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In this work we study the configuration of two perfectly conducting spherical shells. This is a problem

of basic importance to make possible development of experimental apparatuses that they make possible to

measure the spherical Casimir effect, an open subject. We apply the mode sum method via cutoff

exponential function regularization with two independent parameters: one to regularize the infinite order

sum of the Bessel functions; other, to regularize the integral that becomes related, due to the argument

theorem, with the infinite zero sum of the Bessel functions. We obtain a general expression of the Casimir

energy as a quadrature sum. We investigate two immediate limit cases as a consistency test of the

expression obtained: that of a spherical shell and that of two parallel plates. In the approximation of a thin

spherical shell we obtain an expression that allows to relate our result with that of the proximity-force

approximation, supplying a correction to this result.
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I. INTRODUCTION

The Casimir attractive force between conducting paral-
lel plates [1] is one of the most striking demonstrations of
the quantum nature of the electromagnetic field. Such
effect was experimentally confirmed by Sparnaay in 1958
[2] and with great accuracy by Lamoreaux [3] and
Mohideen and Roy [4,5]. Casimir himself proposed to
build a model for the electron as an application of this
effect [6]. He suggested two models: a solid sphere and a
thin spherical shell. If the Casimir pressure turned out to
point inwards (as could be guessed from a crude analogy
with the parallel plates setup), it would stabilize the elec-
tron against the electrostatic repulsion, and it would pro-
vide a theoretical value for the fine structure constant.
Boyer was the first to actually calculate the Casimir pres-
sure for a spherical shell [7]. Contrary to the expectations,
the pressure is repulsive (i.e., it points outwards), and so,
invalidating Casimir’s electron model.

Since Boyer’s pioneer work, independent calculations
have confirmed that the Casimir pressure is repulsive for a
perfectly reflecting spherical shell. Different methods have
been employed: the Schwinger source theory [8], the
Green function technique [9], the multiple scattering ap-
proach [10], and the zeta function formalism [11].
However, a simple physical explanation of why the pres-
sure is repulsive is still lacking.

Being the first realistic approach to investigate the physi-
cal systems of the nature, the spherical symmetry can be
applied for the study of cosmological systems or bag
models of hadrons, to quote two examples of great rele-
vance [12–15].

In this paper, we compute the Casimir energy for two
concentric perfectly reflecting spherical shells (internal
and external radii are a and b). This type of setup was
analyzed with the help of the Green function technique for
material media with particular electric and magnetic prop-
erties (satisfying the so-called uniform velocity of light
condition) [16–19] and for more general dieletric media
[20]. A quantum statistical approach was employed for
ideal metals [21] as well as for dieletric media [22].
Recently, the measurement of the Casimir force between
two concentric spherical surfaces was proposed [23].
Here, we compute separately the contributions of field

modes from each of the three spatial regions (internal,
between the shells and external) directly from the field
zero-point energy. This ‘‘mode sum’’ approach [24–26],
when combined with the introduction of suitable cutoff
functions [27], allows for a physical interpretation of the
several terms contributing to the Casimir energy, which
correspond to different field polarizations and spatial re-
gions. All series and integrals are properly regularized by
exponential cutoff functions, so that we only deal with
well-defined quantities. We keep the cutoff dependent
terms and analyze their dependence on radius, area, and
internal volume of the spherical shells, before considering
the cancellations resulting from the sum over the three
spatial regions. As suggested by Barton [28], these cutoff
dependent terms might be physically relevant and provide
for a net attractive pressure in the context of a more realist
model for the material medium.
We are particularly interested in the limit of a thin

intershell region ðb� aÞ=a � 1: In this case, we should
recover the Casimir attractive force between parallel plates
according to the proximity-force approximation (PFA)
[29], which replace the surfaces by tangent planes.*miltaaao@ig.com.br
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Hence, there must be a crossover between the single shell
repulsive regime and the thin intershell attractive regime.
Our model also allows for evaluation of the accuracy of
PFA in a problem for which an exact solution is available
[30].

The paper is organized in the following way: section II
presents the derivation of the formal results for the Casimir
energy in the form of a multipole series. The limit ðb�
aÞ=a � 1 is considered in Sec. III, where corrections to
the PFA result are obtained. In Sec. IV, we present some
final remarks and a conclusion.

II. CASIMIR EFFECT BETWEEN TWO
SPHERICAL SHELLS

Since we consider perflectly reflecting shells, each elec-
tromagnetic field mode is confined in one of the three
spatial regions, which are labeled by the index �, with � ¼
1, 2, 3 denoting the inner, intershell and outer spatial
regions, respectively. Moreover, due to spherical symme-
try, we may decompose the vectorial boundary value prob-
lem into two independent problems by defining the usual
transverse electric (TE, electric field perpendicular to the
radial direction) and transverse magnetic (TM) polariza-
tions. Hence, we have 6 independent classes of field
modes, which we represent by the indexes � and p ¼
TE;TM for polarization.

The Casimir energy for the double shell is given by the
modification of the zero-point energy due to the boundary
conditions

Eða;bÞ ¼ X1
n¼1

X1
j¼1

X3
�¼1

X
p

ðjþ 1=2Þ@½!ð�Þ
njpða;bÞ�!ð�Þ

njpðrefÞ�;

(1)

where !�
njpða; bÞ is a mode frequency for a given angular

momentum j, polarization p, and spatial region �. We have
taken into account the degeneracy factor 2jþ 1 and sub-
tracted the reference frequencies !�

jnðrefÞ, corresponding
to the free-space limit.

In order to have discrete spectra for the outer region, we
consider a third ‘‘auxiliary’’ spherical surface of radius R,
and take the limit R ! 1 (see Fig. 1).

To obtain the zero-point energy for the free-space case,
we consider a similar configuration [7], taking the two
innermost shells to have radius R=� and R=� , with � >
� > 1. We evaluate the sum over n in Eq. (1) with the help
of Cauchy’s theorem for analytic functions in the complex
plane of frequency [31,32], taking the contour Cð�; �Þ
indicated in Fig. 2.

We define analytic functions fð�Þjp ða; b; zÞ such that their

zeros (when considered as functions of z) correspond to the

eigenfrequencies!ð�Þ
njpða; bÞ, n ¼ 1; 2; . . . They are all con-

tained within the contour Cð�; ’Þ in the limit � ! 1:

We find, by using the prescription proposed in [27], with
� ¼ jþ 1=2,

Eða; bÞ ¼ lim
�!�0

@c

2�i

X1
j¼1

� expð�"�Þ lim
�!1

I
Cð�;’Þ

dzz

� expð��zÞ d
dz

X3
�¼1

X
p

�
log½fð�Þjp ða; b; zÞ�

� log

�
fð�Þjp

�
R

�
;
R

�
; z

���
; (2)

where � denotes the set R, �, � together with the cutoff
parameters � and ". Note that we employ two exponential
cutoff functions to regularize our expression (including one
for the sum over angular momentum).
Equation (2) is an application of the approach proposed

in [27], which presents a cutoff method of calculating the
Casimir effect for a spherical shell including both the
interior and exterior modes in a new calculation method
that has not been used in this problem before. Basically, as
it is known in the literature, generally, the j and n sum do
not converge, and the procedure to regularize them uses

one cutoff exponential function e��!�
jn . However, when we

FIG. 1. Boundary conditions of two spherical shells.

FIG. 2. Path integration in complex plan.
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use the argument theorem to bypass the problem of eval-
uating the implicity frequency, the cutoff exponential func-

tion e��!�
jn renounces to protect the j series of the usual

divergence. To prevent this divergence we have used an
additional cutoff exponential function e�"�. Thus, we can
write the equality in (2) that represents a well-defined
expression of the mathematical point of view. Therefore,
taking this prescription, the expression to Casimir energy
becomes well defined, and the manipulations can be done
without difficulty before the limits are realized.

The positive aspect of the approach proposed rests on the
fact that (i) as remarkable in literature [24,25], the mode
sum method presents a great advantage in relation to other
techniques due its simplicity and visualization of the di-
verse stages involved in calculation, as its global version
determines without difficulty the total Casimir energy;
(ii) we work exclusively with regularized expressions,
preventing cancellation of any possible divergence without
previous justification—a procedure that is not explicit in
regularizations as the generalized zeta function which, in
general, does not use the renormalization process [33], as
well as in procedures similar to those used in Refs. [34,35]
due to the appearance of divergent series in intermediate
steps. In relation to the subtraction procedure, we followed
the usual one initially considered by Casimir [1] for par-
allel plates and by Boyer [7] for spherical effect.

The limit in Eq. (2) is taken in the following sequence:
we first take R ! 1, then � ! 1, � ! 1, and finally
�; " ! 0.

The functions fð1Þjp actually do not depend on b, because

they correspond to the modes in the inner region r < a

fð1ÞjTEða; zÞ ¼ SjðazÞ; (3)

where SjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�x=2

p
Jjþ1=2ðxÞ is the Riccati-Bessel func-

tion of the first kind [36,37], and

fð1ÞjTMða; zÞ ¼ S0jðazÞ; (4)

where the prime denotes the derivative.

Likewise, the functions fð3Þjp do not depend on a, because

they correspond to the outer region

fð3ÞjTEðb; zÞ ¼ CjðRzÞSjðbzÞ � SjðRzÞCjðbzÞ; (5)

where CjðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
�x=2

p
Njþ1=2ðxÞ is the Riccati-Bessel of

the second kind, and

fð3ÞjTMðb; zÞ ¼ C0
jðRzÞS0jðbzÞ � S0jðRzÞC0

jðbzÞ: (6)

The functions fð2Þjp corresponding to the intershell region

have the same form, with the replacements b ! a and R !
b

fð2ÞjTEða; b; zÞ ¼ CjðbzÞSjðazÞ � SjðbzÞCjðazÞ; (7)

fð2ÞjTMða; b; zÞ ¼ C0
jðbzÞS0jðazÞ � S0jðbzÞC0

jðazÞ: (8)

Since we take the limit R ! 1, we may replace SjðRzÞ,
CjðRzÞ, and their derivatives by the corresponding asymp-

totic expansions for large arguments. We find

fð3ÞjTEðb; zÞ ¼ cos½�jðzÞ�SjðbzÞ � tan½�jðzÞ�CjðbzÞ; (9)

with �jðzÞ ¼ Rz� j�
2 , and

fð3ÞjTMðb; zÞ ¼ sin½�jðzÞ�S0jðbzÞ þ cos½�jðzÞ�C0
jðbzÞ: (10)

We may also take the asymptotic expansions for large

arguments when computing fð�Þjp ðR=�; R=�; zÞ in Eq. (2),

which account for the free-space zero-point energy.
In the contour of Fig. 2, only the segments �1 and �2

contribute in the limit � ! 1. For convenience, we take
’ ! 0, allowing us to take z ¼ i	 (with real 	) every-
where in Eq. (2) except for the exponential cutoff
expð��zÞ ¼ exp½�i�	 expð�i’Þ� for segment �1;2,

which provides a damping term expð��	 sin’Þ [31].
The integrand is then written in terms of the modified
Bessel functions of the first and second kinds I� and K�.
It is also convenient to rescale the integration variable by
multiplying by �.
As expected, the R dependent terms are canceled due to

the subtraction of the free-space energy in Eq. (2). The
resulting expression is written as

E ða; bÞ ¼ EðaÞ þ EðbÞ þ Ecða; bÞ; (11)

where EðaÞ [and likewise for EðbÞ] is the Casimir energy
for a single spherical shell of radius a. Besides the single-
shell energies, the Casimir energy for the double shell
configuration contains a nontrivial term representing the
joint effect of the two shells:

Ecða; bÞ ¼ � @c

�
Re

X1
j¼1

�2
Z 1

0
d		

d

d	

�
log

�
1� K�ð�b	Þ=I�ð�b	Þ

K�ð�a	Þ=I�ð�a	Þ
�

þ log

�
1� ½12K�ð�b	Þ þ �b	K0

�ð�b	Þ�=½12 I�ð�b	Þ þ �b	I0�ð�b	Þ�
½12K�ð�a	Þ þ �a	K0

�ð�a	Þ�=½12 I�ð�a	Þ þ �a	I0�ð�a	Þ�
��
: (12)
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In expression (11) of the Casimir energy, the terms EðaÞ
and EðbÞ are free of regularization and, of course, are well
defined. In the case of the remaining contribution, it is also
well defined without regularization. This fact results from
the sum-integration functional form as can be seen when
using the Debye expansion of Bessel functions that appears
there. The result of this expansion produces attenuation
exponential functions that are inherent to the physical
system and dispense the regularization functions. So we

can take the limits � ! 0, " ! 0, ’ ! 0, R ! 1, � ! 1,
and � ! 1 understood in (2).
Let us consider the ‘‘interference’’ parcel up to the

second term of the Debye expansion [36] in the � parame-
ter of the functions in the argument of the two logarithms in
(12). We will be considering the expansion until the 1=�
order because it will be enough to make a small annular
region approximation. In the expansion up to the 1=� order
for the TE mode parcel we have

log

2
41�

K�ð�b	Þ
I�ð�b	Þ
K�ð�a	Þ
I�ð�a	Þ

3
5 ffi log

�
1� expð�2�ð
2 � 
1ÞÞ

�
1þ �ðTEÞ

1 ðtÞ
�

��

¼ � X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
�
1þ Xn

m¼1

n!

m!ðn�mÞ!
�
�ðTEÞ
1 ðtÞ
�

�
m
�

ffi � X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTEÞð1Þ

�

�
; (13)

where in the last line we only consider the first termm ¼ 1.
The 
1, 
2, t1, and t2 amounts associated to the Debye
expansion are given by [36]


1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

q
þ log

�
a	

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

p
�
; (14)


2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2	2

q
þ log

�
b	

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2	2

p
�
; (15)

t1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

p ; (16)

t2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2	2

p ; (17)

and �ðTEÞ
1 ðtÞ has the form

�ðTEÞ
1 ðtÞ ¼

�
5

12
t32 þ

1

4
t1 � 1

4
t2 � 5

12
t31

�
; (18)

so that

OðTEÞð1Þ ¼ n

�
5

12
t32 þ

1

4
t1 � 1

4
t2 � 5

12
t31

�
: (19)

In the expansion up to the 1=� order for the TM mode
parcel we have

log

2
641�

½ð1=2ÞK�ð�b	Þþ�b	K0
�ð�b	Þ�

½ð1=2ÞI�ðb	Þþ�b	I0�ð�b	Þ�
½ð1=2ÞK�ð�a	Þþ�a	K0

�ð�a	Þ�
½ð1=2ÞI�ð�a	Þþ�a	I0�ð�a	Þ�

3
75 ffi log

�
1� expð�2�ð
2 � 
1ÞÞ

�
1þ �ðTMÞ

1 ðtÞ
�

��

¼ � X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
�
1þ Xn

m¼1

n!

m!ðn�mÞ!
�
�ðTMÞ
1 ðtÞ
�

�
m
�

ffi � X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTMÞð1Þ

�

�
; (20)

where �ðTMÞ
1 ðtÞ and OðTMÞð1Þ amounts have the forms

�ðTMÞ
1 ðtÞ ¼

�
� 7

12
t32 þ

1

4
t1 � 1

4
t2 þ 7

12
t31

�
; (21)

OðTMÞð1Þ ¼ n

�
� 7

12
t32 þ

1

4
t1 � 1

4
t2 þ 7

12
t31

�
: (22)

Emphasize that, in the limit where 	 ! 0, the loga-
rithms in (12) are given by

log

2
641�

K�ð�b	Þ
I�ð�b	Þ
K�ð�a	Þ
I�ð�a	Þ

3
75 ffi log

2
641�

½ð1=2ÞK�ð�b	Þþ�b	K0
�ð�b	Þ�

½ð1=2ÞI�ðb	Þþ�b	I0�ð�b	Þ�
½ð1=2ÞK�ð�a	Þþ�a	K0

�ð�a	Þ�
½ð1=2ÞI�ð�a	Þþ�a	I0�ð�a	Þ�

3
75

ffi log

�
1�

�
a

b

�
2�
�
; (23)

and do not cause problems in the calculation of that ex-
pression in the inferior limit of the integral that appears in
(12).
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In order to obtain an expression equivalent to (11), however, more appropriate to approximations and numerical
calculations we can add and subtract the approximate quantities (13) and (20) in the integrand of (12) of the Casimir energy
getting

Eða; bÞ ¼ EðaÞ þ EðbÞ þ @c

�
<X1

j¼1

�2
Z 1

0
d	

8><
>:log

2
641�

K�ð�b	Þ
I�ð�b	Þ
K�ð�a	Þ
I�ð�a	Þ

3
75þ X1

n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTEÞð1Þ

�

�9>=
>;

þ @c

�
<X1

j¼1

�2
Z 1

0
d	

8><
>:log

2
641�

½ð1=2ÞK�ð�b	Þþ�b	K0
�ð�b	Þ�

½ð1=2ÞI�ð�b	Þþ�b	I0�ð�b	Þ�
½ð1=2ÞK�ð�a	Þþ�a	K0

�ð�a	Þ�
½ð1=2ÞI�ð�a	Þþ�a	I0�ð�a	Þ�

3
75þ X1

n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTMÞð1Þ

�

�9>=
>;

� @c

�
<X1

j¼1

�2
Z 1

0
d	

X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTEÞð1Þ

�

�

� @c

�
<X1

j¼1

�2
Z 1

0
d	

X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTMÞð1Þ

�

�
; (24)

where we have realized partial integration.
We rewrite (24) in the form

E ða; bÞ ¼ EðaÞ þ EðbÞ þ EðTE interfÞ
ð01Þ þ EðTM interfÞ

ð01Þ þ EðinterfÞ
ðnumÞ ; (25)

where we have used the definitions

E ðTE interfÞ
ð01Þ ¼ � @c

�
<X1

j¼1

�2
Z 1

0
d	

X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTEÞð1Þ

�

�
; (26)

E ðTM interfÞ
ð01Þ ¼ � @c

�
<X1

j¼1

�2
Z 1

0
d	

X1
n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTMÞð1Þ

�

�
; (27)

and

EðinterfÞ
ðnumÞ ¼ @c

�
<X1

j¼1

�2
Z 1

0
d	

8><
>:log

2
641�

K�ð�b	Þ
I�ð�b	Þ
K�ð�a	Þ
I�ð�a	Þ

3
75þ X1

n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTEÞð1Þ

�

�9>=
>;

þ @c

�
<X1

j¼1

�2
Z 1

0
d	

8><
>:log

2
641�

½ð1=2ÞK�ð�b	Þþ�b	K0
�ð�b	Þ�

½ð1=2ÞI�ð�b	Þþ�b	I0�ð�b	Þ�
½ð1=2ÞK�ð�a	Þþ�a	K0

�ð�a	Þ�
½ð1=2ÞI�ð�a	Þþ�a	I0�ð�a	Þ�

3
75þ X1

n¼1

expð�2n�ð
2 � 
1ÞÞ
n

�
1þOðTMÞð1Þ

�

�9>=
>;: (28)

In expression (25), the Casimir energy is given by the
sum of the Casimir energies that would have the shells
separately, with two contributions EðTE interfÞ

ð01Þ and
EðTM interfÞ
ð01Þ , of TE and TM mode from the region between

the two shells, plus a remaining energy EðinterfÞ
ðnumÞ . Since

EðTE interfÞ
ð01Þ and EðTM interfÞ

ð01Þ are contributions proceeding
from the two first terms in the Debye expansion, the zero
and first orders, the remaining energy EðinterfÞ

ðnumÞ must take
into consideration all the other terms of the Debye expan-
sion and will be in such a way lesser, as the convergence of
this expansion increases. In this way, we can characterize
EðinterfÞ
ðnumÞ as the remaining portion of the Casimir energy’s

expansion up to the second term of the Debye expansion.

We know that the Debye expansion is of fast conver-
gence in the case of great angular moment waves. As we
are dealing with contributions proceeding from the region
between the two shells of a and b radii (a < b), this
condition of great angular moment is given by k wave
numbers with ak � 1. But in the annular region, we
have wave lengths of the order of d ¼ b� a separation
between the shells or minors, that is, k� ð1=dÞ (or
greater); soon, we must have a � d, or, the fast conver-
gence of the Debye expansion occurs for small separations
between the shells relative to the radii of the shells, which
is small annular region. In this case, the remaining portion

EðinterfÞ
ðnumÞ of the expansion (11) is small.
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We then got a general expression (24) for the Casimir
effect between two concentric conducting spherical shells
of radii a and bða < bÞ that is accurate as the original
expression (11), and is ready to be applied to the case of the
small annular region. It will be used in two applications.
The first one consists of carrying through the waited veri-
fication of consistency that occurs in the limit where the
radius of the external shell goes to the infinite, and so the
Casimir energy of the two shells tends to the Casimir
energy of one shell, the intern. The second application
consists in obtaining the Casimir energy of the two shells
when the annular region is small, and for consistency, the
dominant term of this approximation must be the Casimir
energy of two parallel plates. This second application is the
subject of the next section.

To study the limit case b ! 1 let us consider the
expression of the Casimir energy given by (24) and rewrit-
ten in (25). In the limit where b ! 1, we desire that it
remain only as the first term EðaÞ, the Casimir energy of the
internal spherical shell. We must, therefore, demonstrate
that the limit of the other terms is null.

The second term in (25) is the Casimir energy of only
one spherical shell of radius b. We have evidently

lim
b!1

E ðbÞ ¼ lim
b!1

0; 09234738972
@c

2b
¼ 0: (29)

The third and fourth terms in (25), the ‘‘interference’’
contributions of TE and TM modes are given by (26) and
(27). In these expressions, the exponential in the integrand
are given by

exp½�2�ð
2 � 
1Þ�
¼ exp

�
�2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2	2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

q

þ log

�
b	

a	

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2	2
p

���
; (30)

where we use the definitions in (14) and (15). This expo-
nential goes to zero in the limit where b ! 1. Moreover,

in this limit the exponential (30) dominates on theOðTEÞð1Þ
and OðTMÞð1Þ terms, as it is easy to verify though its
definitions (19) and (22), given in terms of (16) and (17).

Therefore, we conclude that

lim
b!1

EðTE interfÞ
ð01Þ ¼ 0; (31)

lim
b!1

EðTM interfÞ
ð01Þ ¼ 0: (32)

In the last term in (25), in its expression given for (28)
we must observe that the terms of integrand involving the
exponential ones (30) are null in the limit b ! 1 for the
same reasons for which we demonstrate that the contribu-
tions (26) and (27) are null. As the further terms of the
integrand have logarithms, we can use the properties of the

Bessel functions [36]

lim
b!1

K�ð�b	Þ ¼ 0; lim
b!1

K0
�ð�b	Þ ¼ 0; (33)

lim
b!1

I�ð�b	Þ ¼ 1 and lim
b!1

I0�ð�b	Þ ¼ 1; (34)

and conclude that all the logarithms tend to zero in the limit
b ! 1. With this we get of (28),

lim
b!1

EðinterfÞ
ðnumÞ ¼ 0: (35)

Using the results (29), (31), (32), and (35) in (25), we
obtain

lim
b!1

Eða; bÞ ¼ EðaÞ ¼ 0; 0923473
@c

2a
; (36)

that is, the Casimir energy of a spherical shell of radius a,
as we waited for consistency reasons.

III. CASIMIR ENERGY TO SMALL ANNULAR
REGION

To get the approximate Casimir energy to the small
annular region, let us consider formula (24). Being the
radii of the internal and external spherical shells given,
respectively, for a and b, we have that the annular region
between the shells has thickness equal to d ¼ b� a, so
that the excellent parameter to get the approximate energy
is given by

� ¼ d

a
¼ b� a

a
: (37)

With this parameter, we can express the radius of the
external shell in terms of the internal one

b ¼ að1þ �Þ; (38)

and the condition to small annular region is given by � �
1.
To first order in � the amounts t2 and 
2, defined in (15)

and (17) are given by

t2 ¼ t1 � �a2z2t31; (39)


2 ¼ 
1 þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
; (40)

where t1 and 
1 are given by (14) and (16).

Considering negligible the interference term EðinterfÞ
ðnumÞ (28)

for � sufficiently small and taking into account the approx-
imations (39) and (40) and considering EðaÞ þ EðbÞ ¼
ð2� �ÞEðaÞ, the Casimir energy expression (24) reduces to

E ða; bÞ ¼ ð2� �ÞEðaÞ þ EðTE;interfÞ
ð01Þ þ EðTM;interfÞ

ð01Þ ; (41)

where
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EðTE;interfÞ
ð01Þ ¼ �@c

�

X1
j¼1

�2
Z 1

0
d	

� X1
n¼1

expð�2n��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2	2

p Þ
n

�
1þOðTEÞð1Þ

�

�
;

(42)

EðTM;interfÞ
ð01Þ ¼ �@c

�

X1
j¼1

�2
Z 1

0
d	

� X1
n¼1

expð�2n��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

p Þ
n

�
1þOðTMÞð1Þ

�

�
;

(43)

and OðTEÞð1Þ and OðTMÞð1Þ, defined by (19) and (22), are
now given by

OðTEÞð1Þ ¼
�
� 5

4
na2	2t1

5 þ 1

4
na2	2t1

3

�
�; (44)

OðTMÞð1Þ ¼
�
7

4
na2	2t1

5 þ 1

4
na2	2t1

3

�
�: (45)

We get for the zero order term in (42)

E ðTE;interfÞ
ð0Þ ¼ � @c

�

X1
j¼1

�2
Z 1

0
d	

X1
n¼1

expð�2n��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2	2

p Þ
n

¼ � @c

�

X1
j¼1

�2
X1
n¼1

1

n

Z 1

1

dyy

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p expð�2n��yÞ

¼ � @c

�a

X1
j¼1

�2
X1
n¼1

1

n
K1ð2n��Þ ¼ � @c

�a

X1
n¼1

�
1

n4
1

4�3
� 1

n2
11

48�

�
; (46)

where we use an integral representation formula toK1 [38] and the Euler-Maclaurin formula in the j sum. The series in n in
the final expression are given by �ð4Þ and �ð2Þ, so that we get

E ðTE;interfÞ
ð0Þ ¼ @c

a

�
� �3

360�3
þ 11�

288�

�
: (47)

The 1=� order term in (42) provides

E ðTE;interfÞ
ð1Þ ¼ � @c

�a

X1
j¼1

�
X1
n¼1

Z 1

0
dy expð�2n��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
Þ
�
� 5

4
y2ð1þ y2Þ�5=2�þ 1

4
y2ð1þ y2Þ�3=2�

�
; (48)

where the expression (44) ofOðTEÞð1Þ was used and changed the integration variable to y ¼ a	. To realize the integrations
in the above expression various integrations by parts are utilized with the objective of getting integrals to be given in terms
of Bessel functions K� [38]. By the end of this procedure, we got the following expression:

E ðTE;interfÞ
ð1Þ ¼ ��

@c

�a

X1
j¼1

�
X1
n¼1

��
5ð2n��Þ4

24
� 2ð2n��Þ2

3

�Z 1

0
dy

e�2n��
ffiffiffiffiffiffiffiffi
1þy2

p
y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p þ

�
� 5ð2n��Þ4

24
þ 7ð2n��Þ2

8

�

�
Z 1

0
dy

e�2n��
ffiffiffiffiffiffiffiffi
1þy2

p
y arctanðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p þ

�
5ð2n��Þ3

24
� ð2n��Þ

4

�Z 1

0
dy

e�2n��
ffiffiffiffiffiffiffiffi
1þy2

p
y arcsinhðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p

�
: (49)

Resolving the remaining integrals, the expression above can be written in terms of Bessel functions as follows:

EðTE;interfÞ
ð1Þ ¼ ��

@c

�a

X1
n¼1

X1
j¼1

�
� 5

3
�4K0ð2n��Þn3�3 þ 5

3
�4K1ð2n��Þn3�3 � 5

6
�3K0ð2n��Þn2�2 þ 7

4
�2K0ð2n��Þn�

� 4

3
�2K1ð2n��Þn�þ 1

4
�K0ð2n��Þ

�
: (50)

To calculate the sums in j of each one of the six parcels of this expression we use the Euler-Maclaurin formula. Holding
back only the dominant term of order ��1 in which appears the n series that is given by �ð2Þ, we get
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E ðTE;interfÞ
ð1Þ ¼ � @c

a

�
17

288
� �

48

�
�

�
: (51)

Adding the contributions of the terms of order �0 (47)
and of order ��1 (51), we get the ‘‘interference’’ energy
(42) in the TE mode

E ðTE;interfÞ
ð01Þ ¼ @c

a

�
� �3

360

1

�3
�

�
1

48
� �

48

�
�

�

�
: (52)

The contributions to orders �0 and ��1 that correspond
to TM mode (43) are obtained by analogous procedures

E ðTM;interfÞ
ð0Þ ¼ @c

a

�
� �3

360�3
þ 11�

288�

�
; (53)

E ðTM;interfÞ
ð1Þ ¼ � @c

a

�
� 31

288
þ �

24

�
�

�
: (54)

Adding these two contributions, we get the interference
energy (43) in TM mode

E ðTM;interfÞ
ð01Þ ¼ @c

a

�
� �3

360

1

�3
þ

�
7

48
� �

24

�
�

�

�
: (55)

Let us notice that accomplishment of the calculations
separately for TE and TM modes allows us to evaluate, to
each order of approximation, what mode supplies the
preponderant contribution. Also, it allows to collect all
the contributions in the TE mode to join to the j ¼ 0
contribution of the scalar field and to get the Casimir
energy of a scalar field subject to Dirichlet conditions in
two concentric spherical surfaces.

Finally, substituting the ‘‘interference’’ contributions
(52) to the TE mode and (55) to TM one in (41), and
discarding the � positive power in the ð2� �ÞEðaÞ contri-
bution, we get the Casimir energy of concentric spherical
shells in the case of small annular region

E ða; bÞ ¼ @c

a

�
� �3

180

1

�3
þ

�
1

8
� �

48

�
�

�

þ 0:09234739002

�
: (56)

To verify the consistency of the developed formalism let
us consider the limit where the radii of the concentric shells
go to the infinite, keeping constant the separation between
them. In this limit the Casimir energy density must become
equal to the case of two parallel plates. Dividing both the
members of Eq. (56) by the area A ¼ 4�a2 of the internal
shell and remembering that � ¼ d=a, we get

Eða; bÞ
A

¼ ��2
@c

720

1

d3
þ

�
1

8
� �

48

�
@c

4a2d

þ 0:09234739002
@c

4�a3
: (57)

In the limit where the radii of the spherical shells go to the
infinite, with constant d separation, we get the previous

equality

lim
a!1
b�a¼d

Eða; bÞ
A

¼ ��2
@c

720

1

d3
: (58)

When this limit is accurately the Casimir energy of the
electromagnetic field in the presence of two conducting
parallel plates, we have that this verification of consistency
supplies a satisfactory result to the formalism of the two
spherical shells here considered.
To relate our result given in (56) or (57) with that of

proximity-force approximation (PFA), we consider the
PFA result for the case of two concentric spherical shells.
Following [39], the PFA for the Casimir energy EC of

two arbitrary smooth surfaces is given by the surface
integral over the Casimir energy per area, which belongs
to an equivalent parallel-plate system that locally follows
the two surfaces [39]

E PFA ¼
ZZ

A
d��½zð�Þ�; (59)

where A is the area of one of the opposing surfaces, which
are locally separated by the surface-dependence distance
zð�Þ, and �½zð�Þ� is the corresponding Casimir energy per
area.
Considering that, in general, the plate segment d� is

tangential to only one of the surfaces, and therefore, the
local distance vector ~zð�Þ is perpendicular only to this
surface and not to the other [39], in the case of two
concentric spherical shells, where the local distance vector
~zð�Þ is perpendicular to both spheres and have constant
modulus d, we have for the ‘‘inner-sphere-based PFA’’ that

E 5
inner�sphere PFA ¼ �

ZZ
half�sphere

�2
@c

720

dA

j~zð�Þj3

¼ � �2
@c

720d3

ZZ
half�sphere

dA ¼ � �2
@c

720d3
A:

(60)

The choice for concentric-spheres PFA and not for plate-
sphere PFA has been made, because in this paper we
calculated the Casimir effect for thin spherical shell.
Moreover, nowadays the possibility of a measurement of
spherical Casimir effect is concrete [23], which justifies
this choice.
Comparing the result (57) with the result of the PFA (60)

we have

Eða; bÞ
A

¼ E5
inner�sphere PFA

A
þ

�
1

8
� �

48

�
@c

4a2d

þ 0:09234739002
@c

4�a3
: (61)

We see by (60) that the proximity-force approximation
for the Casimir energy of two concentric spherical shells
does not allow to evaluate the error committed when using
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it. This approach supplies the dominant term, the energy of
two parallel plates and nothing more. In the approximation
(61) that we call small annular region approximation, we
have the same dominant term as that in the PFA, and more
terms that supply corrections to this dominant term.
Supposedly, the expression of the energy with these cor-
rections better approaches the energy in the case of two
concentric shells. Let us notice that the first correction in
(61) to the term in ��3 that gives the energy of two parallel
plates is a term in ��1 that originates a term with the
ða2dÞ�1 dependence; to follow comes the term in �0, which
originates a term with the ða3Þ�1 dependence. It is noticed,
then, the absence of the term in ��2. This absence is not a
decurrent accident of the considered approaches, as it can
be verified in a tedious inspection of higher order in the
Debye expansion.

IV. FINAL CONSIDERATIONS

The expression (61) also allows to evaluate the error that
occurs by using the PFA for the energy of two concentric
spherical shells. The first term reveals that for each sepa-
ration d between the shells, it has an error that diminishes
with the square of the radius of the internal shell, that is,
with its area. The second term shows that it has an error
that diminishes with the cube of its radius, that is, with its
volume. It is important to note the absence of a term in ��2

that would originate a term with ðad2Þ�1 dependence and
therefore, an error that would diminish with the proper
radius of the internal spherical shell.

Deriving the expression from the energy (61) in relation
to the separation d, we get the Casimir pressure in small
annular region approximation

P ða; bÞ ¼ P 5
inner�sphere PFAðdÞ þ

�
1

8
� �

48

�
@c

2a2d2
; (62)

where P 5
inner-sphere PFAðdÞ is the proximity-force approxi-

mation for the pressure between the spherical shells

P 5
inner-sphere PFAðdÞ ¼ ��2

@c

240

1

d4
; (63)

that is, the pressure between the parallel plates.
For the calculation of the relative correction to the PFA

pressure, we have

��������
�P ða; bÞ

P 5
inner-sphere PFAðdÞ

��������¼
�
1

8
� �

48

�
120

�2

d2

a2
¼ 0:7240

�
d

a

�
2
:

(64)

For example, for d=a ¼ 0:1, we have a relative error of
0.72%. For a ! 1, we have a null relative error, corre-
sponding to the situation of parallel plates. Fixing one
determined radius a, the relative error (64) decreases
with the quadratic power when the parameter d diminishes.
The pressure P ða; bÞ also was obtained previously by

Brevik, Skurdal, and Sollie [20], using the Green function
formalism. However, our result not only differs from that
one in the coefficients’ values for each term, as also for the
terms itself. In fact, in Brevik and collaborators’ result, it
appears the dependence in ðad3Þ�1 proceeding from the
contribution of the ��2 order that is absent in our result. In
the formalism that we have adopted, we could verify that
this contribution does not appear even if we consider
superior orders in 1=� (that is, 1=�2 or above) in the
Debye expansion.
Concerning the qualitative different result obtained rela-

tive Ref. [20], which was obtained by a different method,
after all, only when measurement of the energy can be
performed will a definite answer be found.
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M. S. R. MILTÃO PHYSICAL REVIEW D 78, 065023 (2008)

065023-10


