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We propose a method to improve the quenched approximation. The method, based on the worldline

formalism, takes into account effects of quark loops. The idea is mostly useful for AdS/CFT (holographic)

calculations. To demonstrate the method we estimate screening (string breaking) effects by a simple

holographic calculation.
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I. INTRODUCTION

The quenched approximation is a popular method to
estimate QCD quantities on the lattice. By neglecting the
fermionic determinant, it is possible to carry out relatively
cheap and fast calculations. In the AdS/CFT framework
there exists a similar approximation called the ‘‘probe
brane approximation’’, where the flavor-brane backreac-
tion is neglected (the Sakai-Sugimoto model is an example
of such a setup [1]). Quenching is valid in the ’t Hooft
limit, where the number of colors is taken to infinity while
the number of flavors is kept fixed. In the lattice frame-
work, going beyond the quenched theory requires powerful
computers. In the AdS/CFT framework, it is difficult to
take into account the backreaction of the flavor branes.1

In this short letter we propose a simple method to
improve the quenched approximation. The idea is to ex-
pand the fermionic determinant in powers of Wilson loops,
by using the worldline formalism and to keep the leading
and the subleading contributions. The outcome is a simple
way of calculating flavor-sensitive observables in QCD. A
similar idea in lattice gauge theories was suggested a while
ago by Sexton and Weingarten [3].

We expect the method to be useful especially for holo-
graphic calculations. Below we describe our method and
demonstrate its usefulness in a simple example.

II. THE METHOD

Consider a calculation of an observable O in QCD. In
the path integral formalism it can be written, after integra-
tion over the fermions, as follows

hOi ¼ 1

Z

Z
DA�O expð�SYMÞ detði 6D�mÞ: (1)

The quenched approximation is obtained by omitting the
fermionic determinant from the above expression (1)

hOiYM ¼ 1

Z

Z
DA�O exp�SYM: (2)

Thus hOi � hOiYM. For certain quantities the above ap-
proximation (2) turns out to be good. Let us propose a way
of improving it.
We use the worldline formalism [4] in order to express

the fermionic determinant in terms of Wilson loops. The
fermionic determinant is related to the Wilson loop as
follows

detði 6D�mÞ ¼ exp�½A�; (3)

where
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with x�ð0Þ ¼ x�ðTÞ. Thus �½A� is a sum over (super)-
Wilson loops. The sum is over contours of all sizes and
shapes. Large contours are, however, suppressed by the
quark mass, which serves as an IR cutoff. The sum can be
written schematically as �½A� ¼ P

CW. In this notation the
fermionic determinant is

detði 6D�mÞ ¼ exp
X
C

W ¼ X
n

1

n!

�X
C

W

�
n
: (5)

The quenched theory is obtained by approximating the
exponent in (5) by 1. We propose to improve the approxi-
mation by keeping more terms in the above sum (5). In
practice it is easy to add the first term. So, our proposal is

hOi � hOiYM þX
C

hOWiconnYM : (6)

Namely, we suggest to improve the calculation of an ob-
servable O by adding to the quenched value a sum of its
correlator with all possible Wilson loops. The exact
weighting is according to (4). Another comment is that
only connected terms contribute (terms such as hOihWi are
canceled against the denominator of (1)). The present
expansion is different than the hopping expansion. In
particular, it is valid even when the quark mass is small
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1An interesting exception is [2] where a fully backreacted

supersymmetric background was derived.
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and, moreover, it can be used in the perturbative regime
[4].

In order to obtain a better understanding of the expan-
sion (5) and the proposal (6) let us consider the case of
large-N QCD, namely SUðNcÞ Yang-Mills with Nf light

quarks (m� �QCD). The partition functions corresponds

to the vacuum energy. We argue that the expansion is
Wilson loops is an expansion in powers of Nf=Nc. The

fully quenched theory contains only gluons, hence the
leading large Nc contribution to the vacuum energy is
OðN2

cÞ. In order to ‘‘improve’’ the calculation, let us use
our prescription (6). A single Wilson loop expectation
value contributes as OðNcNfÞ. In general, the n-th term

in the expansion (5) contributes to the vacuum energy as
OðN2

cðNf=NcÞnÞ, because each Wilson loop carries a power

ofNf. Therefore, (5) is a systematic expansion in powers of

Nf=Nc. Hence the proposal (6) takes into effect the leading

Nf=Nc corrections.

Our idea is very similar to the idea of Sexton and
Weingarten [3] (see also [5]) who proposed, in the frame-
work of lattice gauge theories, to expand the determinant in
terms of Wilson loops. Note, however, that they focused on
improving the action whereas the present method focuses
on improving the observable.

III. EXAMPLE

Let us consider an example in QCD. We wish to dem-
onstrate the screening effect of the light quarks. The ob-
servableO that we choose is a circular fundamental Wilson
loop of large radius R (with R� ��1

QCD). A calculation of

the Wilson loop in the quenched approximation will yield
an area law

hOiYM ¼ exp��A: (7)

The above result (7) can be obtained either by a lattice
simulation, or by a lattice strong coupling expansion cal-
culation [6], or by a holographic calculation of the Wilson
loop [7] in a confining background [8]. Since the theory is
quenched string breaking effects of the full theory are not
visible.

Let us use our method to improve the result (7). We can
demonstrate our method by using either the lattice strong
coupling expansion or by a holographic calculation. We
use the latter. A similar lattice analysis was carried out in
[9]. For simplicity let us choose as a confining Yang-Mills
vacuum an AdS metric with an infrared cutoff

ds2 ¼ du2

u2
þ u2dx2i ; umin < u<1: (8)

A large Wilson loop in this background will exhibit an area
law (7) since the string world sheet will immediately drop
from the AdS boundary to the IR cutoff u ¼ umin and will
‘‘rest’’ there, see Fig. 1.

We now wish to calculate the second term in (6). The
connected two-point function of twoWilson loops, is given
by the minimal area world sheet whose boundaries are the
Wilson loops [10],

hOWiconnYM ¼ exp�SN:G:: (9)

While we formally need to sum over all possible Wilson
loop it is clear from the above expression (9) that the sum
will be dominated by world sheets with minimal surface.
Those are given by Wilson loops which lie close to the
circular Wilson loop O. This is the expected effect of
dynamical quarks in the fundamental representation: they
create a hole in the QCD-string world sheet. The minimal
area is shown in Fig. 2 below. Since the metric near the
boundary is AdS, the minimal area is given by

SN:G: / RL ; (10)

where L is the difference between the radii of the two
Wilson loops. Note that the minimal area is proportional to
the perimeter of O. Thus

X
C

hOWiconnYM � exp��R: (11)

Since the sum is over all sizes of Wilson loops, the value of
� is expected to be ���QCD. Note that we work in the

light quark limit. In this limit it is ‘‘easy’’ to produce pairs
and to screen the external charges. When the quark mass is
large, the exponent exp�m2T in (4) suppresses large
Wilson loops and it is ‘‘difficult’’ to create the large
Wilson loop that screens O. In other words, when m>
�QCD it is difficult to produce pairs.

Altogether the expectation value of the circular Wilson
loop is

hOi ¼ c1Nc exp��Aþ c2Nf exp��R: (12)

UV

IR Cut−Off

FIG. 1. A confining Wilson loop. A holographic calculation by
using an AdS with an IR cutoff background.
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R
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FIG. 2. A correlation function of two Wilson loops hW1W2i.
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c1 and c2 are Oð1Þ coefficients. The prefactor Nc arises
since the Wilson loop expectation value is proportional to
dim R [11]. The correction is proportional to Nf because

the expansion is in powers of Nf=Nc, as discussed in the

previous section. The above expression (12) is exactly
what we expect in QCD. In the absence of quarks, or in
the limitNc ! 1, fixedNf, the theory exhibits an area law.

Incorporating quarks leads to screening. This is reflected

by the second term in (12). Indeed, when �QCDR> logNcNf
the second term in (12) dominates and the QCD-string
breaks.

It will be interesting to carry out a lattice simulation
which uses our method, in order to observe the QCD-string
breaking.

IV. CONCLUSIONS

In this short note we have presented a method to calcu-
late dynamical quark effects by using the lattice quenched
theory (or closed string theory on a curved background).
We expect the prescription (6) to be useful for many other
calculations as well.

We wish to conclude the paper by proposing an exten-
sion of the AdS/CFT dictionary for calculating dynamical
matter effects. The large-N (super-)Yang-Mills theory par-

tition function is dual to type II string theory on a curved
manifold Z ¼ exp�SII [12]. Since Wilson loops are dual
to string world sheets that terminate on the boundary of the
AdS (or other) background [7], we propose that the parti-
tion function of large-N SUðNÞ Yang-Mills theory with an
extra massless flavor in the fundamental representation is
given by

Z ¼ exp~�; (13)

where ~� is the partition function of a string whose world
sheets terminate on the boundary of the space manifold

~� ¼
Z

DxDg exp

�
� 1

4��0

�
Z
d2�

ffiffiffi
g

p
g��@�x

�@�x
�G��

�
: (14)

To be precise, ~� is a sum over connected world sheets with
0, 1, 2,. . . holes on the (AdS, or other) boundary.
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