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The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a

most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It

has been shown that the same ‘‘initial entanglement’’ for the state parameter � and its ‘‘normalized

partners’’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
will be degraded by the Hawking effect with increasing Hawking temperature along

two different trajectories except for the maximally entangled state. In the infinite Hawking temperature

limit, corresponding to the case of the black hole evaporating completely, the state no longer has

distillable entanglement for any �. It is interesting to note that the mutual information in this limit is

equal to just half of the ‘‘initially mutual information.’’ It has also been demonstrated that the fidelity of

teleportation decreases as the Hawking temperature increases, which indicates the degradation of

entanglement.
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I. INTRODUCTION

The quantum information theory in the relativistic
framework has received considerable attention due to its
theoretical importance and practical application [1–3].
Especially, more and more efforts have been expended
on the study of quantum entanglement in a relativistic
setting because people consider the entanglement to be a
major resource for quantum information tasks such as
quantum teleportation, quantum computation, and so on
[4]. With the intention of studying the entanglement be-
tween accelerated observers, the fidelity of teleportation
between two parties in relative uniform acceleration was
discussed by Alsing et al. [5,6]. Ge et al. extended the
gravitational field of the teleportation to the four and higher
dimensional spacetimes, and even explicitly discussed
what effects the shape of the cavity in which particles are
confined has on the teleportation in a black hole spacetime
[7,8]. In order to further investigate the observer-dependent
character of the entanglement, Fuentes-Schuller et al. an-
alyzed the entanglement between two modes of a non-
interacting massless scalar field when one of the
observers describing the state is uniformly accelerated
[9]. And then Alsing et al. calculated the entanglement
between two modes of a free Dirac field described by
relatively accelerated parties in a flat spacetime [10].
Their results [9,10] also showed that the different type of
field will have a qualitatively different effect on the deg-
radation of entanglement produced by the Unruh effect
[11,12]. More recently, Ahn et al. extended the investiga-
tion to the entanglement of a two-mode squeezed state in
Riemannian spacetime [13], Ling et al. discussed the en-

tanglement of an electromagnetic field in noninertial ref-
erence frames [14], and Adesso et al. investigated the
distribution of entanglement between modes of a free
scalar field from the perspective of observers in uniform
acceleration [15].
As a further step along this line, we will provide an

analysis of the entanglement for the scalar field in the
spacetime of a most general, static, and asymptotically
flat black hole with spherical symmetry. It seems to be an
interesting study to consider the influences of the Hawking
effect [16–18] on the quantum entangled states and show
how the Hawking temperature will change the properties of
the entanglement and teleportation. Choosing a generically
entangled state as the initially entangled state for two
observers in the flat region of this black hole, we will
also try to see what effects the uncertain entangled state
will have on the degradation of entanglement in our
scheme due to the presence of an arbitrary state parameter.
Our scheme proposes that the two observers, Alice and
Bob, share an initially entangled state at the same initial
point in flat Minkowski spacetime before the black hole is
formed. After the coincidence of Alice and Bob, Alice
stays stationary at the asymptotically flat region, while
Bob falls in toward the mass and then hovers outside of
it. Once Bob is safely hovering outside of the object at
some constant acceleration, let it collapse to form a black
hole. By Birkhoff’s theorem [19] this will not change the
metric outside of the black hole and therefore will not
change Bob’s acceleration. Thus, Bob’s detector registers
only thermally excited particles due to the Hawking effect
[20,21]. In order to investigate the teleportation between
two modes of a scalar field as detected by the two observ-
ers, we assume that Alice and Bob each hold an optical
cavity which is small and perfect for the teleportation in the*Corresponding author; jljing@hunnu.edu.cn
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black hole spacetime. Just as suggested by Refs. [5,6], we
further suppose that each cavity supports two orthogonal
modes, with the same frequency, which are each excited to
a single photon Fock state at the coincidence point for
Alice and Bob. Different from the standard teleportation
protocol, our scheme assumes that Bob hovers outside of
the object before it collapses, and turns on his detector after
the formation of the black hole. Then, Bob can check to see
whether any thermal photons have been excited in his local
cavity using the nonabsorbing detector.

The organization of this paper is as follows. In Sec. II we
discuss the vacuum structure of the background spacetime
and the Hawking effect for the scalar particles as experi-
enced by the observer outside the black hole. In Sec. III we
analyze the effects of the Hawking temperature on the
entanglement between the modes for the different state
parameter. In Sec. IV we describe the process of the tele-
portation between Alice and Bob, and calculate the fidelity
of teleportation. We summarize and discuss our conclu-
sions in the last section.

II. VACUUM STRUCTURE AND HAWKING
RADIATION OF SCALAR FIELD

It is well known that the spherically symmetric line
element of a static and asymptotically flat black hole
such as the Schwarzschild black hole, the Reissner-
Nordström black hole [22], the Garfinkle-Horowitz-
Strominger dilaton black hole [23], the Casadio-Fabbri-
Mazzacurati brane black hole [24], and so on can be
written in the form

ds2 ¼ fðrÞdt2 � 1

hðrÞdr
2 � R2ðrÞðd�2 þ sin�2d’2Þ; (1)

where the functions fðrÞ and hðrÞ vanish at the event
horizon r ¼ rþ of the black hole. Throughout this paper
we useG ¼ c ¼ @ ¼ �B ¼ 1. It is obvious that the surface

gravity of the event horizon is determined by � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrþÞh0ðrþÞ

p
=2. Defining the tortoise coordinates r� as

dr� ¼ dr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞp

, we can rewrite the metric (1) as

ds2 ¼ fðrÞðdt2 � dr2�Þ � R2ðrÞðd�2 þ sin�2d’2Þ: (2)

The massless scalar field  satisfies the Klein-Gordon
equation

1ffiffiffiffiffiffiffi�gp @

@x�

� ffiffiffiffiffiffiffi�gp
g��

@ 

@x�

�
¼ 0: (3)

After expressing the normal mode solution as [12,25]

 !lm ¼ 1

RðrÞ�!lðrÞYlmð�;’Þe
�i!t; (4)

we can easily get the radial equation

d2�!l
dr2�

þ ½!2 � VðrÞ��!l ¼ 0; (5)

with

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞp
RðrÞ

d

dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

q dRðrÞ
dr

�
þ lðlþ 1ÞfðrÞ

R2ðrÞ ;

(6)

where Ylmð�; ’Þ is a scalar spherical harmonic on the unit
twosphere. Solving Eq. (5) near the event horizon, we
obtain the incoming wave function which is analytic every-
where in the spacetime manifold [25]

 in;!lm ¼ e�i!vYlmð�;’Þ; (7)

and the outgoing wave functions for the inside and outside
region of the event horizon

 out;!lmðr < rþÞ ¼ ei!uYlmð�; ’Þ; (8)

 out;!lmðr > rþÞ ¼ e�i!uYlmð�; ’Þ; (9)

where v ¼ tþ r� and u ¼ t� r�. Equations (8) and (9)
are analytic inside and outside the event horizon, respec-
tively, so they form a complete orthogonal family. In
second quantizing the field�out in the exterior of the black
hole we can expand it as follows [12]:

�out ¼
X
lm

Z
d!½bin;!lm out;!lmðr<rþÞ

þbyin;!lm 
�
out;!lmðr<rþÞþbout;!lm out;!lmðr>rþÞ

þbyout;!lm 
�
out;!lmðr>rþÞ�; (10)

where bin;!lm and byin;!lm are the annihilation and creation

operators acting on the vacuum of the interior region of the

black hole, and bout;!lm and byout;!lm are the annihilation

and creation operators acting on the vacuum of the exterior
region, respectively. Thus, the Fock vacuum state can be
defined as

bin;!lmj0iin ¼ bout;!lmj0iout ¼ 0: (11)

Introducing the generalized lightlike Kruskal coordi-
nates [25–28]

U ¼ � 1

�
e��u; V ¼ 1

�
e�v; if r > rþ;

U ¼ 1

�
e��u; V ¼ 1

�
e�v; if r < rþ;

(12)

and noticing that near the event horizon

r� ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrþÞh0ðrþÞ

p lnðr� rþÞ; (13)

we can obtain a complete basis of the outgoing modes
according to the suggestion of Damour and Ruffini [25]

 I;!lm ¼ eð�!=2�Þ out;!lmðr > rþÞ
þ e�ð�!=2�Þ �

out;!lmðr < rþÞ; (14)
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 II;!lm ¼ e�ð�!=2�Þ �
out;!lmðr > rþÞ

þ eð�!=2�Þ out;!lmðr < rþÞ: (15)

Thus, we can also quantize the quantum field�out in terms
of  I;!lm and  II;!lm in the Kruskal spacetime as

�out ¼
X
lm

Z
d!½2 sinhð�!=�Þ��1=2½aout;!lm I;!lm

þ ayout;!lm 
�
I;!lm þ ain;!lm II;!lm þ ayin;!lm 

�
II;!lm�;
(16)

where the annihilation operator aout;!lm can be used to

define the Kruskal vacuum outside the event horizon

aout;!lmj0iK ¼ 0: (17)

According to Eqs. (10) and (16), we obtain the
Bogoliubov transformations [28,29] for the particle crea-
tion and annihilation operators in the black hole and
Kruskal spacetimes

aout;!lm ¼ bout;!lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2�!=�

p � byin;!lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�!=� � 1

p ;

ayout;!lm ¼ byout;!lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2�!=�

p � bin;!lmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�!=� � 1

p :

(18)

We assume that the Kruskal vacuum j0iK is related to the
vacuum of the black hole j0iin � j0iout by
j0iK ¼ �ðbin;!lm; byin;!lm; bout;!lm; byout;!lmÞj0iin � j0iout:

(19)

From ½bin;!lm; byin;!lm� ¼ ½bout;!lm; byout;!lm� ¼ 1 and

Eq. (17), we get [12,30]

� / expðbyout;!lmbyin;!lme��!=�Þ: (20)

After properly normalizing the state vector, we obtain the
Kruskal vacuum which is a maximally entangled two-
mode squeezed state [29,30]

j0iK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2�!=�

p X1
n¼0

e�n�!=�jniin � jniout; (21)

and the first excited state

j1iK ¼ ayout;!lmj0iK
¼ ð1� e�2�!=�Þ X1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
e�n�!=�jniin

� jnþ 1iout; (22)

where fjniing and fjnioutg are the orthonormal bases for the
inside and outside region of the event horizon, respectively.
For the observer outside the black hole, he needs to trace
over the modes in the interior region since he has no access
to the information in this causally disconnected region.
Therefore, when an outside observer travels through the

Kruskal particle vacuum j0iK of mode ! his detector
registers a number of particles given by

Kh0jbyout;!lmbout;!lmj0iK ¼ 1

e2�!=� � 1
¼ 1

e!=T � 1
;

(23)

where we have defined the Hawking temperature as [31,32]

T ¼ �

2�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðrþÞh0ðrþÞ

p
4�

: (24)

Equation (23) is well known as the Hawking effect [16–
18], which shows that the observer in the exterior of the
black hole detects a thermal Bose-Einstein distribution of
particles as he traverses the Kruskal vacuum.

III. QUANTUM ENTANGLEMENT IN
BACKGROUND OFA BLACK HOLE

Now we assume that Alice has a detector which only
detects mode jniA and Bob has a detector sensitive only to
mode jniB, and they share a generically entangled state at
the same initial point in flat Minkowski spacetime before
the black hole is formed:

j�i ¼ �j0iAj0iB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
j1iAj1iB; (25)

where � is some real number which satisfies j�j 2 ð0; 1Þ,
� and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
are the so-called normalized partners.

After the coincidence of Alice and Bob, Alice remains at
the asymptotically flat region but Bob freely falls in toward
the mass with his detector and then hovers outside of it
before it collapses to form a black hole. Obviously, there
will be some thermal effects due to changes in Bob’s
acceleration, but there will be no Hawking radiation.
Note that such effects can be negligible, or at least will
disperse after some time. Then, once Bob is safely hover-
ing outside of the object at some constant acceleration, let
it collapse to form a black hole. By Birkhoff’s theorem [19]
this will not change the metric outside of the black hole and
therefore will not change Bob’s acceleration. Thus, Bob’s
detector registers only thermally excited particles due to
the Hawking effect [20,21]. The states corresponding to
mode jniB must be specified in the coordinates of the black
hole in order to describe what Bob sees in this curved
spacetime. Thus, using Eqs. (21) and (22), we can rewrite
Eq. (25) in terms of Minkowski modes for Alice and black
hole modes for Bob. Since Bob is causally disconnected
from the interior region of the black hole, we will take the
trace over the states in this region and obtain the mixed
density matrix between Alice and Bob in the exterior
region
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�AB ¼ ð1� e�!=TÞ X1
n¼0

�ne
�n!=T;

�n ¼ �2j0nih0nj þ ðnþ 1Þð1� �2Þð1� e�!=TÞ
� j1ðnþ 1Þih1ðnþ 1Þj
þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð1� �2Þð1� e�!=TÞ

q
j0nih1ðnþ 1Þj

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð1� �2Þð1� e�!=TÞ

q
j1ðnþ 1Þih0nj;

(26)

where jnmi ¼ jniAjmiB;out.
It should be noted that we do not trace over the states

located inside the event horizon for Alice, even though she
now is also causally disconnected from the interior region
of the black hole. As a matter of fact, the causal structure of
spacetime keeps every observer exterior from the black
hole disconnected from its interior. Why do we not trace
over the degree of freedom of Alice in the region inacces-
sible to her? We now present the reasons as follows. On the
one hand, we can justify what we are doing by theory. For a
Schwarzschild black hole, the mass of which is assumed to
be of the order of a solar mass (Mbh �M�), the magnitude

of acceleration near this black hole that Bob needs is about
1013 m=s2, which is much larger than that of Alice’s needs
(almost equal to zero) in the asymptotical region. Thus, we
argue that Alice’s acceleration effects can be neglected,
whereas Bob’s cannot. On the other hand, we can think
about it from experiment. Though we do not observe the
black hole directly, impressive progress in optical, radio,
and X-ray astronomy greatly bolsters the evidence for
supermassive black holes in the centers of galaxies [33].
Thus, the Earth can be argued to be an asymptotical region
far from black holes, as far as we know. The standard
quantum field theory works fine for the earthbound experi-
ments, so we have at least some circumstantial empirical
evidence that tracing over the black hole interior can be
neglected in asymptotical regions.
It is clear that the partial transpose criterion provides a

sufficient condition for the existence of entanglement in
this case [34]: if at least one eigenvalue of the partial
transpose of the density matrix is negative, the density
matrix is entangled; but a state with positive partial trans-
pose can still be entangled. It is a well-known bound or
nondistillable entanglement [35,36]. Interchanging Alice’s
qubits ðjmnihpqj ! jpnihmqjÞ, we get the matrix repre-
sentation of the partial transpose in the (n, nþ 1) block

ð�TAABÞn;nþ1 ¼ e�n!=Tð1� e�!=TÞ
0
@ nð1� �2Þðe!=T � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð1� �2Þð1� e�!=TÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þð1� �2Þð1� e�!=TÞ

q
�2e�!=T

1
A; (27)

and its eigenvalues

	n� ¼ e�n!=Tð1� e�!=TÞ
2

� ½
n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n þ 4�2ð1� �2Þð1� e�!=TÞ

q
�; (28)

where 
n ¼ �2e�!=T þ nð1� �2Þðe!=T � 1Þ. Obviously
the eigenvalue 	n� is always negative for finite value of
the Hawking temperature. Hence, this mixed state is al-
ways entangled for any finite value of T. It should be noted
that in the limit T ! 1, the negative eigenvalue will go to
zero. In order to discuss this further, we will use the
logarithmic negativity which serves as an upper bound on
the entanglement of distillation [35,36]. This entanglement
monotone is defined as Nð�ABÞ ¼ log2jj�TAABjj, where
jj�TAABjj is the trace norm of the partial transpose �TAAB.
Thus, we obtain the logarithmic negativity for this case

Nð�ABÞ ¼ log2

�
�2ð1� e�!=TÞ þ X1

n¼0

e�n!=Tð1� e�!=TÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n þ 4�2ð1� �2Þð1� e�!=TÞ

q �
: (29)

The trajectories of the logarithmic negativity Nð�ABÞ ver-

sus T for different � in Fig. 1 just show how the Hawking
temperature T would change the properties of the
entanglement.
For the Hawking temperature of zero, corresponding to

the case of a supermassive or an almost extreme black hole,

Nð�ABÞ ¼ log2ð1þ 2j�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Þ. In the range 0< j�j 	

1=
ffiffiffi
2

p
the larger �, the stronger the initial entanglement;

but in the range 1=
ffiffiffi
2

p 	 j�j< 1 the larger �, the weaker

10 20 30 40 50
T

0

0.2

0.4

0.6

0.8

1

N
ρ A

B

α 15 4

α 1 4

α 7 8

α 1 8

α 1 2

FIG. 1 (color online). The logarithmic negativity as a function
of the Hawking temperature T with the fixed ! for different �.
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the initial entanglement. For finite Hawking temperature,
the monotonous decrease of Nð�ABÞ with increasing T for
five different � means that the initial entanglement is lost
to the thermal fields generated by the Hawking effect. This
result agrees well with Hawking’s original argument [16–
18], which says that smaller black holes are at a higher
temperature and so radiate more violently than massive
black holes. Figure 1 also shows that when the initial
entanglement is stronger, we lose it more rapidly. But it
is surprisingly found that the same initial entanglement for

� and its normalized partner
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
will be degraded

along two different curves except for the maximally en-

tangled state, i.e., j�j ¼ 1=
ffiffiffi
2

p
. This phenomenon, due to

the coupling of � and the exponential functions related to
T, just shows the inequivalence of the quantization for a
scalar field in the black hole and Kruskal spacetimes. The
logarithmic negativity is exactly zero for any � in the limit
T ! 1, which indicates that the state has no longer dis-
tillable entanglement for the arbitrary values of �when the
black hole evaporates completely.

In order to estimate the total amount of correlations
between Alice and Bob, we will analyze the mutual infor-
mation which is defined as [37]

Ið�ABÞ ¼ Sð�AÞ þ Sð�BÞ � Sð�ABÞ; (30)

where Sð�Þ ¼ �Trð�log2�Þ is the entropy of the density
matrix �. From Eq. (26), we can give the entropy of this
joint state

Sð�ABÞ ¼ � X1
n¼0

e�n!=Tð1� e�!=TÞ½�2 þ ðnþ 1Þð1� �2Þ

� ð1� e�!=TÞ�log2e�n!=Tð1� e�!=TÞ
� ½�2 þ ðnþ 1Þð1� �2Þð1� e�!=TÞ�: (31)

Tracing over Alice’s states for the density matrix �AB, we
get Bob’s density matrix in exterior region of the event
horizon

�B ¼ ð1� e�!=TÞ X1
n¼0

e�n!=T½�2jnihnj þ ðnþ 1Þ

� ð1� �2Þð1� e�!=TÞjnþ 1ihnþ 1j�; (32)

and its entropy

Sð�BÞ ¼ � X1
n¼0

e�n!=Tð1� e�!=TÞ½�2 þ nð1� �2Þ

� ðe!=T � 1Þ�log2e�n!=Tð1� e�!=TÞ
� ½�2 þ nð1� �2Þðe!=T � 1Þ�: (33)

We can also obtain Alice’s density matrix by tracing over
Bob’s states

�A ¼ �2j0ih0j þ ð1� �2Þj1ih1j; (34)

whose entropy can be expressed as

Sð�AÞ ¼ �½�2log2�
2 þ ð1� �2Þlog2ð1� �2Þ�: (35)

Thus, we draw the behaviors of the mutual information
Ið�ABÞ as a function of the Hawking temperature T for
different values of the state parameter � in Fig. 2.
Figure 2 shows that for the Hawking temperature of

zero, the initially mutual information is equal to

Iið�ABÞ ¼ �2½�2log2�
2 þ ð1� �2Þlog2ð1� �2Þ�: (36)

In the range 0< j�j 	 1=
ffiffiffi
2

p
, the larger �, the stronger

Iið�ABÞ; but in the range 1=
ffiffiffi
2

p 	 j�j< 1, the larger �, the
weaker Iið�ABÞ. As the Hawking temperature increases, the
mutual information becomes smaller. It is interesting to
note that except for the maximally entangled state, the

same initially mutual information for � and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
will be degraded along two different trajectories.
However, in the infinite Hawking temperature limit T !
1, i.e., the black hole evaporates completely, the mutual
information converges to the same value again

Ifð�ABÞ ¼ �½�2log2�
2 þ ð1� �2Þlog2ð1� �2Þ�; (37)

which is equal to just half of Iið�ABÞ. Thus, we conclude
that

Ifð�ABÞ ¼ 1
2Iið�ABÞ; (38)

which is independent of the state parameter�. Obviously if
Iið�ABÞ is higher, it is degraded to a higher degree in this
limit. Since the distillable entanglement in the infinite
Hawking temperature limit is zero, we are safe to say
that the total correlations consist of classical correlations
plus bound entanglement in this limit.

IV. QUANTUM TELEPORTATION IN
BACKGROUND OFA BLACK HOLE

In this section we will concentrate on a particular quan-
tum information task: quantum teleportation. We assume
that Alice and Bob each hold an optical cavity, at rest in
their local frame. Each cavity supports two orthogonal

10 20 30 40 50
T

0.5

0.75

1

1.25

1.5

1.75

2

I
ρ A

B

α 15 4

α 1 4

α 7 8

α 1 8

α 1 2

FIG. 2 (color online). The mutual information as a function of
the Hawking temperature T with the fixed ! for different �.
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modes (labeled by Ai and Bi with i ¼ 1, 2), with the same
frequency, which are each excited to a single photon Fock
state at the coincidence point for Alice and Bob. We ignore
the polarization of these modes and model the photons by
the massless modes of a scalar field as suggested by
Refs. [5,6]. Considering the textbook teleportation proto-
col [38], we let Alice and Bob share a maximally entangled
state, i.e., an entangled Bell state in flat Minkowski space-
time

j�i ¼ 1ffiffiffi
2

p ðj0iAj0iB þ j1iAj1iBÞ; (39)

where the logical states j0iA and j1iA are defined in terms
of the physical Fock states for Alice’s cavity by the dual-
rail basis states [5,6]

j0iA ¼ j1iA1
j0iA2

; j1iA ¼ j0iA1
j1iA2

; (40)

with similar expressions for Bob’s cavity. It should be
noted that j1iA1

and j1iA2
are single photon excitations of

the Minkowski vacuum states in Alice’s cavity. Our con-
struction implicitly assumes that we have chosen a modal
decomposition of the Minkowski vacuum based on intra-
cavity and extra-cavity modes, which is a legitimate alter-
native to the usual way of quantizing the vacuum in terms
of plane wave modes [39,40]. Once the cavities are loaded
with a photon, we also assume each cavity is perfect and
cannot emit the photon.

Recalling the usual teleportation protocol with the un-
known state [38]

j’i ¼ aj0i þ bj1i; (41)

we assume that Alice has an additional cavity which con-
tains this single qubit (41) with dual-rail encoding by a
photon excitation of a two-mode Minkowski vacuum state.
This will allow Alice to make a joint measurement on the
two orthogonal modes of each cavity. For the usual tele-
portation protocol between two Minkowski observers
Alice and Bob, after Alice’s measurement, Bob’s state
will be projected according to the measurement outcome.
We can give the final state received by Bob

j’iji ¼ xijj0i þ yijj1i; (42)

with four possible conditional state amplitudes ðx00; y00Þ ¼
ða; bÞ, ðx01; y01Þ ¼ ðb; aÞ, ðx10; y10Þ ¼ ða;�bÞ, and
ðx11; y11Þ ¼ ð�b; aÞ. Once receiving the classical informa-
tion of the result of Alice’s measurement, Bob can apply a
unitary transformation to verify the protocol. Obviously
the fidelity of the teleported state is unity in this idealized
situation.

Alice now wishes to perform the same teleportation
protocol with the noninertial observer Bob. We assume
that prior to their coincidence, Alice and Bob ensure that
all photons are removed from their cavities. When Alice
and Bob instantaneously share a maximally entangled state
at the asymptotically flat region, we suppose that the two
cavities overlap and simultaneously a four photon source

excites a two photon state in each cavity. Then Alice
remains there but Bob falls in toward the mass and then
hovers outside of it. Once Bob is safely hovering outside of
the object at some constant acceleration, let it collapse to
form a black hole. Then, Bob turns on his detector after the
formation of the black hole. Bob can check to see whether
any thermal photons have been excited in his local cavity
using the nonabsorbing detector. It should be noted that the
common frequency of both Alice’s and Bob’s cavity is just
the frequency ! of Eqs. (21) and (22) [5,6]. For Bob, the
observer locates near the event horizon of a black hole, and
he needs to trace over the modes in the interior region since
he is causally disconnected from this region. Thus, when
Alice sends the result of her measurement to Bob, Bob’s
state can be projected into

�ij ¼
X1
k¼0

X1
l¼0

inhk; lj’ijih’ijjk; liin

¼ ð1� e�!=TÞ3 X1
n¼0

Xn
m¼0

fe�ðn�1Þ!=T½ðn�mÞjxijj2

þmjyijj2�jm; n�miouthm; n�mj
þ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þðn�mþ 1Þ

p
xijy

�
ij

� e�n!=Tjm; n�mþ 1iouthmþ 1; n�mj þ H:c:�g;
(43)

where jm; n�miout ¼ jmiB1
� jn�miB2

is a state of n

total excitations in the exterior region product state, with
0 	 m 	 n excitations in the leftmost mode. Equation (43)
can be rewritten as

�ij ¼
X1
n¼0

pn�ij;n; with p0 ¼ 0;

pn ¼ ð1� e�!=TÞ3e�ðn�1Þ!=T for n 
 1:

(44)

Since what we are concerned with is to which extent j’iji
might deviate from unitarity, so upon receiving the result
ði; jÞ of Alice’s measurement, Bob can apply the rotation
operators (a unitary transformation in his local frame)
restricted to the one-excitation sector of his state spanned
by fj0iout; j1ioutg ¼ fj0; 1iout; j1; 0ioutg to turn this portion of
his density matrix into the exterior region analogue of the
state in Eq. (41) [5–8]

j’iout ¼ aj0iout þ bj1iout: (45)

Thus, we can obtain the fidelity of Bob’s final state with
j’iout

F � outh’j�ijj’ijiout ¼ ð1� e�!=TÞ3: (46)

From Fig. 3, we can see that the fidelity of teleportation
depends on the Hawking temperature T. It has been found
that the fidelity decreases as the Hawking temperature
increases, which just indicates the entanglement degrada-
tion obtained in the previous section, because the state
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fidelity in conventional teleportation protocol is related to
the entanglement.

V. SUMMARY

We have analytically discussed the effect of the
Hawking temperature on the entanglement between two
modes of a scalar field as detected by Alice who stays
stationary at an asymptotically flat region and Bob who
locates near the event horizon in the background of a most
general, static and asymptotically flat black hole with
spherical symmetry. It is shown that the entanglement is
degraded by the Hawking effect with increasing Hawking
temperature. It is found that the stronger the initial entan-
glement, which corresponds to the Hawking temperature of
zero, i.e., the case of a supermassive or an almost extreme
black hole, the faster it loses. It is found that the same

initial entanglement for the state parameter � and its

normalized partners
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
will be degraded along two

different trajectories as the Hawking temperature increases

except for the maximally entangled state � ¼ 1=
ffiffiffi
2

p
, which

just shows the inequivalence of the quantization for a scalar
field in the black hole and Kruskal spacetimes. In the
infinite Hawking temperature limit T ! 1, corresponding
to the case of the black hole evaporating completely, the
state has no longer distillable entanglement for the arbi-
trary values of �. Further analysis shows that the mutual
information is degraded to a nonvanishing minimum value
which is dependent of � with increasing Hawking tem-
perature. However, it is interesting to note that the mutual
information in the infinite Hawking temperature limit is
equal to just half of the initially mutual information, which
is independent of �. We have also investigated the scheme
of teleportation in this black hole spacetime. It has been
demonstrated that the fidelity of teleportation decreases as
the Hawking temperature increases, which just indicates
the entanglement degradation because the state fidelity in
conventional teleportation protocol is related to the
entanglement.
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