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We first review the result that the noncommutative principal chiral model has an infinite tower of

conserved currents and discuss the special case of the noncommutative CP1 model in some detail. Next,

we focus our attention to a submodel of the CP1 model in the noncommutative spacetime A�ðR2þ1Þ. By
extending a generalized zero-curvature representation to A�ðR2þ1Þ we discuss its integrability and

construct its infinitely many conserved currents. A supersymmetric principal chiral model with and

without the Wess-Zumino-Witten term and a supersymmetric extension of the CP1 submodel in non-

commutative spacetime [i.e., in superspaces A�ðR1þ1j2Þ, A�ðR2þ1j2Þ] are also examined in detail and

their infinitely many conserved currents are given in a systematic manner. Finally, we discuss the solutions

of the aforementioned submodels with or without supersymmetry.
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I. INTRODUCTION

Principal chiral models and several of its subfamilies,
such as the OðNÞ and the CPN models, are important
examples of classically integrable field theories [1–4].
These nonlinear systems possess many interesting features
due to their integrability [5,6]. Among these, the existence
of a linear system of equations and of an infinite number of
conservation laws associated with nonlocal charges are two
central properties from which others (such as the Bäcklund
transformations) can be obtained. Making use of the con-
served, curvature free connections present in these models,
an infinite number of conserved currents can be explicitly
constructed by an inductive procedure due to Brézin et al.
[7], and a linear system of equations can thereby be easily
obtained via introducing a spectral parameter. It can be
verified that the latter imply the field equations as well as
the zero-curvature condition on the appropriate connec-
tion. Nonlocal charges, if conserved at the quantum level,
play a crucial role in finding the S matrix and proving its
factorizability, and hence the quantum integrability of a
given model. It is known that OðNÞ and CP1 models [8,9]
and principal chiral models based on certain classical
groups [10,11] are quantum integrable, while CPN (N �
2) is not [12]. More generally, sigma models on compact
symmetric spaces G=H with H simple are known to be
quantum integrable [13].

Supersymmetric (SUSY) extensions of these nonlinear
systems both at the classical and at the quantum level have
also been extensively studied in the past few decades [14–
20]. At the classical level, conserved currents of the super-
symmetric OðNÞ and CPN models were derived in compo-
nent formalism in [19]. Later on, a much simpler superfield
formulation with or without the SUSY Wess-Zumino-

Witten (WZW) term was given in [20]. In [16], it was
shown that supersymmetry renders the CPN model quan-
tum integrable.
Noncommutative (NC) field theories have been under

investigation for about a decade now. (See, for instance,
[21,22] for comprehensive reviews.) Among them, field
theories defined on the Groenewold-Moyal (GM)–type
deformations of spacetime [i.e., the noncommutative alge-

bra A�ðRðdþ1ÞÞ] hold a considerably large part of the
literature. Formulation of instantons and solitons in GM
spacetime and other noncommutative spaces, such as the
noncommutative tori and fuzzy spaces, has been exten-
sively studied and found to present very rich mathematical
structures [21–24]. It has been found out that such non-
commutative deformations of extended field configurations
may be useful in studying the physics of D-branes, as
certain low energy limits in string theory in the presence
of background magnetic fields lead to noncommutative
Yang-Mills (YM) theories [25–27].
Integrability properties of noncommutative nonlinear

theories have been under investigation in the past decade
as well. In [28], Dimakis and Müller-Hoissen have studied
the existence and construction of conserved currents in
nonlinear sigma models on noncommutative spaces where
an appropriate notion of the Hodge operator can be pre-
scribed, including the GM plane. Formulations of non-
linear sigma models on noncommutative 2-torus with
two-point target space and construction of its conserved
currents along the lines of [7] were given in [29].
In [30], a linear system of equations for noncommutative

YM theory has been presented and it has been employed to
discuss the construction of the NC ’t Hooft instantons using
the splitting approach. Later on, in [31] the presence of this
linear system was used to study the formulation of YM
instantons via the dressing and splitting methods, and in
[32] that of monopoles by solving the appropriate*seckin@itp.uni-hannover.de
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Riemann-Hilbert problem, after a dimensional reduction.
Another example of an integrable noncommutative theory
is theUðNÞWard model studied in Ref. [33]. This model is
formulated in A�ðR2þ1Þ and it too explicitly exhibits a
linear system implying the equation of motion, and apply-
ing the dressing method gives a systematic way to con-
struct its solitonic solutions. It is worthwhile to note that
particular noncommutative extensions of WZW and sine-
Gordon models are obtained from this system via dimen-
sional reduction. The latter possess several attractive fea-
tures as discussed in [34,35]. Supersymmetric extensions
of the noncommutative Ward model and its solitonic solu-
tions are recently considered in [36].

In this paper, our purpose is to discuss the integrability
properties of nonlinear sigma models defined on the GM
spacetime. In particular, we will focus on the construction
of an infinite number of conserved currents of the principal
chiral model in A�ðR1þ1Þ, the CP1 model, and a certain
CP1 submodel in A�ðR2þ1Þ. We will also treat their
supersymmetric extensions. In Sec. II, we start by describ-
ing the integrability properties of the principal chiral model

in A�ðRð1þ1ÞÞ. Our presentation in Sec. II A has overlaps
with the previous investigations in [28]. Then we specialize
to the NC CP1 model [37], discuss its relevant properties,
and present its Noether currents explicitly.

In Sec. III, we focus our attention to a certain CP1

submodel in A�ðR2þ1Þ. A novel approach to exploring
integrability in dþ 1 dimensions was introduced by
Alvarez et al. in [38], and it essentially consists of for-
mulating a generalized zero-curvature condition by intro-
ducing a d-form connection. Quite interestingly, this new
formulation helps to reveal the existence of an infinite
number of conserved quantities in a variety of models,
such as those found for a submodel of CP1 model in 2þ
1 dimensions. By extending this approach and a parallel
one developed by Fujii et al. [39] to noncommutative
spacetime, we discuss the integrability properties of the
aforementioned CP1 submodel and construct an infinite
number of conserved currents for it in a systematic manner.
We also discuss the solitonic solutions of the submodel in
some detail and show that Bogomol’nyi-Prasad-
Sommerfield (BPS) solutions of the NC CP1 model are
solutions of the submodel too.

In Sec. IV, we examine the supersymmetric principal

chiral model in A�ðR1þ1j2Þ with and without the WZW
term in some detail. We discuss the integrability properties
of these models and derive their conserved currents in the
superfield formalism, using the methods of [20]. This is
followed by a study of the SUSY extension of the CP1

submodel in A�ðRð2þ1Þj2Þ and construction of its con-
served currents. Solitonic configurations of this model
are also given. We conclude by summarizing our results
and stating some directions we are going to be exploring in
the near future.

Until Sec. IV, we will be working on the noncommuta-
tive spacetimes A�ðR1þ1Þ and A�ðR2þ1Þ, which are de-

fined by the commutation relations

½x̂�; x̂�� ¼ i���; (1.1)

and the indices run over 0, 1 and 0, 1, 2, respectively. We
use the Minkowski metric with signature ðþ;�;�Þ. From
Sec. IV onward, appropriate Grassmann variables will be

introduced to obtain the superspaces A�ðR1þ1j2Þ and

A�ðR2þ1j2Þ, where only the bosonic coordinates do not
commute.

II. NONLINEAR MODELS AND INTEGRABILITY

A. Principal chiral model in A�ðR1þ1Þ
Let us start our discussion by considering the principal

chiral model in A�ðR1þ1Þ. It is defined by the action

SPC ¼ 1
4��Tr@�g@

�g�1; (2.1)

where g is a nonsingular matrix whose entries are operators
in A�ðR1þ1Þ acting on the standard Heisenberg-Weyl
Hilbert space H .1 For definiteness, we take g 2 UðNÞ,
thus it satisfies ggy ¼ gyg ¼ 1. We have that Tr ¼ TrH �
TrN , where TrN is the trace in MatðNÞ.
The equation of the motion following from SPC is

@�ðg�1@�gÞ ¼ 0; (2.2)

and readily implies

ANoether
� ¼ g�1@�g; (2.3)

as the conserved Noether currents of the model under the
global UðNÞ symmetry.
To construct the conserved tower of currents, we closely

follow the inductive procedure of [7]. Let us first define the
covariant derivative D� ¼ @� þ A�. Because of (2.3), it

satisfies

½D�;D�� ¼ 0; (2.4)

and due to (2.2), we further have

@�D
� ¼ D�@�: (2.5)

Let us now suppose that we have found the conserved

current JðnÞ� at level n. By Hodge decomposition of differ-
ential forms, which applies in the present NC spacetime

A�ðRð1þ1ÞÞ as the algebra of derivatives are not deformed
(i.e., derivatives commute), this implies that we can find

�ðnÞ 2 A�ðR1þ1Þ �MatðNÞ such that

JðnÞ� ¼ ����@��ðnÞ; n � 1: (2.6)

Then, the (nþ 1)th current is

Jðnþ1Þ
� ¼ D��

ðnÞ; n � 0: (2.7)

1Note that H cannot be taken in the Fock basis due to the
Minkowski signature.
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The construction starts with �ð0Þ ¼ 1 and Jð1Þ� ¼ ANoether
� .

We can see that Jðnþ1Þ
� is conserved since

@�Jðnþ1Þ
� ¼ D�@

��ðnÞ; n � 1

¼ ���D�J
ðnÞ
�

¼ ���D�D��
ðn�1Þ ¼ 0; (2.8)

where we have used (2.4), (2.5), and (2.6). Thus, the
construction of [7] works for the noncommutative principal
chiral model too. As we have already stated in the
Introduction, this result overlaps with that of [28].

The form of the conserved currents allows us to define
the linear system of equations for this model. Introducing a
spectral parameter � via � ¼ P1

0 �
�n�n, we can write

using (2.6) and (2.7) that

� ���@
�� ¼ ��1D��: (2.9)

The last equation can be brought into the form

� @1� ¼ �A0 þ A1

1� �2
�; �@0� ¼ �A1 þ A0

1� �2
�:

(2.10)

Obviously, the system of equations in (2.10) is of the same
form as that of the commutative model. However, we note
that A�ðx̂�Þ, �ðx̂�; �Þ are operators in A�ðR1þ1Þ �
MatðNÞ acting on the Hilbert space H � CN . Solvability
of the system implies the equation of motion (2.2) and the
zero-curvature condition (2.4).

The explicit form of the currents JðnÞ� do indeed differ
from those of the commutative model. In the following
section, we present an example, namely, the Noether cur-
rents of the CP1 model to emphasize this point.

B. NC CP1 model

We can now focus on the NC CP1 model [37].
Restricting to the subset of operators of the form

g ¼ g�1 ¼ ei�P ¼ 1� 2P; (2.11)

where P is a projector in A�ðR1þ1Þ �Matð2Þ:
P2 ¼ P; Py ¼ P; P 2 A�ðRð1þ1ÞÞ �Matð2Þ;

(2.12)

leads to the CP1 model action

S ¼ ��Tr@�P@
�P; � ¼ 0; 1: (2.13)

The Noether currents take the form

JNoether� ¼ ½P; @�P�: (2.14)

Let us parametrize the projector as

P ¼
1

uyuþ1
1

uyuþ1
uy

u 1
uyuþ1

u 1
uyuþ1

uy

 !
; (2.15)

then the conservation of JNoether� implies the field equation

for u

@�@
�u� 2@�u

1

uyuþ 1
uy@�u ¼ 0: (2.16)

Using (2.15), the Noether currents associated with the
global SUð2Þ symmetry take the form

J�;3 ¼ 1

2
Tr2�3½P; @�P�

¼ 1

2

�
1

uyuþ 1
ðuy@�u� @�u

yuÞ 1

uyuþ 1

� u
1

ðuyuþ 1Þ2 @�u
y þ @�u

1

ðuyuþ 1Þ2 u
y

� u

�
1

uyuþ 1
; @�

1

uyuþ 1

�
uy

�
�

uyu
uyuþ 1

; @�

�
u

1

uyuþ 1
uy
���

; (2.17)

J�;þ ¼ 1

2
Tr2�þ½P; @�P�

¼ � 1

2

�
@�u

1

ðuyuþ 1Þ
þ u

1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1

�
; (2.18)

J�;� ¼ 1
2 Tr2��½P; @�P� ¼ �Jy�;þ; (2.19)

where �i (i ¼ 1, 2, 3) are the Pauli matrices and �� ¼
�1 � i�2. Unlike the commutativeCP1 model, the Noether
current associated with the global Uð1Þ symmetry of the
action is not zero, but it is given by

J�;0 ¼ 1

2
Tr2½P; @�P�

¼ 1

2

�
1

uyuþ 1
ðuy@�u� @�u

yuÞ 1

uyuþ 1

þ u
1

ðuyuþ 1Þ2 @�u
y � @�u

1

ðuyuþ 1Þ2 u
y

þ u

�
1

uyuþ 1
; @�

1

uyuþ 1

�
uy

þ
�

uyu
uyuþ 1

; @�

�
u

1

uyuþ 1
uy
���

: (2.20)

In the commutative limit the standard expressions for the
Noether currents are recovered. In particular, J�;0 becomes

zero in this limit.

III. A CP1 SUBMODEL IN A�ðR2þ1Þ
A valuable approach to exploring integrability in 2þ 1

and higher dimensional theories is due to Alvarez et al.
[38]. In this article, a generalized zero-curvature represen-
tation consisting of an appropriate curvature free connec-
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tion together with a covariantly conserved vector field has
been formulated. The generalized zero-curvature represen-
tation implies the presence of conserved currents which
may be obtained in a systematic manner. In several diverse
models admitting this representation, it has been found that
the conserved currents are infinite in number leading to
their integrability. For instance, in certain submodels of the
principal chiral models and CPN models in 2þ 1 dimen-
sions, which are determined by the requirement of addi-
tional equations to be satisfied by the fields over and above
the equations of motions of their respective parent models,
an infinite tower of conserved currents has been obtained
explicitly using the generalized zero-curvature representa-
tion [38,40–42]. In another example in 3þ 1 dimensions
considered by Aratyn et al. [43], a full field theory pos-
sessing toroidal solitonic solutions has been shown to be
integrable using the generalized zero-curvature representa-
tion and its conserved currents have been constructed.

A parallel approach to that of [38] has been developed
by Fujii et al. [39]. In this formulation, for instance, the
CPN submodels are studied by implementing their defining
conditions as additional equations to be satisfied by the
projectors of the CPN models, rather than on their particu-
lar parametrizations. This approach appears to be better
suited for adapting to the present setting of noncommuta-
tive theories and will be followed in this section. However,
before doing so, it seems instructive to briefly sketch how
the ideas of [38] fit into the current framework, and state
the type of limitation it faces, in providing explicit expres-
sions for the conserved quantities.

Suppose that we have a finite-dimensional non-semi-

simple Lie algebra Ĝ. Then we can write Ĝ ¼ Gþ I
where G is a semisimple Lie subalgebra of Ĝ and I is its
maximal solvable ideal (i.e., radical). We can consider now
a connection one-form A� on A�ðR2þ1Þ valued in G, and

an antisymmetric tensor B�� valued in I . In 2þ 1 dimen-

sions we can write the dual of B�� as

~B� ¼ 1
2"
���B��: (3.1)

A generalized set of integrability conditions can then be
given as [38]

F�� ¼ ½D�;D�� ¼ 0; D�
~B� ¼ 0;

D� ¼ @� þ A�:
(3.2)

Since A� is a flat connection we can write

A ¼ g�1@�g; g 2 G; (3.3)

where G is the Lie group whose Lie algebra is G. From
these considerations, it is easy to verify that the currents

J� ¼ g�1 ~B�g (3.4)

are conserved. To construct these currents explicitly in a
model with say G � SUð2Þ, one essentially needs a suit-
able local parametrization of SUð2Þ. (See, for instance, the

construction of the CP1 submodel currents in commutative
space given in [38].) However, such a parametrization of
SUð2Þ does not exist in the noncommutative setting, and
thus the above construction remains implicit for the
currents.
Let us now turn to applying the methods of [39], and to

be more concrete consider a CP1 submodel in A�ðR2þ1Þ.
With P 2 A�ðR2þ1Þ �Matð2Þ, we observe that the tensor
product [over A�ðR2þ1Þ] P � P is a projector in
A�ðR2þ1Þ �Matð22Þ. Then the submodel we are inter-
ested in may be specified by the equation [39]

½P � P; @�@�P � P� ¼ 0; � ¼ 0; 1; 2: (3.5)

In (3.5) and what follows the derivatives on k-fold tensor
products are given via

@� � Xk�1

i

1 � 1 � � � � �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
i

@� � 1 � 1 � � � � 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�1�j

; (3.6)

and the same symbol is used in the tensor product space, as
there is no risk of confusion.
It is easy to find that (3.5) can be expressed as the two

equations

½P; @�@�P� ¼ 0; (3.7)

@�P � ½P; @�P� þ ½P; @�P� � @�P ¼ 0: (3.8)

Clearly, the first of these is the equation of motion for the
CP1 model, while (3.8) puts further restrictions on the
projector P and thereby specifies a submodel. Using
(2.15), we may also express these conditions as

@�@
�u� 2@�u

1

uyuþ 1
uy@�u ¼ 0;

@�u
1

ðuyuþ 1Þ2 u
y@�u ¼ 0:

(3.9)

In the commutative limit these equations collapse to
@�@�u ¼ 0 and @�u@

�u ¼ 0, which define the submodel

in the commutative space [38].

A. Conserved currents

In close analogy to the commutative model [39], the
conserved matrix currents in this model can now be con-
structed. They are given by

Jk� ¼ Xk�1

i¼0

P � P � � � � P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
i

�½P; @�P� � P � P � � � � P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�1�i

:

(3.10)

It follows from (3.7) and (3.8) that Jk� is conserved:

@�Jk� ¼ 0: (3.11)

For instance, at level k ¼ 3 we have
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@�Jk¼3
� ¼ @�½P; @�P� � P � Pþ @�P � ½P; @�P� � Pþ ½P; @�P� � @�P � Pþ P � @�½P; @�P� � P

þ P � @�P � ½P; @�P� þ P � ½P; @�P� � @�Pþ P � P � @�½P; @�P� þ ½P; @�P� � P � @�P
þ @�P � P � ½P; @�P� ¼ 0 (3.12)

upon using (3.7) and (3.8).
A few simple comments are in order. Clearly, level k ¼

1 in the above construction corresponds to the NC CP1

model and from (3.10) we recover the Noether currents of
the model, as given in (2.17), (2.18), (2.19), and (2.20),
where now the index� in these equations runs from 0 to 2.
Next, we observe that all the results above go through for
the NC CPN model, once Matð22Þ is replaced by
MatððN þ 1Þ2Þ. We can ask, how many conserved currents
are there at a given level k? For the CP1 model, we have
four conserved currents at level k ¼ 1, and 2k � 2k con-
served current at level k, and for the CPN model we have
ðN þ 1Þk � ðN þ 1Þk conserved currents at level k.
Clearly, the number of conserved currents tends to infinity
as k does so.

A fast way to compute the component currents is to take
the trace of the product of Jk� with elements of a suitably

chosen basis. Let us illustrate this for the simplest case k ¼
2. In this case the tensor product space isMatð4Þ and it can
be spanned by the basis

�ab ¼ �a � �b; �a ¼ ð12; �þ; ��; �3Þ: (3.13)

Using the identity TrA � B ¼ TrATrB, we can write

ðJk¼2
� Þab ¼ Tr4�abJ

k¼2
�

¼ Tr4�a � �bð½P; @�P� � Pþ P � ½P; @�P�Þ
¼ Tr2�a½P; @�P�Tr2�bP

þ Tr2�aPTr2�b½P; @�P�: (3.14)

The 16 conserved currents present at this level can be
obtained from (3.14). We list a few examples for concrete-
ness:

ðJk¼2
� Þþþ ¼ �

�
@�u

1

ðuyuþ 1Þ þ u
1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1

�
u

1

uyuþ 1

� u
1

uyuþ 1

�
@�u

1

ðuyuþ 1Þ þ u
1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1

�
; (3.15)

ðJk¼2
� Þþ� ¼ �

�
@�u

1

ðuyuþ 1Þ þ u
1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1

�
1

uyuþ 1
uy

þ u
1

uyuþ 1

�
1

uyuþ 1
@�u

y � 1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1
uy
�
; (3.16)

ðJk¼2
� Þþ3 ¼ �

�
@�u

1

ðuyuþ 1Þ þ u
1

uyuþ 1
ð@�uyu� uy@�uÞ 1

uyuþ 1

��
1

uyuþ 1
� u

1

uyuþ 1
uy
�

þ u
1

uyuþ 1

�
1

uyuþ 1
ðuy@�u� @�u

yuÞ 1

uyuþ 1
� u

1

ðuyuþ 1Þ2 @�u
y þ @�u

1

ðuyuþ 1Þ2 u
y

� u

�
1

uyuþ 1
; @�

1

uyuþ 1

�
uy �

�
uyu

uyuþ 1
; @�

�
u

1

uyuþ 1
uy
���

: (3.17)

B. Solutions of the submodel

Static solitonic solutions of the noncommutative CP1

model are given by the BPS configurations [37]. In the

complex coordinates z ¼ ðx̂1 þ ix̂2Þ=
ffiffiffi
2

p
satisfying ½z; �z� ¼

� the BPS configurations are specified by the equations

@�zPP ¼ 0 ðself-dualÞ;
@zPP ¼ 0 ðanti-self-dualÞ; (3.18)

where the derivatives are given by the adjoint actions

@z ¼ �ad�z ¼ �½�z; ��; @�z ¼ adz ¼ ½z; ��: (3.19)

In view of the fact that @P ¼ @PPþ P@P, (2.15) can also
be expressed in the form

ð1� PÞ@�zP ¼ 0 ðself-dualÞ;
ð1� PÞ@zP ¼ 0 ðanti-self-dualÞ: (3.20)

Parametrizing the projector as in (2.15), it can be inferred
that these equations are fulfilled by the functions u ¼ uðzÞ
(self-dual) and u ¼ uð �zÞ (anti-self-dual) analytic in their
arguments.
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Let us now show that these configurations are also
solutions of the CP1 submodel. Equation (3.7), being the
quadratic field equation for the CP1 model, is automati-
cally satisfied by P fulfilling either of the two equations in
(3.18). As for (3.8) taking for instance the anti-self-dual
configurations we have

ð3:8Þ ¼ �@zP � @�zPPþ @�zP � P@zPþ P@zP � @ �zP

� @�zPP � @zP; (3.21)

and it vanishes identically upon using the second equation
in (3.18) and its Hermitian conjugate. Clearly, a similar
calculation holds for the self-dual solution too.

IV. SUPERSYMMETRIC NONLINEAR MODELS

A. Noncommutative SUSY principal chiral model

Let us now focus our attention to theN ¼ 1 superspace

A�ðR1þ1j2Þ with Moyal-type noncommutativity, i.e.,

½x̂�; x̂�� ¼ i���; f�	; �
g ¼ 0; ½x̂�; �	� ¼ 0;

�; � ¼ 0; 1; 	; 
 ¼ 1; 2: (4.1)

The supersymmetric principal chiral model is given by the
action

S ¼ 1

4
��

Z
d2�Tr �DGyDG; (4.2)

where the SUSY covariant derivative is

D	 ¼ @

@ ��	
þ ið���Þ	@� (4.3)

and G ¼ Gðx�; �	Þ is a matrix valued superfield in NC

space with GGy ¼ 1 ¼ GyG. For definiteness we will
assume that G 2 UðNÞ.

For the � matrices we take

�0 ¼ 0 1
�1 0

� �
; �1 ¼ 0 1

1 0

� �
;

�5 ¼ �1�2 ¼ 1 0
0 �1

� �
:

(4.4)

It may be noted that fD1; D2g ¼ 0, and the commutators
of D	 with the generators of Poincaré algebra are the same
as those without noncommutativity, therefore the full
SUSY algebra is present and is undeformed.

Wewill now demonstrate that this model satisfies a zero-
curvature condition and is therefore integrable at the clas-
sical level and construct its conserved nonlocal currents.
Our approach is the superspace generalization of that of [7]
and was used by Chau and Yen [20] to construct the non-
local charges in SUSY principal chiral models with or
without the WZW term.

The equation of motion that follows from the variation
of (4.3) is

�DðGyDGÞ ¼ 0: (4.5)

Let us define a gauge superfield as A	 ¼ GyD	G. Then
(4.5) becomes

D1A2 �D2A1 ¼ 0: (4.6)

Furthermore, we have the gauge covariant derivative
D	 ¼ D	 þA	, which immediately leads to zero curva-
ture for A	:

fD1;D2g ¼ D1A2 þD2A1 þ fA1;A2g ¼ 0: (4.7)

This condition together with (4.5) implies that the model is
integrable. As a consequence of the equation of motion the
identity

fD	;
�D	g ¼ 0 (4.8)

holds.
It is now easy to construct the nonlocal conserved cur-

rents. Suppose that we have found the conserved current

J ðnÞ
	 at level n. This implies that we can find �ðnÞ 2

A�ðR1þ1j2Þ �MatðNÞ such that

J ðnÞ
1 ¼ �D1�

ðnÞ; J ðnÞ
2 ¼ D2�

ðnÞ: (4.9)

Then, the (nþ 1)th current is

J ðnþ1Þ
	 ¼ D	�

ðnÞ; n � 0: (4.10)

The construction starts with �ð0Þ ¼ 1 and J ð1Þ
	 ¼ A	. We

can see that J ðnþ1Þ
	 is conserved

D1J
ðnþ1Þ
2 �D2J

ðnþ1Þ
1 ¼ D1D2�

ðnÞ �D2D1�
ðnÞ

¼ �D2D1�
ðnÞ þD1D2�

ðnÞ

¼ D2J
ðnÞ
1 þD1J

ðnÞ
2

¼ D2D1�
ðn�1Þ þD1D2�

ðn�1Þ

¼ fD1;D2g�ðn�1Þ ¼ 0: (4.11)

Introducing a spectral parameter 
 and writing � ¼P
n


n�ðnÞ with �ð0Þ ¼ 1, we find from (4.9) and (4.10) that

D1� ¼ � 


1þ 

A1�; D2� ¼ 


1� 

A2� (4.12)

which is precisely of the same form as in the commutative

space, but now A	 and � are operators in A�ðR1þ1j2Þ �
MatðNÞ.

B. Addition of the WZW term

The supersymmetric WZW term is of the form [44,45]

SWZW ¼ k

16�
2��

Z
d2�dtTrGy dG

dt
�DGy�5DG; (4.13)

where k 2 Z. The variation of the total action S ¼ SPC þ
SWZW yields

�D

��
1þ k

�
�5

�
GyDG

�
¼ 0: (4.14)
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We observe that all the results of the previous section hold,
if we make the substitution

A � !
�
1� k

�

�
A�: (4.15)

Thus, we conclude that all the classical integrability prop-
erties are possessed by the NC supersymmetric WZW
model too.

C. SUSY CP1 model

The SUSY CP1 on A�ðR1þ1j2Þ model is specified by

G ¼ ei�P ¼ 1� 2P ; P 2 ¼ P ;

P � P ðx̂�; �	Þ 2 A�ðR1þ1j2Þ �Matð2Þ:
(4.16)

Its equation of motion is then

1
2 ðDþ �DÞ½P ; ðD� �DÞP � ¼ ½P ; �DDP � ¼ 0; (4.17)

and the associated conserved currents are given via the
spinorial superfield

J 	 ¼ ½P ; ðD	 � �D	ÞP �: (4.18)

It is instructive to present the Noether currents precisely.
These are obtained through the ð��Þ	
�
 component j� of

J 	. The remaining components of J 	 in the Grassmann
expansion do not imply any further conservation laws in
general. Expanding P in powers of � we have

P ¼ Pþ i�1 2 � i�2 1 þ i�1�2F; (4.19)

with P 2 ¼ P implying P2 ¼ P, P 	P ¼ 0, and F ¼
i½ 1;  2�. Using (4.19), we find

j� ¼ ½P; @�P� þ i � �� : (4.20)

We recognize the bosonic part as the Noether currents of
the NC CP1 model, and the fermionic part as those of the
NC Gross-Neveu model.

D. A SUSY CP1 submodel

We now consider a SUSY CP1 submodel in

A�ðR2þ1j2Þ. Extending the discussion of Sec. III by in-
cluding the supersymmetry, we consider the condition

½P � P ; �DDP � P � ¼ 0; (4.21)

as the defining relation for the SUSY CP1 submodel.
On k-fold tensor products D is given by

D ¼ Xk�1

i

1 � 1 � � � � �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
i

D � 1 � 1 � � � � 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�1�j

(4.22)

and likewise for �D. We further have that

ð �D � 1þ 1� �DÞðD � 1þ 1 �DÞ
¼ �DD � 1þ �D �D�D � �Dþ 1 � �DD; (4.23)

the minus sign in the third term is due to the odd gradings
of D and �D.
A short calculation shows that (4.21) is equivalent to the

two equations

½P ; �DDP � ¼ 0;

�DP � ½P;DP � þ ½P ; �DP � �DP ¼ 0:
(4.24)

Following the steps of Sec. III, we define

J k
	 ¼ Xk�1

i¼0

P � P � � � � P|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i

�½P ; ðD	 � �D	ÞP �

� P � P � � � � P|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k�1�i

: (4.25)

Because of (4.24), J k
	 are conserved:

ðDþ �DÞJ k ¼ 0; (4.26)

as can be checked explicitly for any given k. In compo-
nents, the conserved currents are given by

jk� ¼ Xk�1

i¼0

P � P � � � � P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
i

�ð½P; @�P� þ i � �� Þ

� P � P � � � � P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�1�i

: (4.27)

Conservation of jk� is implied by the �1�2 component of

(4.26). The matrix components of jk� may also be obtained

using the simple procedure outlined in (3.13) and (3.14).
The remaining components of J k

	 do not in general
imply any new conservation laws.

E. Solutions to the submodel

The static solitonic solutions of the SUSY CP1 model
are well known [46]. We can obtain their noncommutative
versions in a straightforward manner. They are given by the
BPS configurations fulfilling

PD�P ¼ 0 ðself-dualÞ;
PDþP ¼ 0 ðanti-self-dualÞ; (4.28)

where the supersymmetric covariant derivatives D� ¼
ðD1 � iD2Þ=

ffiffiffi
2

p
are given as2

Dþ ¼ @�� þ i
ffiffiffi
2

p
��@�z; D� ¼ @�þ þ i

ffiffiffi
2

p
�þ@z;

(4.29)

with �� ¼ ð�1 � i�2Þ=
ffiffiffi
2

p
. They fulfil

2In this section, we are using the Euclidean gamma matrices

�1 ¼ 1 0
0 �1

� �
; �2 ¼ 0 1

1 0

� �
;

�5 ¼ �1�2 ¼ 0 1
�1 0

� �
:
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D2þ ¼ i
ffiffiffi
2

p
@�z; D2� ¼ i

ffiffiffi
2

p
@z; fDþ; D�g ¼ 0:

(4.30)

In powers of the Grassmann variables, P expands to

P ¼ P� �þ � þ �� þ � �þ��F; (4.31)

and P 2 ¼ P implies

P2 ¼ P; P �P ¼ 0; F ¼ �½ þ;  ��: (4.32)

After using the constraints (4.32), the component form of
the self-dual equation in (4.28) can be cast into the equa-
tions:

P@zP ¼ 0; P � ¼ 0; PF � ¼ 0;

P@z þ �  þ@zP ¼ 0:
(4.33)

From (4.33) it is readily observed that the bosonic part of
the solution is the BPS solution of the NC CP1 model
(2.15). It is then easy to see that the self-dual solutions are
given by

P ¼ ��y;

� ¼ 1

uðzÞ � �þ’ðzÞ

 !

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uyu� �þuy’� i��u’y þ i�þ��’y’þ 1

q ;

�y� ¼ 1: (4.34)

The remaining component matrices  � and F can be read
off by differentiating P with respect to ��.

We can see that these configurations solve our submodel.
Clearly, the first of the equations in (4.24) is automatically
satisfied by the BPS equations (4.28). As for the second
equation in (4.24), picking the self-dual configuration we
have

�DþP �D�PP �D�P � PDþP þ PDþP �D�P

þD�PP �DþP ; (4.35)

which vanishes identically, after using D�P ¼ D�PP þ
PD�P together with the self-duality equation. A similar
calculation holds for the anti-self-dual case. Thus (4.34)

constitutes a set of solutions for the submodel under
investigation.

V. CONCLUSIONS AND OUTLOOK

In this paper, classical integrability properties of non-
linear field theories on the Groenewold-Moyal–type non-
commutative spaces have been studied. We have obtained
the infinite tower of conserved currents in the noncommu-
tative principal chiral model and CP1 model and their
supersymmetric extensions by employing an inductive
procedure, which is well known in the corresponding
commutative theories. In particular, the explicit expres-
sions for the Noether currents of the noncommutative
CP1 model, which differ from those of the commutative
model, have been presented. We have also constructed
noncommutative extensions of a CP1 submodel [on
A�ðR2þ1Þ], as well as its SUSY extension [on

A�ðR2þ1j2Þ], and proved their classical integrability by
systematically obtaining their infinitely many conserved
currents. In the CP1 submodel, a simple method to work
out the explicit forms of the higher degree currents is given
and it is applied on a few examples to reveal their structure.
The solitonic solutions of the submodels are also studied,
and they are shown to be the same as the BPS configura-
tions of their parent models. We think that it may be
worthwhile to explore the possible connections of the
CP1 submodel to the Uð2Þ Ward model [33] and their
SUSY extensions. It is also interesting to note that there
is yet another integrable CP1 submodel, which is defined
through a weaker integrability condition [47]. (Similar
results in the context of the CPN model in four dimensions
are also known [48].) It would be desirable to study its
noncommutative extension as well. Progress on these
topics will help us to further enhance our understanding

of integrability inA�ðR2þ1Þ andA�ðR2þ1j2Þ. We hope to
report on the developments on these and related topics in
the near future.
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Lectures on Fuzzy and Fuzzy SUSY Physics (World
Scientific, Singapore, 2007).

[25] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)
032.

[26] J. A. Harvey, P. Kraus, F. Larsen, and E. J. Martinec, J.
High Energy Phys. 07 (2000) 042.

[27] O. Lechtenfeld, A. D. Popov, and B. Spendig, J. High
Energy Phys. 06 (2001) 011.

[28] A. Dimakis and F. Müller-Hoissen, Lett. Math. Phys. 39,
69 (1997); Czech. J. Phys. 48, 1319 (1998).

[29] L. Dabrowski, T. Krajewski, and G. Landi, Int. J. Mod.
Phys. B 14, 2367 (2000); Mod. Phys. Lett. A 18, 2371
(2003).

[30] O. Lechtenfeld and A.D. Popov, J. High Energy Phys. 03
(2002) 040.

[31] Z. Horvath, O. Lechtenfeld, and M. Wolf, J. High Energy
Phys. 12 (2002) 060.

[32] O. Lechtenfeld and A.D. Popov, J. High Energy Phys. 01
(2004) 069.

[33] O. Lechtenfeld and A.D. Popov, J. High Energy Phys. 11
(2001) 040; Phys. Lett. B 523, 178 (2001); M. Wolf,
J. High Energy Phys. 06 (2002) 055; C. S. Chu and
O. Lechtenfeld, Phys. Lett. B 625, 145 (2005).

[34] O. Lechtenfeld, L. Mazzanti, S. Penati, A. D. Popov, and
L. Tamassia, Nucl. Phys. B705, 477 (2005).

[35] S. Kurkcuoglu and O. Lechtenfeld, J. High Energy Phys.
09 (2007) 020.

[36] O. Lechtenfeld and A.D. Popov, J. High Energy Phys. 06
(2007) 065; C. Gutschwager, T. A. Ivanova, and O.
Lechtenfeld, J. High Energy Phys. 11 (2007) 052.

[37] B. H. Lee, K.M. Lee, and H. S. Yang, Phys. Lett. B 498,
277 (2001).

[38] O. Alvarez, L. A. Ferreira, and J. Sanchez Guillen, Nucl.
Phys. B529, 689 (1998).

[39] K. Fujii, Y. Homma, and T. Suzuki, Phys. Lett. B 438, 290
(1998).

[40] K. Fujii and T. Suzuki, Lett. Math. Phys. 46, 49 (1998).
[41] D. Gianzo, J. O. Madsen, and J. Sanchez Guillen, Nucl.

Phys. B537, 586 (1999).
[42] L. A. Ferreira and E. E. Leite, Nucl. Phys. B547, 471

(1999).
[43] H. Aratyn, L. A. Ferreira, and A.H. Zimerman, Phys. Lett.

B 456, 162 (1999); Phys. Rev. Lett. 83, 1723 (1999).
[44] P. Di Vecchia, V.G. Knizhnik, J. L. Petersen, and P. Rossi,

Nucl. Phys. B253, 701 (1985).
[45] E. Abdalla and M.C. B. Abdalla, Phys. Lett. 152B, 59

(1985).
[46] P. Di Vecchia and S. Ferrara, Nucl. Phys. B130, 93 (1977);

E. Witten, Phys. Rev. D 16, 2991 (1977).
[47] C. Adam, J. Sanchez-Guillen, and A. Wereszczynski, J.

Math. Phys. (N.Y.) 47, 022303 (2006).
[48] C. Adam, J. Sanchez-Guillen, and A. Wereszczynski, J.

Phys. A 40, 1907 (2007).

NONCOMMUTATIVE NONLINEAR SIGMA MODELS AND . . . PHYSICAL REVIEW D 78, 065020 (2008)

065020-9


