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We present a model-independent argument showing that massless particles interacting with gravity in a

Minkowski background space can have at most spin two. This result is proven by extending a famous

theorem due to Weinberg and Witten to theories that do not possess a gauge-invariant stress-energy tensor.
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I. INTRODUCTION

The ever-so-many vacua of string theory [1] differ in
almost any conceivable way from one another, yet they all
have something in common: none of them describes a four-
dimensional Minkowski space with massless particles of
spin larger than two. The graviton is always the highest-
spin massless state. Massive particles of any spin do exist,
but they are always composite states, or unstable reso-
nances. More precisely, their mass Ms>2 is always larger
than the string scale MS, and they are not pointlike: they
possess form factors that give them a size L * 1=MS *
1=Ms>2. Hadronic resonances also have a finite, nonzero
size L� 1=M; classical spinning objects of course have
L� 1=M.

We take these facts as hints that high-spin particles
become strongly interacting at a finite energy scale �.
How is � related to the particle mass M and its spin s
and how does the strong coupling regime manifests? In
string theory we can give a concrete answer to this ques-
tion: a multitude of other states of spin less than s exists at
or below the mass M. Their multiplicity is exponential in
M: DðMÞ � expðcM=MSÞ. (c is a numerical constant that
depends on the specific string theory being considered.)
The limitMS ! 0 is singular: it produces an infinite num-
ber of massless states, whose interactions have not yet been
properly understood.

No example exists of a string compactification with a
light high-spin state, i.e. an s > 2 state with massMs>2 �
MS. More generally, no theory is known where particles of
spin s > 2 and mass Ms>2 interact weakly up to an arbi-
trarily high energy scale. In all known examples, regardless
of the precise functional relation linking � to Ms>2, �
vanishes in the massless limit Ms>2 ! 0.

What we said applies to flat Minkowski backgrounds. In
anti-de Sitter (AdS) space, theories with infinitely many
massless particles of arbitrary spin are known [2]. Their
spectrum cannot be consistently truncated to a finite num-
ber of particles. Even more importantly, their interactions
scale as inverse powers of the cosmological constant �, so
the flat-space limit �! 0 is singular. In AdS the cosmo-
logical constant plays the role of the mass scale, which
determines the onset of the strong coupling regime. Thus,

far from being in contradiction with our previous flat-space
examples, AdS models point to the same conclusion: when
the relevant mass scale of our theory goes to zero, be it M

or
ffiffiffiffiffiffij�jp

, a high-spin particle becomes strongly interacting.
In formulas, if we denote by ~M the largest betweenM andffiffiffiffiffiffij�jp

, the effective coupling of the theory at an energy scale
E behaves as

geffðEÞ � Eaþb

Ma� ~Mb
; a; b > 0: (1)

To be general, we introduced another mass scaleM�, which
characterizes possible interactions of the high-spin state
with either itself or other particles. Since all particles
should interact at least with gravity, a universal choice
for M� is the Planck mass MPl.
Equation (1) is motivated by a simple observation: if a

high-spin theory had a well-definedMs>2 ! 0 limit, then it
would be possible to construct massless high-spin theories
interacting at least with gravity. Yet, strong constraints
exist in the literature that forbid this possibility. All known
no-go arguments or theorems have loopholes; the aim of
this paper is to close some of those loopholes.
We will review the main existing no-go theorems on

interacting high-spin theories in Sec. II; in particular, we
will briefly rederive the Weinberg-Witten theorem [3]. By
a suitable weakening of its hypotheses, it will give us the
desired no-go,1 presented in Sec. III. Specifically, Sec. III
presents our argument, showing that particles of spin larger
than two cannot have gravitational interactions in
Minkowski space. The proof parallels the seminal results
obtained in a Lagrangian framework by Aragone and Deser
for spin 5=2 [4]; it extends their results beyond their local
field theory framework, and it generalizes it to arbitrary
spins. Section IV contains a discussion of our result, its
limitations and possible extensions, as well as an applica-
tion of the methods of Sec. III to the simpler case of
charged particles in interaction with massless Abelian

1As for all no-go theorems, ours should be rather called do not
go there. These theorems often allow exceptions, and their
constructive role is precisely to show which avenue one should
not take in the search for self-consistent theories.
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gauge fields. Section IV also puts forward some specula-
tions on how to circumvent our no-go theorem.

II. A BRIEF HISTORY OF NO-GO THEOREMS

An important obstruction to consistent interactions of
high-spin massless particles was derived in 1964 by
Weinberg [5] using general properties of the S matrix.
His result was extended to fermions and specifically to
supersymmetric theories in [6,7].

We shall review nowWeinberg’s result since we will use
later one of its key techniques. Consider an S-matrix
element with N external particles of four-momentum pi,
i ¼ 1; . . .N and one massless spin s particle of momentum
q and polarization vector ��1...�sðqÞ. In the soft limit q!
0, it factorizes as (see Fig. 1)

Sðp1; . . . ;pN;q;�Þ�
XN
i¼1

gi
pi�1

. . .pi�s
��1...�sðqÞ

2piq
Sðp1 .. .pNÞ:

(2)

The polarization vector is transverse and traceless

q��
��2...�sðqÞ ¼ 0; �

��3...�s
� ðqÞ ¼ 0: (3)

It gives a redundant description of the massless particle,
which has only two physical polarizations. Redundancy is
eliminated by demanding that the S matrix is independent
of spurious polarizations

��1...�s

spuriousðqÞ � qð�1��2...�sÞðqÞ;
q��

��1...�s�2ðqÞ ¼ �
��1...�s�3
� ðqÞ ¼ 0:

(4)

Factorization Eq. (2) implies that spurious polarizations
decouple only whenX

i

gipi�1
. . .pi�s�1

¼ 0; 8 pi: (5)

For generic momenta this equation has a solution only in
two cases:
s ¼ 1: In this case Eq. (5) reduces to

P
ig
i ¼ 0, i.e. to

conservation of charge.
s ¼ 2: Eq. (5) becomes

P
ip
i
� ¼ 0 and gi ¼ �. The first

equation enforces energy-momentum conservation, while
the second gives the principle of equivalence: all particles
must interact with the massless spin two with equal
strength �.
For s > 2, Eq. (5) has no solution for generic momenta.

This argument shows that only scalars, vectors, and spin-
two particles interacting at long distance as gravitons can
give rise to long-distance interactions. The argument was
extended to fermions in [6,7], where it was shown that
interacting massless fermions exist only up to spin 3=2.2

Refs. [5–7] rely on the existence of processes in which the
number of spin s particles changes by one unit. This is
necessary to generate long-range interactions for integer s,
but it leaves out the possibility of interacting high-spin
particles with a nonzero conserved charge. In particular,
particles interacting only with the graviton according to the
principle of equivalence are still allowed. Moreover, the
interaction of these particles could be softened by powers
of q� in such a manner as to cancel the offending pole in

Eq. (2). These particles do not generate long-range forces,
but they can still interact.
If we want to exclude completely high-spin massless

particles, we must look for a truly universal interaction,
one that no particle can avoid. The best choice is the
gravitational interaction. Equation (5) shows that the gravi-
ton interacts universally with matter in the soft limit q! 0.
Indeed, Eq. (5) can be taken as the most general form of the
equivalence principle: all matter interacts with the graviton
and in the limit q! 0 the interaction vertex is �hfjT��jii
(jii; jfi are the particle’s initial and final states,
respectively).
Inconsistencies of gravitationally coupled high-spin

massless particles were specifically studied in [4] for s ¼
5=2. It is instructive to review the argument presented
there, since we will extend some of its techniques to a
more general S-matrix framework in Sec. IV. Ref. [4]
writes down a local field theory for a spin 5=2 field,
described by a tensor-spinor  ab, coupled to gravity, de-
scribed by the tetrad e

�
a . To quadratic order in  ab it reads

S ¼
Z
d4xe

�
� 1

2
� ab 6D ab � � ab�b 6D�c ca

þ 2 � ab�bDc ca þ 1

4
� aa 6D bb � � aaDb�c bc

�
:

(6)

The field  ab gives a redundant description of the spin-5=2
state. In the free theory, this redundancy is eliminated by
the gauge invariance

� �� ¼ @��� þ @���; ���� ¼ 0: (7)

Upon covariantization, derivatives are replaced by cova-
riant derivatives, but the gauge transformation is otherwise
unaffected

� ab ¼ Da�b þDb�a; �a�a ¼ 0: (8)

Under the gauge transformation (8) action (6) transforms

FIG. 1. Factorization of S-matrix amplitude in the soft limit
q! 0.

2Spin 3=2 fermions were also shown to interact as the super-
symmetric partners of the graviton, i.e. the gravitini of super-
gravity theory.
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as

�S ¼ �4
Z
d4xe ��a�b cdR

abcd: (9)

So, the action is only invariant in flat-space Rabcd ¼ 0; in
other words, gauge modes decouple only in the free theory.
It is quite immediate to convince oneself that this incon-
sistency cannot be cured by adding nonminimal terms to
action (6) that are both local and regular in the neighbor-
hood of flat space. If the last requirement is removed, as it
is possible in a theory that makes sense, e.g. in anti-
de Sitter space, but which does not allow for a flat-space
limit, then we can not only decouple the gauge modes, but
also write down a consistent theory of high-spin massless
fermions. To achieve consistency beyond the lowest per-
turbative order, one must nevertheless introduce (infinitely
many) new massless states besides the spin 5=2 one.3

The cosmological constant � < 0 appearing in AdS

space defines a mass parameter Oð ffiffiffiffiffiffij�jp Þ. Massive spin
5=2 also evades rather trivially the no-go, since the gauge
invariance is already broken by the mass term present in
the massive analog of Eq. (6). Interacting, massive high-
spin theories are not algebraically inconsistent, but they do
manifest pathologies ranging from superluminal propaga-
tion and ghosts in external coherent fields [8] to strong
coupling behavior at a finite energy scale [9–11]. In fact, in
AdS space one should expect no operational difference
between massless particles and particles with Compton
wavelength �Compton � 1=m larger than the AdS curvature

radius RAdS � 1=�. This expectation is confirmed by the
absence of mass discontinuities in their propagators [12–
15].

Returning now to massless particles in asymptotically
Minkowski space, we could imagine that the inconsistency
evidenced by Eq. (9) is due to the most important implicit
assumption inherent to the Lagrangian formalism: locality.
Equations (6) and ff assume a standard kinetic term for
 ab, and local interactions. Could it be that a carefully
chosen form factor for gravitational interactions, tanta-
mount to some reasonable nonlocality in the Lagrangian
can cure the problem? How does our result depend on the
field representation chosen for the spin 5=2 particle? Could
a nonminimal description, involving a larger gauge invari-
ance than that in Eqs. (7) and (8) be consistent after all? To
answer all these questions, we must use a truly universal
formalism, dealing with matrix elements of observables. In
other words, we should go back to the S-matrix language
and use it to analyze an unavoidable interaction: scattering
of massless particles off soft gravitons.

This analysis was done in [3], where a particular matrix
element was considered: elastic scattering of a spin s

massless particle off a single soft graviton. The initial
and final polarizations of the spin s particle are identical,
say þs, its initial momentum is p and its final momentum
is pþ q. The graviton is off shell with momentum q. The
matrix element is

hþs; pþ qjT��j þ s; pi: (10)

In the soft limit q! 0 the matrix element is completely
determined by the equivalence principle. Using the rela-
tivistic normalization for one-particle states hpjp0i ¼
2p0ð2	Þ3�3ðp� p0Þ, we get

lim
q!0

hþs; pþ qjT��j þ s; pi ¼ p�p�: (11)

Since q is spacelike, there exists a frame —the ‘‘brick
wall’’ frame—in which

p� ¼ ðjqj=2;q=2Þ; q� ¼ ð0;�qÞ;
p� þ q� ¼ ðjqj=2;�q=2Þ: (12)

A rotation Rð
Þ by an angle 
 around the q direction acts
on the one-particle states as

Rð
Þjp;þsi ¼ expð�i
sÞjp;þsi;
Rð
Þjpþ q;þsi ¼ expð	i
sÞjpþ q;þsi; (13)

since Rð
Þ is a rotation of 
 around p but of �
 around
pþ q ¼ �p. Under space rotations, T�� decomposes into

two real scalars, one vector and one symmetric traceless
tensor. In the standard basis where the commuting varia-
bles are the total angular momentum and its projection
along the axis q, these field are represented by spherical
tensors: T0;0, T1;m, m ¼ 0, �1 and T2;m, m ¼ 0, �1, �2.
Here, we have combined the two real scalars into a com-
plex scalar. In this basis, one gets the trivial identity

e�2i
shþs; pþ qjTj;mj þ s; pi
¼ hþs; pþ qjRyTj;mRj þ s; pi
¼ ei
mhþs; pþ qjTj;mj þ s; pi: (14)

For s > 1, the only solution to this equation is hþs; pþ
qjT��j þ s; pi ¼ 0.

If T�� is a tensor under Lorentz transformations, then

Eq. (14) implies that the matrix-element (10) vanishes in
all frames, in contradiction with the equivalence principle
Eq. (11)!
The crucial assumption here is that T�� (better, its

matrix element between massless spin s states) is a
Lorentz tensor. The assumption is far from innocuous. In
particular, neither the gravitino (spin 3=2) nor the graviton
(spin 2) satisfy this hypothesis [3]. This happens because
both spin 3=2 and spin two have gauge invariances (local
supersymmetry and diffeomorphisms, respectively) and
their stress-energy tensor is not gauge invariant. The
stress-energy tensor derived from Lagrangian higher-spin

3Literature on this subject is vast and complex.
Comprehensive reviews of (bosonic) high-spin theories in
AdS, with extended bibliography, can be found in [2].
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theories exhibits the same phenomenon: to achieve gauge
invariance one must forgo manifest Lorentz covariance
[16].

In fact, non-Lorentz covariance of gauge noninvariant
operators is a familiar fact in field theory. The simplest
example is offered by the matrix element of the electro-
magnetic gauge potential A� in between the vacuum and a

one-photon state h0jA�js; pi (s ¼ �1). One can always

choose a complete set of polarization vectors for A� such

that h0jA0js; pi ¼ 0. A Lorentz boost L leaves the vacuum
invariant and transforms the one-particle state as Ljs; pi ¼
exp½i
ðL; pÞs
js; pi; therefore, h0jLyA0Ljs; pi ¼
exp½i
ðL; pÞs
h0jA0js; pi ¼ 0 in all frames. This is of
course incompatible with the transformation law of a
Lorentz vector. Indeed, a Lorentz boost transforms inho-
mogeneously the matrix element. In infinitesimal form, the
transformation law is a standard Lorentz transformation
plus a compensating gauge transformation

�!h0jA�js; pi ¼ !�
�h0jA�js; pi þ p��ðp;!Þ: (15)

One can define matrix elements for A� that transform as

Lorentz vectors, but only at the price of introducing non-
physical states that correspond to spurious polarizations.
Likewise, one can define T�� matrix elements that trans-

form as Lorentz tensors by introducing spurious polariza-
tions. These facts are the crucial ingredient in our treatment
of high-spin massless fields.

III. AN IMPROVED NO-GO THEOREM

To replace Eq. (10) with a Lorentz covariant matrix
element we need extra spurious states, besides the physical
ones given in Eq. (13). These states mix with physical
polarizations under Lorentz transformations:
vphys ! vphys þ vs.

4 Physical and spurious states together

thus span a reducible but not block-diagonal representation
of the Lorentz group. Spurious states must decouple from
all physical matrix elements and, in particular, from
S-matrix amplitudes. If we denote with v all one-particle,
spin s states, whether or not spurious, the matrix element is
hv0; pþ qjT��jv; pi. It is not an S-matrix element yet,

since the graviton (and only the graviton) is off shell. A
convenient method to derive the S matrix is to perform the
standard perturbative expansion of the effective action

A ¼ 1

16	G

Z
d4x

ffiffiffiffiffiffiffi�gp
RðgÞ þ 1

2

Z d4q

ð2	Þ4 h
�
��ðqÞ

� ½hv0; pþ qjT��jv; pi þT ��
 þOðh2Þ: (16)

The standard Einstein action with Newton’s constantG and
metric g�� has been supplemented here with certain inter-

action terms, written in a perturbative expansion around

flat-space (g�� ¼ ��� þ h��). The linear interaction

terms include our matrix element and another effective
stress-energy tensor T ��, which summarizes the effect

of any other matter field. Equation (16) is not only a
convenient bookkeeping device, but it also gives us the
most general condition for the decoupling of a spurious
polarization vs. Decoupling occurs when one can reabsorb
the change in the matrix element due to the substitution
v! vþ vs with a local field redefinition of the graviton
field h��. This happens because the S matrix is indepen-

dent of such redefinition [17]. To linear order in h��,

Einstein’s equations become

L��
��h��ðqÞ ¼ 16	G½hv0; pþ qjT��jv;pi þT ��
;
L��

�� ¼ �����q2 �����
��q2 ����q�q

�����q�q
�

þ���q�q�þ���q
�q�: (17)

To the same order, we then get a necessary condition for
the consistency of gravitational interactions of high-spin
massless particles

hv; pþ qjT��jvs; pi ¼ L��
�����ðqÞ; (18)

with ���ðqÞ analytic in a neighborhood of q ¼ 0. The

required field redefinition is h�� ! h�� þ 16	���ðqÞ.
Equation (18) weakens the hypotheses of the Weinberg-

Witten theorem by allowing the matrix element to depend
nontrivially on spurious polarizations. In Lagrangian lan-
guage, this means that the stress energy is not separately
gauge invariant, though the action is. TheWeinberg-Witten
result is recovered by demanding the stronger condition
���ðqÞ ¼ 0, i.e. gauge invariance.

Equation (18) does not guarantee the existence of a
consistent theory, since inconsistencies can show up in
contact terms atOðh2Þ, but if not satisfied it signals a lethal
inconsistency, since in that case no amount of extra fields
or extra interactions can cancel the vs dependent change in
the action. Notice that while ���ðqÞ must be analytic in q

for small q, no such requirement holds for the matrix
element itself. This is a first advantage of the S-matrix
formalism over the Lagrangian analysis of Ref. [4], which
we summarized in Sec. II. In a Lagrangian framework one
must necessarily assume locality of the matrix element
itself; moreover, one is still left with the doubt that a field
redefinition of  �� may change the analysis. In our case,

since the initial and final spin s states are on shell, no such
redefinition exists.
The last observation also answers another question about

the generality of our result: can it depend on the particular
choice of spurious states we are going to make? No, it
cannot. A nonminimal choice of spurious states means to
introduce a larger set of them, which we can denote with
fVsg. By setting some of them to zero, we go back to our
minimal choice (to be defined shortly), fvsg � fVsg.

4We saw this phenomenon at work in the case of spin one in
Eq. (15).
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Independence of fVsg thus implies independence of all vs,
which implies Eq. (18).

A. Fermions

The matrix-element hv0; pþ qjT��jv; pi is bilinear in v,
v0, and it otherwise depends only on the momenta. For spin
s, the minimum set of spurious states needed to write a
nonzero conserved, symmetric tensor is given by Dirac
spinor-tensors v;�1...�n

ðpÞ, s ¼ nþ 1=2. They are sym-

metric in the vector indices �1; . . . ; �n and satisfy the
constraints

p6 v�1;...�n
ðpÞ¼ 0; p�1v�1;...�n

ðpÞ¼ 0; ��1v�1;...�n
ðpÞ:
(19)

We are interested in initial and final states with the same
physical helicityþs, so on the representatives of the initial
state (u) and final state (v) we impose

�5u�1;...�n
ðpÞ ¼ u�1;...�n

ðpÞ;
�5v�1;...�n

ðpþ qÞ ¼ v�1;...�n
ðpþ qÞ: (20)

In the kinematical configuration of interest, there exist
two independent lightlike vectors: p and pþ q. The space-
like vector q can be used to define nþ 1 algebraically
independent spinor tensors

uk�1;...;�k
ðpÞ � q�kþ1 . . . q�nu�1;...�n

ðpÞ; k ¼ 0; . . . ; n:

(21)

Their algebraic independence is verified by writing down
their explicit parametrization in the brick wall frame
Eq. (12). Introduce first of all vector polarizations � and
an on-shell spinor �

�3� ¼ ð�1; 1; 0; 0Þ; ��� ¼ ð0; 0; 1;�iÞ;
�5� ¼ �; ð�0 � �1Þ� ¼ 0:

(22)

The last equation is the on-shell condition p6 �ðpÞ ¼ 0; the
last two conditions imply ð�2 þ i�3Þ� ¼ 0. The nþ 1
spinor tensors

uðkÞ�1;...�n
� �þð�1

. . . �þ�k
�3�kþ1

�3�nÞ�; k ¼ 0; . . . ; n (23)

are evidently linearly independent, they satisfy the con-
straints (19) and (20) and obey

uðkÞl�1;...�l
� q�lþ1 . . . q�nuðkÞ�1;...�n

�¼ 0 for l < k;
� 0 for l  k:

(24)

The triangular linear system (24) defines nþ 1 indepen-
dent spinor tensors. Equation (21) or (24) parametrize one
physical polarization of helicity s ¼ nþ 1=2 and n spu-
rious polarizations with s ¼ 1=2; . . . ; n� 1=2.5

Constraints (19) and (20) and the on-shell condition on
momenta, p2 ¼ ðpþ qÞ2 ¼ 0, vastly reduce the possible
terms in the matrix element of interest. A short reflection
suffices to convince oneself that its most general form is

hv; pþ qjT��ju; pi ¼
Xn
k¼0

Ak �vkðpþ kqÞð���Þuk

þ Xn
k¼1

Bk �vkð���Þu
k�1

þ Xn
k¼1

Ck �vk�1
ð� ��Þuk: (25)

The coefficients Ak, Bk, Ck, and k are functions of q2,
which in principle can be singular at q2 ¼ 0. A first con-
straint on the singularity is due to the principle of equiva-
lence that demands

lim
q!0

hv; pþ qjT��ju; pi ¼ p�p�: (26)

This equation implies

lim
q!0

AnðqÞ ¼ 1; (27)

lim
q!0

AkðqÞq2ðn�kÞ ¼ 0; k < n; (28)

lim
q!0

kðqÞAkðqÞq2ðn�kÞ�1 ¼ 0; (29)

lim
q!0

BkðqÞq2ðn�kÞþ1 ¼ 0; (30)

lim
q!0

CkðqÞq2ðn�kÞþ1 ¼ 0: (31)

Conservation of T�� implies that the matrix-element (25)

is divergenceless

q�hv; pþ qjT��ju; pi ¼ 0: (32)

This yields the further constraints

Akðk� 1=2Þq2 þBkþ1 þCkþ1 ¼ 0; k¼ 0; . . . ; n� 1;

(33)

lim
q!0

nðqÞ ¼ 1=2; lim
q!0

AnðqÞ ¼ 1: (34)

Though not strictly necessary to prove our result, Eq. (34)
is useful since it simplifies the structure of the matrix
element. In particular, together with the mass-shell con-
ditions (19) it makes the matrix element transverse and
traceless.
In reality, constraints (27)–(31) are too weak, because if

any of the coefficients Ak, Bk, Ck, and kAk had a singu-
larity 1=q2,6 then vertex (25) would imply the existence of

5s < 0 states are eliminated by the chirality projection
�5u�1;...�n

¼ u�1;...�n
.

6For instance AkðqÞ ¼ AkrðqÞq�2, AkrðqÞ ¼ regular and nonzero
at q2 ¼ 0.
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another massless spin two field (it couples to a transverse-
traceless vertex!), which mixes linearly with the graviton.
This linear mixing contradicts Weinberg’s uniqueness the-
orems for soft gravitons [18]. It also violates the principle
of equivalence—which we assumed (and need) to prove
our theorem—either because it implies the existence of a
second massless graviton that couples only to some type of
matter (massless high spin) or because it resums to give the
graviton a mass. A singularity stronger than 1=q2 is even
worse, since it implies the existence of a spin two ghost
mixing linearly with the ordinary graviton (see Fig. 2). We
have introduced extra polarizations to ensure that the T��
matrix element transforms covariantly. Now we must
check under which conditions spurious polarizations do
decouple. Spurious states have the form

us�1...�n
ðpÞ ¼ pð�1

��2...�nÞ; (35)

where ��1...�n�1
is on shell, transverse, and gamma trans-

verse. For the spurious state (35), the spinor tensors given
in Eq. (21) have the form

uks�1...�k
ðpÞ ¼ pð�1

�k�1
�2...�kÞ � ðn� kÞ q

2

2
�k�1...�k

;

�k�1...�k
� q�kþ1 . . .q�n�k�1...�n

:

(36)

Matrix-element (25) is transverse and traceless, therefore
the decoupling condition (18) simplifies to

hv; pþ qjT��jus; pi ¼ q2���ðqÞ: (37)

Substitution of Eqs. (35) and (36) into Eq. (25) then yields
a set of recursion relations among the coefficients
Ak; . . . ; Ck

�kAk�q2

2
ðnþ1�kÞAk�1þCk¼Oðq2Þ; k¼ 1; . . . ;n;

(38)

�kkAk�q2

2
ðnþ1�kÞkAk�1 ¼Oðq2Þ; k¼ 1; . . . ;n;

(39)

� ðk� 1ÞBk � q2

2
ðnþ 2� kÞBk�1 ¼ Oðq2Þ;

k ¼ 2; . . . ; n;

(40)

� ðk� 1ÞCk � q2

2
ðnþ 1� kÞCk�1 ¼ Oðq2Þ;

k ¼ 2; . . . ; n:

(41)

As we have seen earlier, no coefficient in Eq. (25) can be
more singular than 1=q2. So in particular

lim
q!0

q2C1ðqÞ ¼ lim
q!0

q2A0ðqÞ ¼ 0: (42)

Recursion relations (38) and (41) then imply

lim
q!0

AnðqÞ ¼ 0; n > 1; (43)

in contradiction with Eq. (27), Anð0Þ ¼ 1, which is nothing
else than the equivalence principle!
This completes our proof: only when spurious polar-

izations decouple from the cubic vertex (25) a chance
exists for massless high-spin fields to interact with gravity,
but decoupling contradicts the universality of gravitational
interactions!
Our argument rules out interactions for fermions of spin

s > 3=2. It still allows for gravitational interactions of spin
3=2 particles. This is not surprising since supergravity
theories provide many examples of massless spin 3=2
particles consistently interacting with gravity and other
fields.
Notice that our argument does not rule out exotic high-

spin interacting theories, but it shows that these theories do
not have any common interaction with physical matter,
which must interact with gravity universally.
Notice too that our argument relies crucially on the exact

masslessness of the graviton. In the conclusions, we will
briefly discuss the dynamics of high-spin massless parti-
cles in theories where gravity changes in the infrared, as in
massive gravity or in the Dvali-Gabadadze-Porrati model
[19].

B. Bosons

The proof of our theorem in the bosonic case parallels
that which we gave for fermions. Polarizations are now
described by the on-shell, symmetric, transverse, and trace-
less tensors

U�1...�s
ðpÞ; p�1U�1...�s

ðpÞ ¼ U�2
�2...�s

ðpÞ ¼ 0: (44)

Spurious polarizations read

U�1...�s
ðpÞ ¼ pð�1

��2...�sÞ; p�2��2...�s
¼ ��3

�3...�s
¼ 0:

(45)

In complete analogy with the fermion treatment, we use
contraction with q� to define

FIG. 2. A singular vertex implies the existence of an additional
massless particle mixing with the graviton.
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Uk
�1...�k

ðpÞ ¼ q�kþ1 . . . q�sU�1...�s
ðpÞ; �k�1...�k

¼ q�kþ1 . . . q�s�1��1...�s�1
: (46)

Contraction of the spurious polarizations defined by Eq. (45) results in

Uk
�1...�k

ðpÞ ¼ kpð�1
�k�1
�2...�kÞ � ðs� kÞq

2

2
�k�1...�k

: (47)

The most general form of the matrix-element hV; pþ qjT��jU;pi is now

hV; pþ qjT��jU;pi ¼
Xs
k¼0

Ak

2
ðp�p� þ 2kp�q� þ ~kq�q� þ ̂k���Þ �VkUk þ Xs�1

k¼0

Bkðp� þ �kq�Þ �Vkþ1
� Uk

þ Xs�1

k¼0

Ckðp� þ �kq�Þ �VkUkþ1
� þ Xs�1

k¼0

Dk �Vkþ1
� Ukþ1

� þ Xs�2

k¼0

Ek �Vkþ2
�� U

k þ Xs�2

k¼0

Fk �VkUkþ2
�� : (48)

By contracting expansion (48) with q� and equating all
algebraically independent terms to zero, we enforce con-
servation of the stress-energy tensor. As for fermions,
while not necessary to prove our result, q� transversality
somewhat simplifies the algebra. Specifically, vanishing of
terms proportional to �Vkþ1

� Uk yields the equation

Bkð�k � 1=2Þq2 þDk þ Ek ¼ 0; k � s� 1; (49)

where we defined Es�1 � 0. Setting to zero terms propor-
tional to �VkUkþ1

� we get

Ckð�k� 1=2ÞþDkþFk ¼ 0; k� s� 1; Fs�1 � 0:

(50)

Finally, vanishing of terms proportional to p� �VkUk im-
plies

Asðs � 1=2Þ ¼ 0;

Akðk � 1=2Þq2 þ Bk þ Ck ¼ 0; k � s� 1;

(51)

while vanishing of terms proportional to q� �VkUk results in

As½̂s þ q2ð~s � s=2Þ
 ¼ 0;

Ak½̂k þ q2ð~k � k=2Þ
 þ Bk�k þ Ck�k ¼ 0;

k � s� 1:

(52)

Matrix-element (48) is traceless for

A0̂0 ¼ B0=4; Aŝs ¼ �Ds�1=4;

Ak̂k ¼ ðBk �Dk�1Þ=4; k ¼ 1; . . . ; s� 1:
(53)

A generic conserved symmetric tensor can be decomposed
into a transverse-traceless (TT) part and a scalar remnant
as ��� ¼ �TT

�� þ ðq�q� � q2���Þ�S. Of course, if spu-
rious polarizations decouple, they do so separately in the
TT and S parts of matrix element (48); therefore, we can
assume as well that it is traceless. In this case, the most
general condition for decoupling is Eq. (37), again with
���ðqÞ analytic at q ¼ 0.

Substituting the spurious polarizations (47) into Eq. (48)
and equating all algebraically independent terms in the
latter to q2���ðqÞ, we get several constraints on the

small-q behavior of the coefficients Ak; . . . ; Fk and
k; . . . ; �k. In particular, terms proportional to p�p� �V

k�k

give the condition

Ck � ðkþ 1ÞAkþ1 � ðs� kÞ q
2

2
Ak ¼ Oðq2Þ;

k ¼ 0; . . . ; s� 1:

(54)

Terms proportional to pð� �Vk�1�k�Þ give

ðkþ 1ÞCkþ1 � ðs� k� 1Þ q
2

2
Ck þ Ek ¼ Oðq2Þ;

k ¼ 0; . . . ; s� 2:

(55)

Finally, terms proportional to �Vkþ1
�� �

k�1 give

ðkþ 1ÞEkþ1 þ ðs� kÞq
2

2
Ek ¼ Oðq2Þ;

k ¼ 0; . . . ; s� 3:

(56)

Notice that we need s  3 to obtain this full set of
equations.
As in the fermionic case, the coefficients Ak; . . . ; Fk can

be singular in the q! 0 limit, but they must diverge less
than 1=q2. In this case, Eq. (56) implies

lim
q!0

Es�2ðqÞ ¼ 0: (57)

The vanishing of Es�2 in the soft limit q! 0 and Eq. (55)
then imply

lim
q!0

Cs�1ðqÞ ¼ 0: (58)

Substituting this last equation into (54) we arrive at the
main result of this subsection

lim
q!0

AsðqÞ ¼ 0: (59)

The vanishing of As at zero graviton momentum is in
contradiction with the equivalence principle, which de-
mands limq!0A

sðqÞ ¼ 1. So, massless bosons of spin s 
3 cannot couple with gravity. It is straightforward to check
that the set of Eqs. (48)–(55) has a solution satisfying the
correct soft limit dictated by the principle of equivalence
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for s ¼ 2. This is possible thanks to the fact that for s ¼ 2
there is one less constraint to satisfy, namely, Eq. (56).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we borrowed ideas from the Weinberg-
Witten no-go theorem [3] as well as from known results on
inconsistencies of gravitational coupling of high-spin
massless particles, specifically from Ref. [4], to show
that no massless high-spin particle can be consistently
coupled to gravity in flat space. The theorem exploited a
particular one-graviton matrix element, whose form is
constrained in the soft-graviton limit by the equivalence
principle. We showed that, under fairly general assump-
tions, this constraint is incompatible with the decoupling of
the spurious polarizations that one must necessarily intro-
duce to write down the matrix element in a Lorentz cova-
riant form.

The proof of the theorem was straightforward but not
stunningly elegant. Clumsiness was the price we paid to
allow for some mild nonlocality in the matrix element. In
particular, we did not demand analyticity at q2 ¼ 0 for the
coefficients in our matrix-element expansion Eqs. (25) or
(48). Had we done so, we could have extended the matrix
element to complex values of the momenta and put the
graviton too on shell, since the condition p2 ¼ q2 ¼ ðpþ
qÞ2 ¼ 0 does have nontrivial complex solutions.

A. No Go in the BCFW Construction

Analyticity for complex momenta is one of the main
ingredients in the Britto-Cachazo-Feng-Witten construc-
tion of S-matrix tree-level amplitudes [20]. The use of
complex momenta7 not only allows us to write nonvanish-
ing three-particle on-shell vertices, but it also allows us to
deform two of the momenta in an arbitrary scattering
amplitude along a special complex direction according to
the formula

p1 ! p1 þ zq; p2 ! p2 � zq;

p2
i ¼ piq ¼ q2 ¼ 0; i ¼ 1; 2:

(60)

Any tree-level amplitude now becomes a rational function
of the complex parameter z, with at most simple poles [20].
So, if a particular amplitude vanishes at large z, then it can
be computed by knowing the position of the poles and the
value of the residues. These are on-shell data that are
completely specified by the three-point on-shell vertices.
By applying the BCFW construction to a four-particle
amplitude involving the exchange of a graviton,
Benincasa and Cachazo [21] proved in an elegant manner
that the only massless particles of spin s > 1 that can be
coupled to gravity are the graviton and the gravitino [21],
and that they interact exactly as in supergravity. The most

restrictive assumption in their construction is precisely the
vanishing of the amplitude at large z. This property is far
from obvious. It requires extra assumptions on the theory
under consideration, in addition to Lorentz and gauge (or
diffeomorphism) invariance [22]. We chose instead to keep
our argument general even at the price of weakening our
result.
One notable weakness of our argument is that it does not

forbid the existence of more than one graviton; convincing
arguments against this possibility have been given in the
literature [18,23]. Its main strength is that it does not rely
on a particular field parametrization or on assuming a
specific Lagrangian realization of the high-spin particle,
since the only off-shell particle in the matrix-element
hv; pþ qjT��ju; pi is the graviton itself.

Our theorem does rely on one property of the graviton:
its masslessness. If the graviton were massive, or if its
propagator were modified in the infrared—as in [19], for
instance—then our theoremwould not obtain. That alone is
not sufficient to make gravitational interactions of high-
spin massless fields consistent. Indeed, if the graviton was
massive, one could integrate it out to obtain an effective
theory valid for momenta lower than the graviton mass.
The integration would unavoidably result in four-particle
interactions involving the high-spin states. No example of
consistent interactions of this type exists for spin s > 2.
Indeed, theorems proving the opposite in fairly general
cases have been already given in the literature [24–26].
Of course, massive particles of spin larger than two do

exist and their gravitational interactions do obey the prin-
ciple of equivalence. In the case of massive particles,
spurious polarizations (vs) become indistinguishable
from physical longitudinal polarizations (vl) at energies
E� m8

vl ¼ 1

m
vs þOðm=EÞ; (61)

with vs given by Eq. (35) for fermions or Eq. (45) for
bosons. Instead of signaling an inconsistency of the theory,
now the nondecoupling of vs signals the onset of a strong
coupling regime, since the matrix elements depend on
inverse powers of the mass. The same property ensures
that the massless limit is singular, as announced in the
Introduction. One could try to cure this pathology by
modifying the matrix elements by terms that explicitly
depend on inverse powers of m [9,10]. Such terms do
cancel mass singularities in hv; pþ qjT��jul; pi [9,10],

but they also introduce additional singularities in previ-
ously regular matrix elements; namely T�� matrix ele-

ments between transverse states, i.e. states of highest
helicity �s.
Massless particles in anti-de Sitter space-time are for all

purposes indistinguishable from very light massive parti-

7Or equivalently the use of a space-time(s) metric of signature
(2, 2).

8In renormalizable gauge theories this property is known as the
Goldstone equivalence theorem [27,28].
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cles. The physical reason is that the curvature radius of
AdS, RAdS, acts as an IR cutoff effectively decoupling
particles with larger Compton wavelength. Technically,
this can be seen in the absence of mass discontinuities in
the m! 0 limit of the massive propagator [9,13,14]. In
accordance with this expectation and with the existence of
interacting massive particles, theories of massless interact-
ing high-spin particles have been proposed [2]. Also in
accordance with our expectations is the fact that these
theories become strongly interacting at E� 1=RAdS, i.e.
at the lowest energy for which one can localize a particle
within the AdS Hubble radius. What this means for the
ultimate viability of such theories is yet to be properly
understood.

B. Limit on the Abelian gauge coupling of high-spin
particles

Our proof is easily adapted to constrain the coupling of
charged massless particles to Uð1Þ gauge fields. We derive
here the constraints for fermionic particles only, in order to
spare the reader further tedium, and because this example
already teaches us a most important lesson. The most
general helicity-conserving matrix element of a Uð1Þ cur-
rent between on-shell spin s states is

hv;pþ qjJ�ju;pi ¼
Xn
k¼0

Ak �vk��u
k; s¼ nþ 1=2: (62)

This matrix element is automatically conserved because
both u and v obey the massless Dirac equation. When the
Uð1Þ gauge vector is massless, spurious polarizations de-
coupling requires

hv; pþ qjJ�jus; pi ¼ q2��ðqÞ; (63)

with ��ðqÞ analytic at q2 ¼ 0. Substitution of the spurious

polarization (35) into Eqs. (62) and (63) gives the condition

Akþ1 � ðn� kÞq
2

2
Ak ¼Oðq2Þ; k¼ 0; . . . ; n� 1: (64)

The charge of the high-spin state is defined [3] by

e ¼ lim
q!0

AnðqÞ: (65)

Since all coefficients Ak must be less singular than q2, the
decoupling condition Eq. (64) implies e ¼ 0 for n  1, i.e.
spin s  3=2. This result is in accordance with supergrav-
ity, which indeed allows massless gravitini to have dipole
and higher-multipole interactions in flat space, but not
nonzero Uð1Þ charges. Charged spin-3=2 fields require
either a mass9 or a cosmological constant [29]. The result
obtained here is also weaker than our main result on
gravitational coupling. Indeed, positivity of energy forbids
the existence of a particle with no energy but gravitational
multipole coupling. Neutral massless particles with dipole

or multipole electromagnetic coupling are instead a rather
mundane possibility. There is one final aspect of charged
particle dynamics that is not captured by our analysis.
Standard renormalization group analysis says that
Abelian interactions are free in the IR, so the IR charge
of any massless particle is always zero. In a certain sense,
our theorem rules out only a part of those theories that are
already ruled out by the renormalization group properties
of unbroken Abelian gauge theories.
We would like to conclude with a speculation. It seems

that ‘‘normal’’ massless particles can exist only for spin not
larger than two. On the other hand, it could be possible that
high-spin fields do not obey some of the most basic prop-
erties of normal particles. Could it be that they do not obey
the principle of equivalence, yet they still interact with
gravity through gravitational multipoles, as neutral parti-
cles can do when coupled to Uð1Þ fields? At the level of
trilinear interactions the answer is in the affirmative [30].
Yet, the cubic vertex of [30], or any other vertex that may
have been proposed in the literature, cannot be extended
beyond cubic order: Weinberg’s theorem [5] forbids it.10

This is seen by applying Weinberg’s factorization argu-
ment, reviewed in Sec. II, to a vertex with two spin s
particles and two gravitons. In the limit that one of the
two gravitons becomes soft, Eq. (5) implies that all other
particles in the vertex must have the same gravitational
charge, say gg ¼ gs ¼ g0s ¼ 1. This is true when the soft

graviton ends on the external hard graviton. In this case, the
identity gg ¼ 1 means simply that the graviton self-

interacts in accordance with the principle of equivalence.
On the other hand, when the soft graviton ends on either of
the two spin s lines, our general argument (and, of course,
the explicit vertex in Ref. [30]) gives gs ¼ g0s ¼ 0.
So, if high-spin massless fields do interact at all with

normal matter, they cannot couple to any of its local
degrees of freedom. They would have to couple to unusual,
global degrees of freedom. This is not impossible since
similar objects have already appeared in field theory. For
instance, singleton fields in AdS, which carry no bulk
degree of freedom [31]; the graviton of 3-D gravity [32]
and BF fields in various dimensions ([33] and references
therein), which also propagate no local degrees of freedom,
etc. Maybe high-spin massless fields could constitute a new
type of highly unusual, ‘‘quasitopological’’ matter. Some
positive hints that this may be true come from the study of
the massless limit of Witten’s open string field theory [34].
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