and sin�ðyÞ ! sinq�2 ,

and so ð�AðyÞ � ð�Þ2�R
y dy0 sin�ðy0ÞÞ ! ðk�

ð�Þ2� sinq�2 Þy. Thus, the restriction condition reduces to

� 2� sinðq�=2Þ> k (49)

with ‘‘þ’’ for the left fermions and ‘‘�’’ for the right ones.
For the left chiral fermions, combining (49) with the con-
straint (44) coming from the effective potential VL, the
condition for localizing the zero mode turns out to be

4n < q < 4nþ 2 or q ¼ 4nþ 3ðn � 0Þ;

� >
k

2 sinðq�=2Þ :
(50)

For the right chiral fermions, the localization condition of
the zero mode is

4nþ 2< q< 4nþ 4 or q ¼ 4nþ 1ðn � 0Þ;

� >
k

�2 sinðq�=2Þ :
(51)

Note that the values q ¼ 2n do not appear in (50) and (51).
The reason is that the value of Fðsin�Þ will tend to zero at
long distances for q ¼ 2n, which results in the non-
normalizable zero modes. In Ref. [45], Melfo et al. studied
the localization of fermions on various scalar thick branes.
They showed that only one massless chiral mode is local-
ized in double walls and branes interpolating between
different AdS5 space-times whenever the wall thickness
is kept finite, while chiral fermion modes cannot be local-
ized in dS4 walls embedded in an M5 space-time. In
Ref. [46], Bietenholz et al. investigated fermions in the
brane world of the 3D Gross-Neveu model and addressed,
in particular, the question of whether approximate chiral
symmetry can come about in a natural way under brane-
type dimensional reduction. They found that a left-handed
2D fermion localized on the domain wall and a right-
handed fermion localized on the antiwall communicate
with each other through the 3D bulk, and the two 2D
fermions are bound together to form a Dirac fermion of

FIG. 6. The shapes of the potential VLðzÞ (41) for 4nþ 2< q � 4nþ 4 but q � 4nþ 3. The potential has a negative value at the
location of the thick brane, and nþ 1 finite positive barriers on each side which vanish asymptotically from below when far away from
the brane.

FIG. 7. The shapes of the potential VRðzÞ (42) for 4n < q � 4nþ 2 but q � 4nþ 1. The potential has a positive value at the location
of the thick brane, and n finite positive barriers on each side which vanish asymptotically from below when far away from the brane.
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mass m. This involves a hierarchy problem with respect to
the fermion mass.

For arbitrary q� > 0, the two potentials suggest that
there is no mass gap but a continuous spectrum of KK
modes. In Fig. 9, we plot the massless and massive KK
modes for the left chiral fermions. It can be seen that the
zero mode is bound on the brane if the condition (50) is
satisfied. The massive modes with lower energy (especially
the zero mode) experience an attenuation due to the series
of potential barriers near the location of the brane.

To close this section, we make some comments on the
issue of the localization of fermions. Localizing the fermi-
ons on branes or defects requires us to introduce other
interactions besides gravity. More recently, Volkas et al.
had extensively analyzed localization mechanisms on a

domain wall. In particular, in Ref. [47], they proposed a
well-defined model for localizing the SM, or something
close to it, on a domain wall brane. There are some other
backgrounds, for example, gauge field [48], supergravity
[49,50] and vortex backgrounds [51–54], that could be
considered. The topological vortex coupled to fermions
may result in chiral fermion zero modes [55].

IV. DISCUSSIONS

In this paper, by presenting the shapes of the mass-
independent potentials in the corresponding Schrödinger
equations, we have reinvestigated the possibility of local-
izing spin-1=2 fermions on a thick brane for two kinds of
kink-fermion couplings. It is shown that, without scalar-
fermion coupling, there is no bound state for both the left
and right chiral fermions. Hence, in order to localize the
massless and massive left or right chiral fermions on the
brane, some kind of Yukawa coupling should be
introduced.

For the Yukawa coupling � ����, only one of the
potentials for the left and right chiral fermions has a finite
well at the location of the brane and a finite barrier on each
side, which vanishes asymptotically. It is shown that there
is only one single bound state (zero mode) which is just the
lowest energy eigenfunction of the Schrödinger equation
for the corresponding chiral fermions. When the condition
�q�> k is satisfied, the zero mode is normalizable.

For the scalar-fermion coupling � �� sin�� with q > 0
and �> 0, the potential for the left chiral fermions has a
finite well at the location of the brane as well as a series of
finite positive barriers on each side, and vanishes asymp-
totically from above or below when it is far away from the
brane. Under the condition (50), there exists a bound and
normalizable left chiral fermion zero mode.
It is worth pointing out that, under the condition q > 0

and �> 0, for the usual coupling � ����, the potentials
for the left and right chiral fermions have very different
shapes and only the left fermion zero mode could be

localized. However, for the coupling � �� sin��, the po-
tentials for the left and right chiral fermions have similar

FIG. 9. The shape of the potentials VLðzÞ (41) (dashed lines),
the zero mode (46), and the massive modes for the left chiral
fermions for the case Fð�Þ ¼ sin�. The parameters are set to
k ¼ 1, q ¼ 9, and � ¼ 1.

FIG. 8. The shapes of the potential VRðzÞ (42) for 4nþ 2< q � 4nþ 4 and q ¼ 4nþ 1. The potential has a positive value at the
location of the thick brane, as well as nþ 1 and n finite positive barriers for 4nþ 2< q � 4nþ 4 and q ¼ 4nþ 1, respectively, on
each side which vanish asymptotically from above when far away from the brane.
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shapes, and the right fermion zero mode could also be
localized on the brane under the condition (51). The reason
is that, although the potential for the right chiral fermions
has a positive value at the location of the brane, it has some
wells and a series of positive barriers near the brane, which
ensures that it can trap the right chiral fermion zero mode
on the brane.

Since the potentials for both scalar-fermion couplings
vanish asymptotically when far away from the brane, all
values ofm2 > 0 are allowed, and there exists no mass gap
but a continuous gapless spectrum of KK states with m2 >
0. The massive KK modes asymptotically turn into con-
tinuous plane waves when far away from the brane [2,21],
and represent delocalized massive KK fermions.
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