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I. INTRODUCTION

In a pioneering paper published in 1985 [1], Sidney
Coleman showed that it was possible for a new class of
nontopological solitons [2] to exist within a self-interacting
system by introducing the notion of a Q-ball. His model
had a continuous unbroken global U(1) charge Q (for
reviews see [3–6]), which corresponds to an angular mo-
tion with angular velocity! in the U(1) internal space. The
conserved charge stabilizes the Q-ball, unlike the case of
topological solitons whose stability is ensured by the pres-
ence of conserved topological charges. Once formed, a
Q-ball is absolutely stable if four conditions are satisfied:
(1) existence condition [1]—its potential should grow less
quickly than the quadratic mass term, and this can be
realized through a number of routes such as the inclusion
of radiative or finite temperature corrections to a bare mass,
or nonlinear terms in a polynomial potential [1,7], (2) ab-
solute stability condition—the energy EQ (or mass) of a

Q-ball must be lower than the corresponding energy that
the collection of the lightest possible scalar particle quanta
(rest mass m) could have, (3) classical stability condition
[2]—theQ-ball should be stable to linear fluctuations, with
the threshold of the stability being located at the saddle
point of the D-dimensional Euclidean action, the bounce
action S! [8], (4) fission condition [3]—the energy of a
single Q-ball must be less than the total energy of the
smaller Q-balls into which it could, in principle, fragment.
It turns out that for each of the four conditions to be
satisfied we require

!� � j!j<!þ; EQ < mQ;

!

Q

dQ

d!
� 0 , d2S!

d!2
� 0;

d2EQ

dQ2
< 0 , d!

dQ
< 0

(1)

where !� are the lower and upper limits of ! that the
Q-ball can have. The lower limit,! ’ !�, can define thin-
wall Q-balls, either without [1] or with [9,10] the wall
thickness being taken into account, while the upper limit,

! ’ !þ, can define thick-wall Q-balls in [11] which may
be approximated by a simple Gaussian ansatz [12].
There is a vast amount of literature on nontopological

solitons, including Q-balls. They have been seen to be
solutions in Abelian gauge theories [10,13–17], in non-
Abelian theories [18–20], in self-dual (Maxwell-) Chern-
Simons theory [21–24], in noncommutative complex scalar
field theory [25], in models which include fermionic inter-
actions [13–15,17,26,27], as well as in the presence of
gravity [28,29]. Q-balls themselves have been quantized
either by canonical [2] or by path integral schemes [30–
32]. With thermal effects, it has been shown that Q-balls
coupled to massless fermions are able to evaporate away
[33]; however, at sufficiently low temperatures they be-
come stable, and indeed they then tend to grow [34,35].
The authors in [2,10,36,37] have discussed and analyzed
the spatially excited states of Q-balls, including radial
modes as well as spatially dependent phase excitations.
A more general mathematical argument concerning the
stability of solitary waves can be found in [38,39]. A class
related to Q-balls consists of objects known as oscillons
[40–42] or as I-balls [43], and recent attention has turned to
the dynamics of these time-dependent, nonlinear, meta-
stable configurations [44–46].
Standard Q-balls exist in an arbitrary number of space

dimensions D and are able to avoid the restriction arising
from Derrick’s theorem [47] because they are time-
dependent solutions. A few examples include polynomial
models both for D ¼ 3 [48,49] and for arbitrary D [12];
models with supersymmetry broken by gravity mediation
[49]; and models with supersymmetry broken by gauge
interaction [35,50,51]. Returning to the case of D ¼ 3,
phenomenologically, it turns out that the Q-balls present
in models with gravity mediated supersymmetry breaking
are quasistable but long-lived, allowing, in principle, for
these Q-balls to be the source of both the baryons and the
lightest supersymmetric particle (LSP) dark matter particle
[52]. On the other hand, Q-balls in models of gauge
mediated supersymmetry breaking can be dark matter
candidates, as they can be absolutely stable [6]. Both types
of Q-balls have been shown to be able to provide the
observed baryon-to-photon ratio [35].
The dynamics and formation of Q-balls involve solving

complicated nonlinear systems, which generally require
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numerical simulations. The dynamics of twoQ-balls in flat
Minkowski space-time depends on parameters such as the
relative phases between them and the relative initial veloc-
ities [7,50,53]. In addition, the main formation process
through the Affleck-Dine mechanism [54] has been exten-
sively examined in gauge mediated [55], gravity mediated
[56–58], and running inflaton mass models [59]. As ana-
lyzing individual Q-balls is difficult in its own right, it is
extremely challenging to deal with multiple Q-balls. A
number of analytical approaches to address that issue
have been made over the past few years, e.g. [60–62].
Multiple thermal Q-balls have been described in a statis-
tical sense in [57,63].

In this paper we aim to analytically and numerically
address stationary properties of a single Q-ball in an arbi-
trary number of spatial dimensions. This work will draw on
earlier work of Correia and Schmidt [30] who derived
analytic properties for the thin- and thick-wall limits of
Q-balls in D ¼ 3. Recently, Gleiser and Thorarinson [12]
proved the absolute stability for thin-wallQ-balls using the
virial theorem. We will generalize the main results of
[12,30] to the case of arbitrary spatial dimensions, and in
doing so, will both analytically predict and numerically
confirm the unique values of the angular velocity!a for the
absolute stability of the Q-balls via both the virial relation
and thin-wall Q-ball approximations.

Moreover, we will obtain the classical stability condi-
tions for the thin- and thick-wall approximations, and
discover the connections between the virial relation and
the thin- or thick-wall approximation for the characteristic
slopes EQ=!Q. In a companion paper [64] we will inves-

tigate dynamical properties of multiple Q-balls, including
thermal effects, and their formation (see [65] for movies
showing the dynamics of single Q-balls).

This paper is divided into the following sections. In
Sec. II we review the properties of a Q-ball in an arbitrary
number of spatial dimensions D, including the existence
and stability conditions. By introducing a number of differ-
ent ansätze, in Sec. III we present a detailed analysis of the
solutions in the thin- and thick-wall limits. We then dem-
onstrate the advantages of using two particular modified
ansätze in Sec. IV, where we present detailed numerical
results for the case of both degenerate and nondegenerate
underlying potentials. Finally, we conclude in Sec. V.

II. Q-BALL IN D DIMENSIONS

We shall begin with a standard Q-ball ansatz [1] which
satisfies a Laplace equation, called the Q-ball equation,
and we will introduce the Legendre relations [2] which will
make some computations easier. The existence of Q-balls
places constraints on the allowed form of the potential, and
introduces limiting values of !, i.e. !�, near which we
may describe the Q-balls analytically using either a thick-
or thin-wall approximation. We will then introduce three
conditions for Q-balls to be stable [3]. Finally, we will

obtain the characteristic slope EQ=!Q and minimum

charge Qmin, and propose approximate values for !a, the
limiting frequency for absolute stability, using a virial
theorem and showing that it does not rely on detailed
analytic profiles and potential forms.

A. Q-ball ansatz

We consider a complex scalar field � in Minkowski
space-time of arbitrary spatial dimensions D with a U(1)
potential bounded by Uðj�jÞ � 0 for any values of �:

S ¼
Z

dDþ1x
ffiffiffiffiffiffiffi�g

p
L; (2)

where

L ¼ �1
2g

��@��
y@���Uðj�jÞ: (3)

The metric is ds2 ¼ g��dx
�dx� ¼ �dt2 þ hijdx

idxj and

g is the determinant of g�� where�, � run from 0 toD, and

i, j denote spatial indices running from 1 to D. Now, using
the standard decomposition of � in terms of two real fields
� ¼ �ei�, the energy momentum tensor T�� � � 2ffiffiffiffiffi�g

p �
�S

�g��
þ ðsymmetrizing factorsÞ and the conserved U(1)

global current j�;Uð1Þ via the Noether theorem, we obtain

T�� ¼ ð@��@��þ �2@��@��Þ þ g��L; (4)

j�;Uð1Þ ¼ �2@��: (5)

Using a basis of vectors fn�ðaÞgwhere n�ðtÞ is timelike and n�ðiÞ
are spacelike unit vectors oriented along the spatial i
direction, the above currents give the definitions of energy

density �E, charge density �Q, momentum flux P̂i, and

pressure p:

�E � T��n
�
ðtÞn

�
ðtÞ; �Q � j�n

�
ðtÞ;

P̂i � T��n
�
ðtÞn

�
ðiÞ; p � T��n

�
ðiÞn

�
ðiÞ:

(6)

Defining the D-dimensional volume VD bounded by a
ðD� 1Þ-sphere, the Noether charges [energy, momenta,
and U(1) charges] become

E ¼
Z
VD

�E; Pi ¼
Z
VD

P̂i; Q ¼
Z
VD

�Q; (7)

where
R
VD

� R
dDx

ffiffiffi
h

p
. Minimizing an energy with a fixed

charge Q for any degrees of freedom, we find the Q-ball
(lowest) energy EQ by introducing a Lagrange multiplier!
and setting n

�
t ¼ ð�1; 0; 0; . . . ; 0Þ:

EQ ¼ Eþ!

�
Q�

Z
VD

�Q

�
; (8)
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¼ !Qþ
Z
VD

�
1

2
f _�2 þ �2ð _��!Þ2 þ ðr�Þ2 þ �2ðr�Þ2g

þU!

�
; (9)

¼ !Qþ S! (10)

where U! ¼ U� 1
2!

2�2, _� � d�
dt etc., and! will turn out

to be the rotation frequency in the U(1) internal space. The
presence of the positive definite terms in Eq. (9) suggests
that the lowest energy solution is obtained by setting _� ¼
0 ¼ _��! ¼ r�. The Euclidean action S! and the effec-
tive potential U! in Eqs. (9) and (10) are finally given by

S! ¼
Z
VD

1

2
ðr�Þ2 þU!; U! � U� 1

2
!2�2: (11)

The second term in U! comes from the internal spin of the
complex field. Following Friedberg et al. [2], it is useful to
define the functional

GI �
Z
VD

1

2
ðr�Þ2 þU ¼ EQ �

�
1

2
!2

�
I

¼ S! þ
�
1

2
!2

�
I (12)

where 1
2!

2 is the corresponding Lagrange multiplier and

I � R
VD

�2.

Given that the spherically symmetric profile is the mini-
mum energy configuration [66], we are led to the standard
stationary Q-ball ansatz

� ¼ �ðrÞei!t: (13)

Substituting Eq. (13) into Eq. (6), we find

�E ¼ 1
2�

02 þUþ 1
2�

2!2; �Q ¼ !�2; (14)

pr ¼ 1
2�

02 �U!; Pi ¼ 0 (15)

where �0 � d�
dr and pr is the radial pressure given in terms

of the radially oriented unit vector n
�
s ¼ ð0; 1; 0; . . . ; 0Þ.

Without loss of generality, we set both! andQ as positive.

B. Legendre relations

It is sometimes difficult to compute EQ directly, but

using Legendre relations often helps [2,30]. In our case,
from Eq. (10) and (12) we find

dEQ

dQ

��������S!

¼ !;
dS!
d!

��������EQ

¼ �Q;
dGI

dI

��������S!

¼ 1

2
!2

(16)

because Q-ball solutions give the extrema of EQ, S!, and
GI as regards Q, !, and I, respectively. These variables
match the corresponding ‘‘thermodynamic’’ ones: EQ, !,

Q, S!, and GI correspond to the internal energy, chemical
potential, particle number, and thermodynamic potentials

[35]. After computing S! or GI, one can calculate Q or
1
2!

2 using the second or third relation in Eq. (16), and can

compute EQ using Eq. (10) or Eq. (12), i.e.

S! ! Q ¼ � dS!
d!

! EQ ¼ !Qþ S!; (17)

or similarly GI ! 1
2!

2 ¼ dGI

dI ! EQ ¼ GI þ ð12!2ÞI,
S! ¼ GI � ð12!2ÞI. We shall make use of this powerful

technique later.

C. Q-ball equation and existence condition

Let us consider the action S ¼ �R
dtS! in Eq. (2) with

our ansatz Eq. (13) and the following boundary condition
on a ðD� 1Þ-sphere which represents spatial infinity,

�0j ¼ 0 on the ðD� 1Þ-sphere: (18)

Varying S! with respect to � we obtain the Q-ball equa-
tion:

d2�

dr2
þD� 1

r

d�

dr
� dU!

d�
¼ 0; (19)

, d

dr

�
1

2

�
d�

dr

�
2 �U!

�
¼ �D� 1

r

�
d�

dr

�
2 � 0: (20)

There is a well-known mechanical analogy for describing
the Q-ball solution of Eq. (19) [1], and that comes from
viewing Eq. (19) in terms of the Newtonian dynamics of a
unit-mass particle with position �, moving in potential
�U! with a friction D�1

r , where r is interpreted as a time

coordinate. Moreover, �Q ¼ !�2 can be considered as the

angular momentum.1 Note that the friction term is propor-
tional to D�1

r , and hence becomes significant for high D

and/or small r. According to Eq. (20), the ‘‘total energy,’’
1
2 ðd�drÞ2 �U!, is conserved for D ¼ 1 and/or r ! 1, im-

plying that in that limit theQ-balls have no radial pressure.
Of course these are really field theory objects, and
consequently, more restrictions apply: (i) no symmetry
breaking, in other words �ðr ! largeÞ ¼ 0, U00ð� ¼ 0Þ �
m2 > 0 with an effective mass m, (ii) regularity condition,
�0ðr ¼ 0Þ ¼ 0, (iii) reflection symmetry under � ! ��.
Note that Eq. (19) coupled with the boundary condition
Eq. (18) implies that �ðrÞ is a monotonically decreasing
function, i.e. �0 < 0. In fact, according to Eqs. (18) and
(19) and the above conditions, our mechanical analogy
implies that a static particle with a unit mass should be
released somewhere on its potential, eventually reaching
the origin at large (but finite) time and stopping there due to
the presence of a position- andD-dependent friction. These
requirements constrain the allowed forms of the U(1)
potentials: for example, if the local maximum of the effec-
tive potential �U! is less than 0, the ‘‘particle’’ cannot

1I is realized as an inertia moment in this mechanical analogy
[1,2].
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reach the origin, a process known as undershooting. To
avoid undershooting we require

maxð�U!Þ � 0 , min

�
2U

�2

�
� !2: (21)

If �U! is convex at � ¼ 0, the particle cannot stop at the
origin, a situation termed overshooting, such that

d2U!

d�2

���������¼0
<0 , !2 <

d2U

d�2

���������¼0
: (22)

Combining Eqs. (21) and (22), we find the condition on !
for the existence of a single Q-ball:

!� � j!j<!þ (23)

where we have defined the lower and upper bounds of! as

!�, i.e.!2� � minð2U
�2Þ � 0 and!2þ � d2U

d�2 j�¼0 ¼ m2. The

case !� ¼ 0 corresponds to degenerate vacua potentials
(DVPs), while the other case, !� � 0, does not have
degenerate vacua (NDVPs). The existence condition in
Eq. (23) shows that U(1) potentials must have a nonlinear
interaction and U! is weakly attractive [3]. For conve-
nience, we define the maximum of the effective potential

to be at �þ (i.e. dU!

d� j�¼�þ ¼ 0); thus, !2� ¼ 2Uþ
�2
þ

and

U!�ð�þÞ ¼ 0. Moreover, �� satisfies U!ð��Þ ¼ 0 for

�� � 0. Notice that �� ’ �þ when ! ’ !�. In Fig. 1,
we indicate the above-introduced parameters, ��, !�,
using typical original and effective potentials for both
DVP (left panel) and NDVP (right panel). To proceed
with analytical arguments, we consider the two limiting
values of ! or �0 � �ð0Þ which describe

�� thin-wall Q-balls when ! ’ !� or �0 ’ �þ
� thick-wall Q-balls when ! ’ !þ or �0 ’ ��:

(24)

We will not be considering Q-ball solutions that exist in a
false vacua where !2� < 0 [9] or in flat potentials. When it
comes to obtaining Q-ball profiles numerically, we will
adopt a standard shooting method which fine-tunes the
‘‘initial positions’’ �0 subject to ��ð!Þ � �0 <�þð!Þ,
in order to avoid undershooting and overshooting.

D. Three kinds of stability

1. Absolute stability

When the volume VD approaches infinity [3] and/or! is
outside the limits of Eq. (23), then plane wave solutions
can exist around the vacua of Uðj�jÞ. The equation of
motion for � becomes a free Klein-Gordon equation

whose solution can be written as � ¼ Neiðk	x�!ktÞ where
!k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
and the normalization factor N ¼

ffiffiffiffiffiffiffiffiffiffiffi
Q

2!kVD

q
has been calculated from Q. Then the energy of the plane
wave solution is proportional to !k and Q linearly: Efree ¼
!kQ ! Efree ’ mQ where we have taken the infrared limit
to obtain the second relation. The energy Efree can be
interpreted as the energy of a number Q of free particle
quanta with rest mass m. Furthermore, one might expect
that the thick-wall Q-ball energy with ! ’ !þ ¼ m ap-
proaches Efree because the Q-ball profiles approach zero
exponentially at infinity [3]:

EQð! ¼ !þÞ ’ Efree ’ mQ: (25)

FIG. 1 (color online). Parameters �� in two typical potentials Uð�Þ ¼ 1
2�

2 � A�4 þ B�6 where m ¼ !þ ¼ 1 and the effective
potentials�U! are plotted for various values of!: DVP with A ¼ 4

3 , B ¼ 8
9 in the left panel, and NDVP with A ¼ 1, B ¼ 2

3 in the right

panel. The DVP has degenerate vacua in the original potential �U (red solid line) where we set !� ¼ 0. The NDVP does not have
degenerate vacua, but with ! ¼ !� ¼ 0:5 (sky-blue dot-dashed line) the effective potential �U! does have degenerate vacua. The
two lines in the lower limit ! ¼ !� show that �� ! �þ, where we have defined the maximum of the effective potential to be at �þ
and U!ð��Þ ¼ 0 for �� � 0. The purple lines show �� ! 0 with the thick-wall limit ! ¼ !þ. With some values of ! (green dotted
lines) satisfying the existence condition Eq. (19), both potentials show the values of �� clearly.
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Hence the absolute stability condition for a Q-ball be-
comes

EQð!Þ< Efree: (26)

We would expect Eq. (26) to be the strongest condition
which a Q-ball solution has to satisfy.

2. Classical stability

The classical stability [2,3] can be defined in terms of
the mass squared of the fluctuations around a Q-ball solu-
tion. For zero mass fluctuations this corresponds to a zero
mode, i.e. translation and phase transformation of the
Q-ball solution. Using collective coordinates and
Eq. (19), which extremizes S!, such a mode can be re-
moved. Since a detailed analysis can be found in the
literature [2,3], we simply state the final result which
implies that the classical stability condition is

!

Q

dQ

d!
� 0 , d2S!

d!2
� 0 (27)

where we have used Eq. (16) in the second relation of

Eq. (27). Since ! and Q have the same sign, the sign of dQ
d!

signals whether the solution is classically stable. The first
relation of Eq. (27) indicates the presence of an extreme
charge in the parameter space of ! (we will later see that
the extreme charge at some critical value! ¼ !c turns out
to be the minimum allowed and will be denoted by Qmin).
Let us remark on the characteristic slope of EQ=Q as a

function of !:

d

d!

�
EQ

Q

�
¼ � S!

Q2

dQ

d!
� 0 (28)

where we have used Eqs. (10) and (16). Since, as we will
see, S! > 0 for all possible values of ! within Eq. (23) (in
a specific potential [67]), the classically stable Q-balls

should satisfy d
d! ðEQ

Q Þ � 0. The conditions from both

Eqs. (27) and (28) must be the same.

3. Stability against fission

Suppose the total energy of two Q-balls is less than the
energy of a single Q-ball carrying the same total charge.
The single Q-ball naturally decays into two or more
Q-balls with some release of energy. As shown in [3], the
stability condition against fission for a Q-ball is given by

d2EQ

dQ2
< 0 , d!

dQ
< 0 (29)

where we have used Eq. (16) in the second relation of
Eq. (29). Note that this is the same condition as we found
above in Eqs. (27) and (28), so the condition for classical
stability is identical to that of stability against fission.

Trying to summarize the stability, we can categorize
three types of Q-balls: i.e. absolutely stable, metastable,
or unstable Q-balls. Absolutely stable Q-balls are stable

quantum mechanically as well as classically; metastable
Q-balls decay into free particle quanta, but are stable under
small fluctuations; whereas unstable Q-balls, sometimes
called Q-clouds [67], decay into lower energy Q-balls or
free particle quanta.

E. Virial theorem

Derrick’s theorem restricts the existence of static non-
trivial scalar field solutions in terms of a number of spatial
dimensions. For example, in a real scalar field theory,
nontrivial solutions exist only in one dimension, e.g. the
Klein-Gordon kink. Q-balls (or any nontopological soli-
tons), however, avoid this constraint because they are time-
dependent (stationary) solutions [11,12]. We can easily
show this and, in doing so, obtain useful information about
the scaling properties of the Q-balls as a function of
dimensionality as well as the ratio between the surface
and potential energies. Following [12], we begin by scaling
the Q-ball ansatz Eq. (13) using a one-parameter family
r ! �r, while keeping Q fixed. Defining a surface energy
S � R

VD

1
2�

02 and a potential energy U � R
VD

U, and

recalling that the charge satisfies Q ¼ I!, we see that
the energy of the Q-ball, Eq. (10), becomes

EQ ¼ S þUþQ2

2I
: (30)

Now, under the scaling r ! �r, EQ ! E0
Q where

@E0
Q

@� j�¼1 ¼ 0 because the Q-ball solutions are the extrema

(minima) of EQ. Evaluating this, we obtain the virial

relation relating U and S,

DU ¼ �ðD� 2ÞS þD
Q2

2I
� 0 ) Q2 � Q2

min; (31)

where we have used our earlier notation, U � 0, for any
values of � and defined the minimum charge (correspond-

ing to U ¼ 0) as Q2
min � 2IðD�2Þ

D S > 0 , D> 2. Since Q

is taken as real and positive, no conditions appear for D ¼
1, 2. Notice this does not mean that one- and two-
dimensional Q-balls do not exist, as can be seen from
Eqs. (19) and (23). The case of Q ¼ 0 recovers Derrick’s
theorem, showing no time-independent solutions for D �
2 [12]. Using S ¼ DQ2

2I ðD� 2þDU
S Þ�1 from Eq. (31), the

characteristic slope EQ=!Q becomes

EQ

!Q
¼ 1þ

�
D� 2þD

U
S

��1
: (32)

Let us consider three cases: (i) U 
 S, (ii) U ’ S, and
(iii) U � S. They lead to predictions for the ratio of the
Q-ball energy EQ to the energy contribution from the

charge !Q:
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EQ

!Q
’
8><
>:
1 for ðiÞ
2D�1
2ðD�1Þ for ðiiÞ
D�1
D�2 for ðiiiÞ:

(33)

All of the Q-balls in the range of ! are classically stable
because the terms EQ=Qmonotonically increase as a func-

tion of !; see Eqs. (28) and (33). The first case (i) corre-
sponds to the extreme thin- and thick-wall limits ! ’ !�,
as we will see. In the second case (ii), the potential energy
is of the same order as the surface energy which means S
andU have equally virialized. This case will turn out to be
that of the thin-wall limit for DVPs when the surface
effects are included.

Suppose S=U ¼ const over the large range of ! within
the existence condition Eq. (23), except ! ’ !þ where
EQ=!þQ ’ 1. We can find an approximate threshold value

!a for a Q-ball to be absolutely stable using Eqs. (25) and
(33):

!a

m
’
8><
>:
1 for ðiÞ
2ðD�1Þ
2D�1 for ðiiÞ
D�2
D�1 for ðiiiÞ:

(34)

Roughly speaking, Q-balls are classically and absolutely
stable if !<!a because of Eqs. (26), (28), and (33).
These approximations can and will be justified by our
numerical results. We will find that the virial relation is a
powerful tool enabling us to find appropriate values of !a

as opposed to the rather complicated computations we will
have to adopt in the next section. We should point out a
caveat in this argument; the assumption we are making
here, that most of theQ-balls have an identical energy ratio
S=U over a range of !, does of course rely on the specific
form of the potential. We have to remind the readers that
the virial relation Eq. (31) gives only the relation between
S and U, and states the presence of the minimum charge
Qmin if the system allows the time-dependent (Q-ball)
solutions Eq. (13) to exist.

III. THIN- AND THICK-WALL APPROXIMATIONS

In this section we will obtain approximate solutions for
Q-balls in D dimensions based on the well-known thin-
and thick-wall approximations for the radial profiles �ðrÞ
of the fields. Moreover, we will show how we can then use
these results to verify the solutions we obtained in the
previous section for EQ=!Q in Eq. (33). Further, we will

then be able to test the solutions against detailed numerical
solutions in Sec. IV. We start with two simple ansätze for
the radial profiles, a steplike function for the thin-wall case
! ’ !� and a Gaussian function for the thick-wall case
! ’ !þ. In both cases we will evaluate S!, Q, EQ, as well

as the conditions for classical and absolute stability before
modifying the ansätze. Following that, we will repeat the
same calculations using our more physically motivated
ansätze via the Legendre transformation technique de-

scribed in Eq. (17). Let us comment briefly on the form
of the potential. We will see that in the thin-wall limit �0 ’
�þ with our modified ansatz, although, in principle, we do
not have to restrict ourselves to particular potentials, we
will not be able to investigate cases where the effective
potential is extremely flat; hence we will have to limit our
investigation to situations where this is not the case. In the
thick-wall limit! ’ !þ, we have to restrict our analysis to
the case of polynomial potentials of the form

Uð�Þ ¼ 1

2
m2�2 � A�n þ X

p>n

Bp�
p (35)

where n � 3, with the nonlinear couplings A > 0 and
Bp > 0 to ensure the existence of Q-ball solutions. We

expect the thin-wall approximation to be valid for general
Q-ball potentials in which the Q-ball contains a lot of
charge, with !2 ’ !2� � 0. In this limit we can define a
positive infinitesimal parameter, 	! � �U!ð�þÞ ’ 1

2 �ð!2 �!2�Þ�2þ � 0, and the effective mass around a

‘‘false’’ vacuum is given by �2 � d2U!

d�2 j�þ . The other ex-

treme case corresponds to the thick-wall limit which is
valid for Q-balls containing a small amount of charge, and
it satisfies !2 ’ !2þ ¼ m2. For later convenience, in this
limit, we define a positive infinitesimal parameter, m2

! ¼
m2 �!2 � 0.

A. Thin-wall approximation for D � 2

1. Steplike ansatz ! ’ !�
As a first step, we review the standard results in the thin-

wall approximation originally obtained by Coleman [1].
Adopting a steplike ansatz for the profile, we write

�ðrÞ ¼
�
�0 for r < RQ

0 for RQ � r;
(36)

where RQ and�0 will be defined in terms of the underlying

parameters, by minimizing the Q-ball energy. We can
easily calculate S!, Q, and EQ:

S! ¼
�
U0 � 1

2
!2�2

0

�
VD; Q ¼ !�2

0VD;

EQ ¼ 1

2

Q2

�2
0VD

þU0VD

(37)

where U0 � Uð�0Þ and VD ¼ VDðr ¼ RQÞ. Note that

Eq. (37) satisfies the Legendre transformation results,
Eq. (17), as we would have hoped. Since the ansatz
Eq. (36) neglects the surface effects, we are working in
the regime U 
 S in Eq. (33). Therefore we should be
able to reproduce the result EQ ’ !Qwith this solution. To

see this, we note that the two terms in EQ are the contri-

butions from the charge and potential energies. These two
contributions virialize since EQ is extremized with respect

to VD for a fixed chargeQ, i.e. @EQ=@VDjQ ¼ 0, and hence
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VD ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2�2

0U0Þ
q

. This then fixes RQ because we know,

for a ðD� 1Þ-sphere, VD ¼ RD
Q

D �D�1 where �D�1 �R
d�D�1 ¼ 2
D=2

�ðD=2Þ . Substituting VD ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2�2

0U0Þ
q

into

EQ [the third equation in Eq. (37)] and minimizing EQ with

respect to �0, we obtain

EQ ¼ Q 	min

� ffiffiffiffiffiffiffiffiffi
2U0

�2
0

s �
¼ Q!� ¼ !2��2þVD (38)

where we have used Eq. (23) in which !2� ¼
minð2U0

�2
0

Þj�0¼�þ . Thus we recover Eq. (33) in the limit

U 
 S. Finally, we remind the reader that we have ob-
tained the minimized energy EQ with respect to VDðRQÞ
and �0 in the extreme limit ! ¼ !� where we find

�0 ¼ �þ: (39)

Equation (39) implies that the particle spends a lot of
‘‘time’’ around �þ because the effective potential �U!

around �þ is ‘‘flat.’’ Note that Q and EQ are proportional

to the volume VD in Eqs. (37) and (38) just as they are for
ordinary matter; in this case Coleman called it Q-matter
[1].

2. The modified ansatz �0 ’ �þ
Having seen the effect of an infinitely thin wall, it is

natural to ask what happens if we allow for a more realistic
case where the wall has a thickness associated with it?
Modifying the previous steplike ansatz to include this
possibility [30,68] will allow us to include surface effects
[1,9,10] and provide applicability for a wider range of !
than in the steplike case. Using the results, wewill examine
the two different types of potentials, DVPs and NDVPs,
which lead to the different cases of Eq. (33).

Following [30], the modified ansatz is written as

�ðrÞ ¼
8<
:
�þ � sðrÞ for r < RQ

��ðrÞ for RQ � r � RQ þ �
0 for RQ þ � < r;

(40)

where as before the core size RQ, the core thickness �, the
core profile sðrÞ, and the shell profile ��ðrÞwill be obtained
in terms of the underlying parameters by extremizing S! in
terms of a degree of freedom RQ. Continuity of the solution

demands that we smoothly continue the profile at r ¼ RQ,

namely, �þ � sðRQÞ ¼ ��ðRQÞ and �s0ðRQÞ ¼ ��0ðRQÞ.
We expand U! to leading order around �þ, to give

U!ð�Þ � �	! þ 1
2�

2s2 where sðrÞ ¼ �þ � �ðrÞ. In

terms of our mechanical analogy, the particle will stay
around �þ for a long time. Once it begins to roll off
the top of the potential hill, the damping due to friction
[ / ðD� 1Þ=r] becomes negligible and the particle quickly
reaches the origin. Therefore, we can naturally assume

RQ 
 � (41)

where � is the core thickness. We know that �0ð0Þ ¼
�s0ð0Þ ¼ 0; s0ðRQÞ � 0, and s0ðrÞ> 0. Using Eq. (19),

the core profile sðrÞ for r < RQ satisfies the Laplace equa-

tion:

s00 þD� 1

r
s0 ��2s ¼ 0 (42)

whose solution is

sðrÞ ¼ rð1�ðD=2ÞÞðC1IðD=2Þ�1ð�rÞ þ C2KðD=2Þ�1ð�rÞÞ
(43)

where I and K are, respectively, growing and decaying
Bessel functions, andC1 andC2 are constants. Since sð0Þ is
finite and s0ðrÞ> 0, this implies that C2 :¼ 0. Since
I�ðzÞ � z�=2�ð�þ 1Þ for small z ¼ �r and � �
�1;�2;�3 . . . , then sð0Þ is finite:

sð0Þ � C1

�D=2�1

2�ðD=2Þ ¼ �þ � �0 (44)

which gives a relation between C1 and �0. Also, the
analytic solution is regular at r ¼ 0: s0ð0Þ ’ 0. For large
r� RQ, Eq. (43) leads to

s0

s
’ ��D� 2

r
! �; (45)

where we are assuming

� 
 1=RQ (46)

and have used the approximation I�ðzÞ � ezffiffiffiffiffiffi
2
z

p for large z �
�r. As already mentioned, we note that this result is not
strictly valid for extremely flat potentials, i.e. � ’ 1=RQ,

because the expansion is only valid for z � �r 
 1. We
will therefore only be applying it to the cases where the
effective potential is not very flat.
Turning our attention to the shell regime, RQ � r �

RQ þ �. Considering the ‘‘friction’’ term in Eq. (19), we

see that it becomes less important for large r compared to
the first and third terms in Eq. (42), because��������D� 1

RQ

s0ðRQÞ
��������’

��������D� 1

�RQ

�2sðRQÞ
��������� �2sðRQÞ

’ s00ðRQÞ ’
��������dU!

ds

��������r¼RQ

(47)

where we have made use of Eqs. (45) and (46). Imposing
continuity conditions, namely, �þ � sðRQÞ ¼ ��ðRQÞ,
�s0ðRQÞ ¼ ��0ðRQÞ, Eq. (19) without the friction term

becomes

d2 ��

dr2
� dU!

d�

�������� ��
¼ 0; (48)

where ��ðrÞ is defined as being the solution to Eq. (48).
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With the condition ��ðRQÞ ¼ �þ � sðRQÞ and Eq. (44), we
find ��ðRQÞ ¼ �þ �

ffiffiffi
2



q
�ðD=2Þð�þ��0Þe�RQ

ð�RQÞðD�1Þ=2 . For the thin-wall

limit �0 ’ �þ, we obtain ��ðRQÞ � �þ �� where � is an

infinitesimal parameter which satisfies �þ 
 �.
Therefore

��ðRQÞ 
 sðRQÞ: (49)

Although Eq. (18) does not hold exactly, the ‘‘total en-
ergy,’’ 1

2 ðd ��
drÞ2 �U! � 0 with Eq. (18), is effectively con-

served with the radial pressure pr vanishing outside the
Q-ball core. This fact implies that the surface and effective
potential energies virialize with equal contributions,
Sshell ’ Ushell � 1

2!Qshell where we have introduced shell

and core regimes defined by Xcore ¼ �D�1

RRQ

0 drrD�1 	 	 	
and Xshell ¼ �D�1

RRQþ�
RQ

drrD�1 	 	 	 for some quantity X.

Using �0 < 0 and the condition ��ðRQ þ �Þ ¼ 0, the thick-

ness of the Q-ball can be written as �ð!Þ ¼ R ��ðRQÞ
0

d�ffiffiffiffiffiffiffi
2U!

p .

Since � is real and positive, we have to impose

��ðRQÞ<��; (50)

recalling that U!ð��Þ ¼ 0 for �� � 0.
With the use of Eq. (17), we turn our attention to extrem-

izing the Euclidean action S! in Eq. (11) for the degree of
freedom RQ. Using the obtained value RQ, we will differ-

entiate S! with respect to ! to obtain Q as in Eq. (16),
which leads us to the Q-ball energy EQ as in Eq. (10) and

the characteristic slope EQ=!Q. For convenience, we split

S! into the core part Score! for r < RQ and the shell part

Sshell! for RQ � r � RQ þ � using Eq. (40). Using VD¼
RD
Q

D �D�1
@VD�RD�1
Q �D�1
@2VD�RD�2

Q �D�2 and

Eqs. (42) and (45), we find

Score! ¼ �VD 	 	! þ @VD 	
�
1

2
�s2ðRQÞ

�

� @2VD 	
�
�D�1

�D�2

ðD� 2Þ
�

1

2
�s2ðRQÞ

�
(51)

where the first term, 	!, in Eq. (51) comes from the
effective potential energy, while the second and third terms
arise from the surface energy. Since 	! is an infinitesimal
parameter in the other thin-wall limit ! ’ !�, it gives

U core ’ 1
2!Qcore: (52)

The effective potential energy balances the surface energy
in the shell [see Eq. (48)]; therefore, by introducing the

definition T � R ��ðRQÞ
0 d�

ffiffiffiffiffiffiffiffiffiffi
2U!

p
, we see that

Sshell! ¼ �D�1

Z ��ðRQÞ

0
d�rD�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U!ð�Þ

q
& �D�1ðRQ þ �ÞD�1T (53)

! @VD 	 T þ @2VD 	
�
�D�1

�D�2

ðD� 1Þ� 	 T
�

þO
�
RD�1
Q ;

R2
Q

�2

�
	 T; (54)

where we have used the fact that the integrand has a peak at
r ¼ RQ þ � in the second relation of Eq. (53) [69], and

Taylor-expanded ðRQ þ �ÞD�1 in going from Eq. (53) to

Eq. (54) because of our approximation equation (41).
Combining both expressions (51) and (54), we obtain

S! ¼ Score! þ Sshell! (55)

’ �	! 	 VD þ � 	 @VD þ h 	 @2VD (56)

where � � T þ 1
2�s2ðRQÞ. Note that while in �, T contains

the equally virialized surface and effective potential ener-
gies from the shell, the second term 1

2�s2ðRQÞ contains a
surface energy term from the core. Moreover, we have

defined h � �D�1

�D�2
½ðD� 1Þ� 	 T � ðD�2Þ

�
1
2�s2ðRQÞ
 which

is negligible compared to � because of the assumptions,
Eqs. (41) and (46). Therefore, we will take into account
only the first two terms in S!, Eq. (56). It is also important
to realize that

� ¼
Z ��ðRQÞ

0
d�

ffiffiffiffiffiffiffiffiffiffi
2U!

p þ
Z �þ

��ðRQÞ
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
2U!�

q

!
Z �þ

0
d�

ffiffiffiffiffiffiffiffiffiffiffiffi
2U!�

q
¼ const (57)

which is independent of ! and D in the limit of ! ! !�,
where we have used the other thin-wall limit ! ’ !�. Our
modified ansatz is not only valid in the extreme limit ! ¼
!� but also in the limit!�!� as long as � depends on!
‘‘weakly.’’ Note that the condition of Eq. (50) also ensures
that � is positive and real. In addition, the second term in
Eq. (57) is negligible compared to the first term, i.e.

S shell ’ Ushell � 1
2!Qshell 
 Score (58)

because of �þ � ��ðRQÞ; see Eq. (49).
We can make progress by using the Legendre trans-

formation of Eq. (17), which implies that we need to find

the extrema of S! with fixed !, i.e. @S!
@RQ

¼ 0. This is

equivalent to the virialization between 	! and �. Then
one can compute the core radius,

RQ ¼ ðD� 1Þ �

	!
: (59)

Note that this implies that one-dimensional thin-wall
Q-balls do not exist due to the positivity of RQ. By using

Eqs. (17), (56), and (59), we can compute the desired
quantities to compare with the results we obtained using
the steplike ansatz, in particular, Eqs. (37) and (38), and we
can confirm that the classical stability condition Eq. (27) is
satisfied:
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S! ’ �

D
@VD ¼ 	!

D� 1
VD > 0; Qð!Þ ’ !�2þVD;

(60)

EQ ’ !2�2þVD þ �

D
@VD (61)

’ !Q

�
2D� 1

2ðD� 1Þ �
!2�

2ðD� 1Þ!2

�
; (62)

!

Q

dQ

d!
’ 1�D!2�2þ

	!
’ �D!2�2þ

	!
< 0: (63)

We can see the virialization between � and 	! for the
second and third terms in Eq. (60). As in Eq. (38), the first
term of EQ, in Eq. (61), is a combination of an energy from

the charge and potential energy from the core throughout
the volume, while the new second term �

D , called the

surface tension, represents the equally virialized surface
and effective potential energies from the shell as in
Eq. (58). In the limit ! ’ !�, 	! becomes zero which
implies Eq. (52), as we saw. We have also seen Sshell 

Score. Using U ¼ Ucore þUshell, S ¼ Score þ Sshell �
Sshell, and Eqs. (52) and (58), we obtain

U � S þ!�Q (64)

which wewill use shortly. Since the characteristic function,
EQ=Q, increases monotonically as a function of ! and

S! > 0, i.e. d
d! ðEQ

Q Þ> 0 or Eq. (63), the classical stability

condition (27) and (28) is satisfied without specifying any
detailed potential forms. However, the physical properties
of the finite thickness thin-wall Q-balls do depend on the
vacuum structures of the underlying potential. To demon-
strate this we consider two cases of NDVPs with !� � 0
and DVPs with !� ¼ 0 (see red solid lines in Fig. 1).
Suppose that the thin-wall Q-balls have identical features
over a large range of !; we can find the approximate
threshold frequency !a using Eqs. (25) and (33) as we
assumed when we obtained Eq. (34).

3. NDVPs

This type of potential reproduces the results we obtained
in Eq. (38) corresponding to the regime U 
 S which
corresponds to the existence of Q-matter in that the charge
and energy are proportional to the volume VD due to the
negligible surface tension in Eq. (61). Hence, the modified
ansatz Eq. (40) can be simplified into the original steplike
ansatz Eq. (37) with negligible surface effects in the ex-
treme limit ! ¼ !�. To see that, we need to recall
the definition of !� in Eq. (21). We can realize that � is
the same order as !� except for the case of !� ¼ 0.
Using ��!�, we can show that 1

2!Q 
 Score �
1
2�s2ðRQÞ@VD where we have used Eqs. (46) and (49).

Using Eqs. (52) and (58) and 1
2!Q 
 Score which we

just showed, we can obtain the desired result U 
 S.
Similarly, Eq. (62) in the limit ! ’ !� simplifies to give
EQ

!Q � 1 which is the result of Eq. (33) withU 
 S. Using
Eqs. (25), (33), and (62), we can also find the critical value
!a for absolute stability,

!a

m
¼ D� 1

2D� 1

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2D� 1Þ

ðD� 1Þ2
!2�
m2

s �
: (65)

Finally, thin-wall Q-balls in NDVPs are classically stable
without the need for the detailed potential forms; however,
the absolute stability condition for!�!� depends on the
spatial dimensions D and on the mass m.

4. DVPs

For the case of the presence of degenerate minima where
!� ¼ 0, since 	! ¼ 1

2!
2�2, we immediately see from

Eq. (61) that

EQ

!Q
’ 2D� 1

2ðD� 1Þ (66)

which reproduces Eq. (33) for the case of S �U. As in
NDVPs, we know Eq. (64) in the limit ! ’ !�, but the
second term !�Q becomes zero in the present potentials.
It follows that Ucore ’ 0 and Ushell ’ Sshell 
 Score,
and hence S �U. In other words, most of the Q-ball
energy is stored within the shell. In addition, the charge
Q and energy EQ are not scaled by the volume, which

implies that the modified ansatz does not recover the
simple ansatz as opposed to NDVPs. In particular, we

find that Q ¼ �D�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD�1Þ�

p
D�þ

RðD�1=2Þ
Q / RðD�1=2Þ

Q , EQ ¼
2D�1
D �D�1�R

D�1
Q / RD�1

Q . A nice check of our general

results follows by writing EQ in terms of the charge Q by

eliminating RQ between the two expressions. This gives

EQ / Q2ðD�1Þ=ð2D�1Þ which reproduces the three-

dimensional results obtained in [30].
Finally, let us recap the key approximations and con-

ditions we have made in this modified ansatz. They are
Eqs. (41), (46), (50), and (57). We believe that the esti-
mates we have arrived at for the thin-wall Q-balls are valid
as long as the core size is much larger than the shell
thickness, the effective potential is not too flat around
�þ, the core thickness � and surface tension �=D are
positive and real, and � is insensitive to both ! and D.
With the extreme limit ! ! !�, the Q-balls in DVPs
recover the simple steplike ansatz, while the ones in
NDVPs do not. One-dimensional Q-balls do not support
thin-wall approximation due to the absence of the friction
term in Eq. (19).
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B. Thick-wall approximation for !2 ’ !2þ, i.e. m! ! 0

1. Gaussian ansatz

As we have started with the simple steplike ansatz in the
thin-wall approximation, a Gaussian function is a simple
approximate profile to describe the thick-wallQ-balls [12].
Using a Gaussian ansatz

�ðrÞ ¼ �0 exp

�
� r2

R2

�
; (67)

we will extremize S! with respect to �0 and R with fixed
!, instead of minimizing EQ with fixed Q. Notice that the

slope ��0=� becomes 2r=R2, which is linearly propor-
tional to r, and the solution is regular at r ¼ 0: �0ð0Þ ¼ 0.
Neglecting higher order terms Bp in Eq. (35) with Eq. (67),

one can obtain straightforwardly

Q ¼
�



2

�
D=2

!�2
0R

D;

S! ’
�
1

2
m2

! þ D

R2
� A�n�2

0

�
2

n

�
D=2

�
Q

!
;

(68)

EQ ’
�
1

2
ðm2 þ!2Þ þ D

R2
� A�n�2

0

�
2

n

�
D=2

�
Q

!
: (69)

Equation (17) can be easily checked in Eqs. (68) and (69).
The first and last terms in Eq. (69) are the potential energy
terms. The second energy term comes from the charge
energy, and the surface energy term appears in the third
term. By finding the extrema of S! with respect to �0 with
@S!
@�0

¼ 0, it defines the underlying parameter �0 as

�0 ¼
��

m2
! þ 2D

R2

�
1

nA

�
n

2

�
D=2

�
1=n�2

!
�
m2

!

2A

�
1=n�2 � �� (70)

where we have neglected the surface term and used the
approximation D=2 ’ Oð1Þ in the second relation of
Eq. (70). Then we can check that the Gaussian ansatz
naturally satisfies the other thick-wall limit �0 ’ �� and
that the higher order terms Bp in Eq. (35) are negligible.

Using the first relation of Eq. (70), one needs to extremize

S! with respect to another degree of freedom R with @S!
@R ¼

0 which determines R:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�DÞ

m2
!

s
� 0: (71)

The reality condition on R implies that the Gaussian ansatz
is valid only forD ¼ 1. The width of the Gaussian function
R in Eq. (71) becomes very large in the thick-wall limit
m! ! 0; thus we can justify that the surface terms in
Eqs. (69) and (70) are negligible. Therefore, we are looking
at the regimeU 
 S which should lead us to EQ ’ !Q as

in the first case of Eq. (33). To do this for D ¼ 1, we

substitute Eq. (70) into Q, EQ, S!:

Q ¼
ffiffiffiffi



2

r
!�2

0R; S! ¼
�
1

2
� 1

n

�
2m2

!Q

!
> 0; (72)

EQ

!Q
¼

�
1

2
þ 1

n

�
þ

�
1

2
� 1

n

��
2m2

!2
� 1

�
! 1 (73)

where we have considered the thick-wall limit ! ’ m in
the second relation of Eq. (73). We can check Eq. (33) and
the analytic continuation Eq. (25). In the same limit, the
Euclidian action becomes an infinitesimally small positive
value: S! ! 0þ.
Using the second relation �0 in Eqs. (70) and (71), one

can find

!

Q

dQ

d!
’ 1� !2

m2
!

�
4

n� 2
� 1

�
! � !2

m2
!

�
4

n� 2
� 1

�
� 0

(74)

where we have used the fact that m! is a positive infini-
tesimal parameter in the limit ! ’ !þ going from the first
relation to the second one. Equation (74) shows that the
classical stability condition clearly depends on the non-
linear power n in the potential Eq. (35): n � 6. This is

contradictory because Eq. (73) gives d
d! ðEQ

Q Þ ! �1þ 4
n

which implies n � 4 for the other classical stability con-
dition using Eq. (28). We will shortly see that this contra-
diction between Eqs. (27) and (28) is an artefact of the
Gaussian ansatz. Moreover, our conclusion should state
that the Gaussian approximation is valid only for D ¼ 1.
These awkward consequences are improved with the fol-
lowing physically motivated ansatz.

2. The modified ansatz

Having considered the case of the simple Gaussian
ansatz following the spirit of [12], we found some prob-
lems for the classical stability. To fix these, we need a more
realistic ansatz [11,30,38,39,49]. To do this, we drop an
explicit detailed profile to describe thick-wall Q-balls and
rescale the field profile so as to work in dimensionless units
while extracting out the explicit dependence on! from the
integral in S!. As in the thin-wall approximation with the
modified ansatz, we will again make use of the technique
equation (17) to obtain other physical quantities from S!.
We begin by defining � ¼ a~� and r ¼ b~r with a and b

which will depend on !. Substituting them into Eq. (11)
with the potential Eq. (35), we obtain

S! ¼
Z

d�D�1

Z
d~r~rD�1bD

�
1

2

�
a

b

�
2
~�02 þ 1

2
a2m2

! ~�2

� Aan ~�n þ X
p>n

Bpa
p ~�p

�
; (75)
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¼ bD
�
a

b

�
2
�D�1

Z
d~r~rD�1 1

2

�
~�02 þ ~�2 � ~�n

þ X
p>n

Bpb
2ap�2 ~�p

�
; (76)

’ m4=ðn�2Þ�Dþ2
! A�2=ðn�2Þ�D�1Sn (77)

with the rescaled action Sn ¼
R
d~r~rD�1ð12 ~�02 þ ~UÞ with

~U ¼ 1
2 ~�

2 � 1
2 ~�

n, and we have neglected the higher order

terms involving Bp. In going from Eq. (75) to Eq. (76) we

have set the coefficients of the first three terms in the
brackets to be unity in order to explicitly remove the !
dependence from the integral in S!. In other words, we

have set 1
2 ðabÞ2 ¼ 1

2a
2m2

! ¼ Aan. This implies a ¼
ðm2

!

2AÞ1=ðn�2Þ ¼ �� and b ¼ m�1
! . Crucially, Sn is indepen-

dent of !, and is positive definite [11,30,49]. Adopting the
powerful approach developed in Eq. (17), given S!, we can
differentiate it to obtain Q and then use the Legendre
transformation to obtain EQ. This is straightforward and

yields

Qð!Þ ¼ !m4=ðn�2Þ�D
!

�
4

n� 2
�Dþ 2

�
A�2=ðn�2Þ�D�1Sn

/ m4=ðn�2Þ�D
! ; (78)

EQ ¼ m4=ðn�2Þ�D
!

�
m2

!

þ!2

�
4

n� 2
�Dþ 2

��
A�2=n�2�D�1Sn; (79)

¼ !Q

�
1þm2

!

!2

�
4

n� 2
�Dþ 2

��1
�
! !Q: (80)

The first term in Eq. (80) is the energy contributed by the
charge, while the second term is dominated by the effective
potential energy; hence U 
 S. Therefore, we can also
recover the result EQ ’ !Q in the thick-wall limit! ’ !þ
as we would expect from Eq. (33) when U 
 S. Since Q
and EQ should be positive definite, it places the constraint

[49]

D<
4

n� 2
þ 2: (81)

With the condition Eq. (81), it is easy to see that S! ! 0þ
in the thick-wall limit ! ’ !þ where m2

! ! 0þ. There is
another constraint emerging from the need for the solution
to be classically stable:

!

Q

dQ

d!
’ 1� !2

m2
!

�
4

n� 2
�D

�

! � !2

m2
!

�
4

n� 2
�D

�
� 0; (82)

, D � 4

n� 2
(83)

which coincides with Eq. (74) in the case ofD ¼ 1. Notice
that the modified ansatz is valid not only forD ¼ 1 but also
forD< 4

n�2 þ 2 in Eq. (81). ForD ¼ 3 this result matches

that of [30]. The classical stability condition, Eq. (83), is
consistent with the need for Q and EQ to be finite.

Equation (83) is more restrictive than Eq. (81).
Furthermore, we should check the relation Eq. (28) for
the characteristic function EQ=Q in terms of !. It follows

that d
d! ðEQ

Q Þ ’ 1� 2ð 4
n�2 �Dþ 2Þ�1 � 0, which requires

the same condition as Eq. (83). With this fact and Eq. (80),
it implies that thick-wall Q-balls satisfy the conditions for
both classical and absolute stabilities. Moreover, it also
reproduces the previous results in [70], for the case ofD ¼
2 and n ¼ 4, p ¼ 6 (6th order potential). Unlike the
Gaussian ansatz Eq. (67), our modified ansatz now shows
consistent results between Eqs. (27) and (28).
Let us remark on the validity of our analysis following

[49]. In this section we have used a modified ansatz which
has involved a rescaling of � and r in such a way as to
leave us with a dimensionless action Sn. There are restric-
tions on our ability to do this, as first pointed out in [49] for
the case of D ¼ 3. We can generalize this to our
D-dimensional case. Given that the Q-ball solutions ex-
tremize Sn, we may rescale r or � introducing a one-
parameter rescaling, r ! �r or � ! ��, which will de-
form the original solution. Defining Xð�Þ � Sn½�r;�ð�rÞ

and Yð�Þ � Sn½��ðrÞ
, we impose the condition that the
action Sn is extremized when � ¼ � ¼ 1, which implies
dX
d� j�¼1 ¼ 0 ¼ dY

d� j�¼1. It is possible to show that these

conditions imply that consistent solutions require the
same condition as Eq. (81). The three-dimensional case
leads to the result n < 6, as originally obtained in [30]. The
particular choice of n ¼ 4, which we will investigate
shortly, implies D< 4 for the validity of our thick-wall
approximation with the modified ansatz. Moreover, thick-
wallQ-balls become classically unstable forD � 3, as can
be seen from Eq. (83).
What have we learned from extending the ansatz beyond

the Gaussian one? We have seen that they lead to different
results. For instance, the Gaussian ansatz has a contra-
diction for the classical stability analysis even for D ¼ 1,
whereas the solutions based on the modified ansatz are
valid for D, which satisfies Eq. (81), and give consistent
results, Eq. (83), for classical stability.
As we will see in the next section, our numerical results

in which we obtain the full Q-ball solution support the
modified ansätze for both thin- and thick-wall cases.

IV. NUMERICAL RESULTS

In this section we obtain numerical solutions for Q-balls
using the polynomial potential in Eq. (35), including only
one higher order term:
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Uð�Þ ¼ 1
2m

2�2 � A�n þ B�p; (84)

where A > 0, B> 0, p > n > 2. We shall confirm the
results obtained analytically using the modified ansätze
for both the thin- and thick-wall Q-balls. Recall that
U!ð�Þ ¼ Uð�Þ � 1

2!
2�2, with U!ð��Þ ¼ 0, and �þ

marks the maximum of the effective potential �U! where
�þ � 0. For a particular case p ¼ 2ðn� 1Þ, we find

��ð!Þ ¼
�
A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 2Bm2
!

p
2B

�
1=ðn�2Þ

;

�þð!Þ ¼
�
Anþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAnÞ2 � 4Bpm2

!

p
2Bp

�
1=ðn�2Þ

:

(85)

Also, for convenience, we set

!þ ¼ m ¼ 1; !� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

2B

s
� 0 , A � ffiffiffiffiffiffi

2B
p

;

(86)
where we recall that the definitions of !þ and !� are

!2þ � d2U
d�2 j�¼0 ¼ m2 and U!�ð�þÞ � 0. Setting !� ¼ 0

in Eq. (86) implies that Uð�Þ in Eq. (84) has degenerate
vacua at � ¼ 0, ��þ, while the original potential U does
not have degenerate vacua with!� � 0. In this section, we
shall consider two examples of the potential U, which can
be seen as the red solid lines in Fig. 1. The DVP on the left

has !� ¼ 0 (A ¼ ffiffiffiffiffiffi
2B

p
) and the NDVP on the right has

!� ¼ 0:5 (A ¼ ffiffiffiffiffiffiffiffiffiffiffi
3B=2

p
). In order to determine actual val-

ues for A and B, we define �þð!þÞ ¼ 1 and set n ¼ 4,
p ¼ 6 for both cases; hence A ¼ 4

3 , B ¼ 8
9 in DVP and A ¼

1, B ¼ 2
3 in NDVP. Figure 1 also includes plots of the

effective potentials for various values of !.

A. Numerical techniques and parameters

To obtain the Q-ball profile, we need to know the initial
‘‘position’’ �0 ¼ �ðr ¼ 0Þ. This is done using a shooting
method, whereby we initially guess at a value of �0, then
solve Eq. (19) for theQ-ball profile; depending on whether
we overshoot or undershoot the required final value of �,
we modify our guess for �0 and try again. Throughout our
simulations, we need to specify the following three small
parameters, 	, 
, � which, respectively, determine our
simulation size rmax, the radius at which we can match
the analytic and numerical solutions (Rana), and the core
size RQ. The smoothly continued profile is computed up to

r ¼ Rmax.

1. Shooting method

Let us consider an effective potential �U! which sat-
isfies the Q-ball existence condition, Eq. (23). We have to
initially guess �0 subject to it being in the appropriate

region �� � �0 <�þ. For example, it might be �0
G ¼

�þþ��
2 . There are then three possibilities: the particle could

overshoot, undershoot, or shoot properly. The last case is
unlikely unless we are really ‘‘lucky.’’ If it overshoots, then
we would find �ðrOÞ< 0 at some time rO. If that were to

happen, we could update �0
G to �1

G ¼ �0
G
þ��
2 as our next

guess. On the other hand, if it undershoots, the ‘‘velocity’’
of the particle might be positive at some time rU, �

0ðrUÞ>
0. If that were to happen, we might update �0

G to �1
G ¼

�þþ�0
G

2 as our next guess. After repeating the same proce-

dures, say, N times, we obtain the finely tuned initial
position �0 ’ �N

G as our true value. To be compatible

with numerical errors, our numerical simulation should
be stopped with an appropriate accuracy parametrized by
	:

	 > �ðrU ¼ rmaxÞ> 0 (87)

where rmax is the size of our simulations, and 	 measures
the numerical accuracy where a small value of 	 corre-
sponds to good numerical accuracy. Unfortunately, the
final profiles still have small numerical errors for large r.
To compensate for these errors, the profiles should con-
tinue to the analytical ones smoothly at some point r ¼
Rana.

2. Matching analytic and numerical solutions at Rana

For large r, the Q-ball equation (19) can be reduced to

�00 þD� 1

r
�0 �m2

!� ¼ 0: (88)

The analytic solution becomes

�ðrÞ � E

ffiffiffiffiffiffiffiffiffiffi



2m!

s
r�ðD�1=2Þe�m!r , ��0

�
�D� 1

2r
þm!

(89)

where E is a constant which is determined later. Note that
we have used the fact that the modified Bessel function of

the second kind has the relation K�ðrÞ ’
ffiffiffiffi


2r

p
e�r for large r

and any real number �. In order to smoothly continue to
the analytic profile Eq. (89) at the continuing point Rana,
the following condition is required using the second rela-
tion of Eq. (89):��������D� 1

2r
þm! þ �0

num

�num

��������<
 (90)

where a parameter 
 should be relatively small. Hence we
can find the appropriate profile in the whole space,

�ðrÞ ¼
�
�numðrÞ for r < Rana

�numðRanaÞðRana

r ÞðD�1Þ=2e�m!ðr�RanaÞ for Rana � r � Rmax;
(91)
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where we have computed E using Eq. (89), and our simu-
lations are carried out up to r ¼ Rmax.

3. Core size and thickness of thin-wall Q-balls

Using Eq. (45), we can define the core size r ¼ RQ and

the numerical thickness �num by the slope��0=� with the
following condition:��������

�
D� 2

r
��

��
�þ � �

�

�
þ �0

num

�num

��������<�; (92)

�num � Rana � RQ: (93)

Notice that the definition of �num is different from the

definition in Eq. (41), where �ð!Þ ¼ R ��ðRQÞ
0

d�ffiffiffiffiffiffiffi
2U!

p .

4. Numerical parameters

We have run our code in two different regimes of ! for
both DVP and NDVP because the profiles for large ! are
needed to look into larger simulation size rmax compared to
the ones for small !. Because of numerical complications,
we do not conduct our simulations near the extreme thin-
wall limit, i.e. ! ’ !�. However, by solving close to the
thin-wall limit, our numerical results for �0 ’ �þ and
RQ 
 �num allow us to recover the expected properties

of thin-wall Q-balls with the modified ansatz Eq. (40).
Finally, our results presented here correspond to the par-
ticular sets of parameters summarized in Table I.

B. Stationary properties in DVP and NDVP

We devote a large part of this section to justifying the
previously obtained analytical results in the thin- and
thick-wall approximations by obtaining the appropriate
numerical solutions.

1. Profiles with our numerical algorithm

In the top two panels of Fig. 2 the two red lines (one
dotted and one with circles) show the numerical slopes
��0=� for the case of D ¼ 3 for two values of !. These
are then matched to the analytic profiles (green dotted

lines) in order to achieve the full profile as given in
Eq. (91). Recall that we expect, in general, for all values
of !, the analytic fits to be accurate for large r, the
numerical fits to be most accurate for small r, and for there
to be an overlap region where they are both consistent with
each other as seen in Fig. 2. We have also plotted in dot-
dashed purple lines our analytic fits, Eq. (92), for the slopes
of the thin-wall cores from r ¼ 0:5. We should remind the
reader that this fit only really works for the case of small !
because we are dealing with thin-wall Q-balls. Notice that
it is clear from the purple lines that the core sizes cannot be
determined by this technique for the case ! ¼ 0:9 ’ !þ.
The bottom two panels show the full profiles satisfying

Eq. (91) for arbitraryD up toD ¼ 5. We have been able to
obtain the Q-ball profiles in the whole parameter space !
except for the extreme thin-wall region ! ’ !�. Both
DVP and NDVP Q-balls have profiles with similar behav-
iors in that, as the spatial dimension increases, so does their
core size.

2. Criteria for the existence of a thin-wall Q-ball with
core size RQ

The top and middle panels of Fig. 3 show the numerical
results for �0ð!Þ and �num=RQ against ! for a number of

spatial dimensionsD. For the case ofD � 3 it is clear from
the top panels that the Q-balls are well described by the
thin-wall result Eq. (85) for most values of !, with the
range increasing as D increases. The case of D ¼ 2 is less
clear; it appears to asymptote onto the line. We believe
there is a solution that exists for that case for small values
of!. An important point is that for the approximation to be
valid we are working in the regime �num=RQ < 1, which
can be seen to be true from the middle panels (again, we
believe the case of D ¼ 2 is heading below the line
�num=RQ ¼ 1 for small !).

These results are consistent with our analytic solutions
for finite thicknessQ-balls given by Eq. (40), subject to the
criteria �0 ’ �þ and RQ * �num, even though !�!þ.
For D ¼ 1 we see in the top panels that �0 exactly

matches �� (the orange dot-dashed lines). The bottom
two panels in Fig. 3 show the core sizes RQ of thin-wall

TABLE I. The numerical parameters in DVP (top) and in NDVP (bottom).

DVP

! 	 rmax Rmax 
 �

0.38–0.73 4:0� 10�2 30 200 8:0� 10�3 1:0� 10�1

0.73–0.999 99 1:0� 10�5 40 200 8:0� 10�3 1:0� 10�1

NDVP

! 	 rmax Rmax 
 �

0.60–0.85 3:0� 10�3 30 200 8:0� 10�3 1:0� 10�1

0.85–0.999 99 1:0� 10�5 50 200 8:0� 10�3 1:0� 10�1
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Q-balls which satisfy our criterion Eq. (92). Recall that RQ

in Eq. (59) is a function of !, assuming � depends on !
weakly; thus we plot the numerical core sizes, comparing
them with our analytical approximations for DVP and
NDVP, respectively:

RDVP
Q ’ 2ðD� 1Þ�num

!2
; RNDVP

Q ’ 2ðD� 1Þ�num
ð!2 �!2�Þ

(94)

where the parameter �num is computed numerically (see
Table II). The presented numerical core sizes match ex-
cellently with the analytical fittings over a wide range of!.
Some numerical errors appear around ! ’ !þ since we
cannot determine the thick-wall cores with this technique;
see the top two panels in Fig. 2. Table II shows analytical
and numerical values of � using Eq. (57) and the above
fitting technique. We confirm that the values of � [part of
the surface tension �=D in Eq. (61)] are nearly constant,

depending slightly on D. Therefore, the assumptions we
made for thin-wall Q-balls are valid as long as �0 ’ �þ
and RQ * �num.

3. Configurations

Figure 4 illustrates the configurations of charge density
�Q (top panels) and energy density �E (bottom panels), in

both DVP (left panels) and NDVP (right panels). Each of
the DVP energy densities around !�!� has a spike
within the shells, while those spikes are not present in
NDVP. The presence of spikes can contribute to the in-
crease in surface energy S, which accounts for the different
observed ratio for S=U in the two cases, where U is the
potential energy. Otherwise, DVP and NDVP models have
similar profiles in Fig. 2. Moreover, we have numerically
checked that Q-balls for D � 2 generally have positive
radial pressures, whereas the 1D radial pressures are al-
ways zero, i.e. 12�

02 ¼ U! due to Eq. (15).

FIG. 2 (color online). The top two panels show the numerical slopes��0=� for the case of D ¼ 3 for two values of ! for both DVP
(left panel) and NDVP (right panel). The red (one dotted and one with circles) lines show the numerical slopes, and the green dotted
lines with two different widths show the corresponding analytic solutions. The purple dot-dashed lines with two different widths show
the analytic fits for the core profiles. The bottom two panels show the full Q-ball profile as described in Eq. (91) for a number of values
of ! and D. Note how the core size increases with D.
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FIG. 3 (color online). The initial ‘‘positions’’ �0 (top panels), �num=RQ (middle panels), and the core sizes RQð!Þ (bottom panels).
The top panels show ��, Eq. (85), as black and orange dot-dashed lines, respectively. The middle panels show the range of values of!
for a given value of D in which the core thickness is smaller than the core size, a crucial assumption we have to make. In the bottom
panels, the analytical core sizes in Eq. (94) are plotted with the numerical ones for the following ! ranges: [0.38–0.40], [0.38–0.55],
[0.38–0.60], [0.38–0.70] in DVP, and [0.60–0.62], [0.60–0.65], [ 0.60–0.75], [0.60–0.85] in NDVP, and for D ¼ 2, 3, 4, 5, respectively.
As can be seen, the fits are excellent. The range of ! values chosen has been based on the results shown in the top two panels and
correspond to that range where the thin-wall Q-balls are solutions (except for D ¼ 2).
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4. Virialization and characteristic slope EQ=!Q

The top panels in Fig. 5 illustrate the ratios S=U, and
the four bottom ones show the characteristic slopes of
EQ=!Q against ! in both the thin-wall (middle panels)

and thick-wall (bottom panels) limits. According to our
analytic arguments, Eq. (64), we expect S=U ’ 1 in the
extreme limit ! ’ !� ¼ 0 in DVP. Similarly, we expect
S=U� 0 in the same extreme thin-wall limit ! ¼ !� ¼
0:5 for NDVP. The latter case corresponds to the existence
of Q-matter with the simple steplike ansatz Eq. (36).
Although we are unable to probe these precise regimes,

we believe the slopes of the curves indicate they are head-
ing in the right direction. The thin-wall slopes EQ=!Q in

the two middle panels lie nearby the analytical ones,
Eqs. (62) and (66), as long as �0 ’ �þ (see Fig. 3), except
for the 2D cases because forD � 2 the profiles are not well
fitted by thin-wall predictions. Similarly, the thick-wall
slopes EQ=!Q in the bottom two panels agree with our

analytical predictions, Eq. (80), using the modified ansatz
rather than with Eq. (73) using the simple Gaussian ansatz.
We have confirmed that the analytic thick-wall slopes with
Eq. (80) cannot apply to higher dimensions D � 4; see
Eq. (81). Around the thick-wall limit ! ’ !þ, the behav-
iors in both potentials are S � U (see top panels), which
implies EQ ’ !Q as predicted in Eqs. (73) and (79); hence

we can verify that the solutions are continued to the free
particle solutions [see Eq. (25)]. Our physically motivated
modified ansätze in both the thin- and thick-wall limits
therefore have clear advantages over the simple ansätze in
Eqs. (36) and (67).

FIG. 4 (color online). The configurations for charge density �Q (top panels) and energy density �E (bottom panels) computed using
Eq. (14) for both DVP (left panels) and NDVP (right panels). The presence of spikes of �E in DVPs contributes to their increased
surface energies.

TABLE II. The values of �ana and �num in terms of D in DVP
and NDVP; see Eqs. (57) and (59).

� �ana 2D 3D 4D 5D

DVP 0.19 0.20 0.23 0.25 0.26

NDVP 0.16 0.17 0.21 0.22 0.23
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5. Q-ball stability

Figure 6 shows the classical and absolute stability lines
for Q-balls. Table III indicates the approximate analytical
values of !a derived by Eqs. (34) and (65), which can be

compared to the numerically obtained critical values ! for
the stabilities denoted by !c, !s, !ch, !a, and !f in

Table IV. Each of these are defined by dQ
d! j!c

¼ d2S!
d!2 j!s

¼
d
d! ðEQ

Q Þj!ch
¼ 0, EQ=Qj!a

¼ m, and d!
dQ j!f

¼ 0, respec-

FIG. 5 (color online). The ratio of S=U where S and U are surface and potential energies (top panels), the characteristic slope
EQ=!Q in the thin-wall-like limit, !�!�, with the analytic lines, Eq. (62) (middle panels), and in the thick-wall-like limit, ! ’ !þ
(bottom panels), with the analytic lines, Eqs. (73) and (80).
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tively. The 3D analytical plots of !
Q ðdQd!Þ in the thin- and

thick-wall limits, Eqs. (63) and (83), can be seen to match
the corresponding numerical data in the appropriate limits
of !. We have confirmed numerically that for both DVP
and NDVP cases !c ¼ !f ’ !s ’ !ch; see Table IV. This

can be easily understood from Eqs. (27)–(29).

Recall that Eq. (83), the polynomial potential Eq. (84)
with n ¼ 4, leads to the classical stability conditionD � 2
for the thick-wall case. The top panels in Fig. 6 demon-
strate that thick-wall Q-balls in D � 3 are classically
unstable. In Table IV, one can check that the absolute
stability condition is more severe than the classical one;
then there are three types of Q-balls [2], as before: abso-
lutely stable Q-balls for !<!a; metastable Q-balls for
!a � ! � !c, which are not quantum-mechanically sta-
ble but classically stable, and can decay into multiple
Q-balls; or unstable Q-balls for !c < !.
Both DVP and NDVP analytical values !a in Table III

agree well with the numerical ones in Table IV. Generally
speaking, the higher-dimensional Q-balls are more stable
classically as well as quantum mechanically. Moreover,
thin-wall Q-balls are always classically stable as demon-
strated in Eq. (63), but the classical stability of thick-wall

TABLE III. Virial relations: !a in terms of space dimension D
and ratio S=U; see Eq. (34).

!a

D S 
 U S ’ U or DVP NDVP S � U

3 0.50 0.80 0.86 1

4 0.67 0.86 0.90 1

5 0.75 0.89 0.92 1

FIG. 6 (color online). Classical stability using Eq. (27) for the top panels, and absolute stability using Eq. (26) for the bottom panels.
The 3D analytical lines of Eqs. (63) and (83) for classical stability agree with the corresponding numerical data. Above the zero-
horizontal axes in the top panels, the Q-balls are classically unstable. Similarly, Q-balls above the horizontal axis, EQ ¼ mQ, are

quantum-mechanically unstable. The one-dimensional Q-balls are always classically stable. The 1D slopes EQ=mQ have different

behaviors depending on DVP and NDVP, unlike the other dimensional cases.

TSUMAGARI, COPELAND, AND SAFFIN PHYSICAL REVIEW D 78, 065021 (2008)

065021-18



Q-balls is model and D dependent as in Eq. (83). The one-
and two-dimensional Q-balls have a much richer structure
than the thin- and thick-wall Q-balls. It is a challenging
task to understand their intermediate profiles [71].

6. Legendre relations

Figure 7 shows the Legendre relations:
dEQ

dQ vs !, � dS!
d!

v.sQ, and dGI

dI vs 1
2!

2, which can be used to check Eq. (16).

We have also checked the validity of the Legendre trans-
formations in Eqs. (10)–(12). Since the numerical results
match our analytical ones, these results strengthen the
validity of our analytic arguments.

V. CONCLUSION

We have numerically and analytically explored the sta-
tionary properties of a single Q-ball for an arbitrary spatial
dimension D. With the time-dependent nonlinear solutions
in the system, the virial theorem induces the characteristic

slopes, Eq. (33), and gives the approximate critical values
for !a in Eq. (34) without requiring a knowledge of the
detailed profiles and potential forms. By linearizing the
Q-ball equation (19) or rescaling in S!, we have been able
to consider the two limiting cases called the thin- and
thick-wall Q-balls. The steplike ansatz of Eq. (36) can
describe thin-wall Q-balls in the extreme limit ! ¼ !�,
whereas the modified ansatz Eq. (40) is applicable to �0 ’
�þ which leads to a wider range of parameter space ! and
of course includes the previous limit. On the other hand,
the limit ! ’ !þ is used to describe thick-wall Q-balls in
both the Gaussian ansatz Eq. (67) and our modified ansatz
for the thick-wall case.
The thin-wall approximation is valid for D � 2. Since

the steplike ansatz in the thin-wall approximation does not
have surface effects, the characteristic slope is simply
EQ=!Q ¼ 1, Eq. (38). With the modified ansatz including

surface effects, the classical stability for thin-wall Q-balls
does not depend onD in Eq. (63), but the absolute stability
condition Eq. (65) does. Throughout the analysis, we have

TABLE IV. The critical values for classical stability, absolute stability, and stability against fission in DVP and NDVP using

Eqs. (26)–(29). The critical values are defined by dQ
d! j!c

¼ d2S!
d!2 j!s

¼ d
d! ðEQ

Q Þj!ch
¼ 0, EQ=Qj!a

¼ m, and d!
dQ j!f

¼ 0. The numerical

values of !a coincide with the analytic ones in Table III. We have confirmed numerically that !c ¼ !f ’ !s ’ !ch.

DVP NDVP

D !a !c !s !ch !f !a !c !s !ch !f

3 0.82 0.92 0.92 0.92 0.92 0.87 0.94 0.94 0.94 0.94

4 0.86 0.96 0.96 0.96 0.96 0.89 0.97 0.97 0.97 0.97

5 0.882 0.983 0.993 0.983 0.983 0.910 0.985 0.996 0.991 0.985

FIG. 7 (color online). The Legendre relations of Eq. (16):
dEQ

dQ ¼ ! (left panels), � dS!
d! ¼ Q (middle panels), and dGI

dI ¼ 1
2!

2 (right
panels). Note the excellent agreement between the analytical dotted lines and the numerical data (dots).
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assumed Eqs. (41) and (46), and imposed Eq. (50) explic-
itly, which differs from the analysis in [30]. Without these
approximations, our calculations, in particular Eqs. (53),
(54), and (56), become inconsistent. The mechanical anal-
ogies and the numerical results naturally explain and vali-
date our underlying assumptions: the core sizes of the
Q-balls are much smaller than their corresponding thick-
ness as seen in the middle two panels of Fig. 3, and the
surface tension depends weakly on ! as seen in Table II.
With these assumptions, thin-wall Q-balls for !<!a are
absolutely stable. Moreover, the characteristic slopes co-
incide with those derived using the virial theorem. This
follows from our analysis of the relative contributions
between the potential and surface energies. The slopes
have two types in either NDVPs or DVPs: NDVPs have a
large energy from the charge; hence the surface energy is
less effective than the potential energy. They support the
existence of Q-matter in the extreme limit, ! ¼ !�.
DVPs, however, have negligible energy from the charge
compared to surface and potential energies; thus the sur-
face energy is well virialized with the potential energy. As
seen in the lower-left panel of Fig. 4, the configurations of
energy density have peaks within the shells, which con-
tribute to the surface energy. It would be worthwhile to
understand these peaks in terms of our modified ansatz.
Even in the extreme thin-wall limit, the charge and energy
of the Q-balls in NDVPs are not proportional to the vol-
ume, i.e. no Q-matter.

Thick-wall Q-ball solutions naturally tend to free
charged and massive particle solutions, Eq. (25). With
the simple Gaussian ansatz, we have extremized S! with
respect to �0 and R with fixed !, while the approaches in
[12] are that EQ is extremized with respect to only R. By

extremizing with respect to 2 degrees of freedom, we are
able to recover the expected results of Eqs. (70) and (73)
unlike in [12]. The Gaussian ansatz, however, is valid only
for D ¼ 1 because of Eq. (71), and gives contradictory
results for the condition for classical stability. In order to
remove these drawbacks in the Gaussian ansatz, we intro-
duced another modified ansatz and used the Legendre
relations to simplify the computations of S!, Q, EQ. We

obtained a consistent classical stability condition Eq. (83)
which depends on D and a nonlinear power n of the
polynomial potential Eq. (35). Not surprisingly, our nu-
merical results suggest that the modified ansatz is much
better than the Gaussian ansatz in the bottom two panels of

Fig. 5. With the same panels, the validity condition Eq. (81)
in the modified ansatz has also been confirmed
numerically.
In Eqs. (34) and (65) and Table IV, the analytical and

numerical results found the critical value !a with an
assumption. The assumption says that the higher-
dimensional Q-balls could be applicable to the thin-wall
approximations over a wide range of values of!. Although
this statement may not hold for extremely flat potentials
[35,51] because � can be as small as 1=RQ [see Eq. (46)]

and the energy spectrum has the following proportionality,

EQ / QD=Dþ1, we believe that it may apply to other large

types of Q-ball potentials. In summary, the higher-
dimensional Q-balls can be simplified into the thin- and
thick-wall cases, while it is more challenging and interest-
ing to understand stationary properties of one- and two-
dimensional Q-balls. For example, those Q-balls em-
bedded in 3D space (called Q-strings and Q-walls) may
exist in the formation of three-dimensional Q-balls
[65,72].
The properties of nonthermal Q-balls can lead to differ-

ent consequences compared to thermal ones, i.e. in the
evolution of the Universe. The thermal effects on Q-balls
induce subsequent radiation and evaporation. The Affleck-
Dine condensate provides a natural homogeneous conden-
sate with small quantum fluctuations; these fluctuations are
then amplified to nonlinear objects, namely, Q-balls, if the
pressure of Affleck-Dine condensates is negative. The for-
mation, dynamics, and thermalization might have phe-
nomenological consequences in our present Universe,
e.g. gravitational waves [73] and baryon-to-photon ratio.
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