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In this paper, we use the gauge embedding procedure and the master action approach to establish the

equivalence between the self-dual and the Maxwell-Chern-Simons models with Lorentz symmetry

breaking. As a result, new kinds of Lorentz-breaking terms arise.
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I. INTRODUCTION

The hypothesis about the possibility of the Lorentz
symmetry breaking is an important ingredient of the mod-
ern quantum field theory. Being initially inspired by the
study of the cosmic rays [1], it received more solid moti-
vations from cosmological studies [2] and the development
of the noncommutative field theory [3]. The Lorentz sym-
metry breaking was shown to have a lot of important
physical conclusions, such as the possibility of arising
new classes of terms in Lagrangians [4], modification of
the dispersion relations, birefringence of light in a vacuum,
the rotation of the plane of polarization of light in a vacuum
(some papers devoted to these results are given in [5]), and
many other consequences.

Most of these implications of the Lorentz symmetry
breaking were obtained in four-dimensional space-time
where the electrodynamics with the Jackiw term (see,
e.g., [6]) plays the role of the standard Lorentz-breaking
theory whose different aspects were studied in [7] (never-
theless, the Lorentz breaking was studied also for other
four-dimensional theories, such as, for example, linearized
and nonlinearized gravity [8]). At the same time, there are
many less results for the Lorentz-breaking theories in other
space-time dimensions. The only results are the study of
compactification of the five-dimensional Lorentz-breaking
theories [9], the study of a two-dimensional Lorentz-
breaking model for the scalar fields [10], and the inves-
tigation of some phenomenological implications of the
three-dimensional ‘‘mixed’’ scalar-vector quadratic term
[11], which was earlier obtained via the dimensional re-
duction of the Jackiw term [12,13]. So, the natural problem
is the investigation of more aspects of the lower-
dimensional, especially three-dimensional, Lorentz-
breaking field theories.

One of the important phenomena taking place in three-
dimensional field theories is the duality between self-dual

and Maxwell-Chern-Simons (MCS) theories [14].
Different aspects of the duality (including the supersym-
metric case) were studied in a number of papers [15–17] (it
should be noted that the duality of the four-dimensional
theories, which must involve Lorentz symmetry breaking,
was also studied, see [18]). Thus, it seems that the very
interesting problem is the generalization of a duality for the
Lorentz-breaking theories. This problem is the main object
of study in this paper. Here we construct the Lorentz-
breaking analog of the self-dual model, carry out the gauge
embedding algorithm [17], develop the master action ap-
proach [16], and obtain a new Lorentz-breaking theory
whose important ingredient is the mixed scalar-vector
quadratic term.

II. DUAL EMBEDDING FOR FREE LORENTZ-
BREAKING SELF-DUAL MODEL

Let us introduce the following Lagrangian for the three-
dimensional self-dual model with Lorentz symmetry
breaking:

L ¼ m

2
����f�@�f� �m2

2
f�f

� þ 1

2
@��@

��

þ 2m�v�f�: (2.1)

This Lagrangian is quite similar to that one used in the first
paper [17] treating the nonsupersymmetric theory.
However, it has an essential difference; that is, the
Lorentz symmetry breaking is implemented via the term
2m�v�f�, where the constant 3-vectors v� introduced the

preferred frame in the space-time.
The Lagrangian equations of motion for this model read

as

m����@
�f� �m2f� þ 2m�v� ¼ 0: (2.2)

Now, we turn to the study of duality between the self-
dual and the MCS models with Lorentz symmetry break-
ing. To establish the equivalence of these theories, we use
the iterative gauge embedding procedure [17]. This is done
by extension of the original Lagrangian by the additive
terms depending on the Euler vectorsK�, i.e., the left-hand
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sides of the equations of motion:

L ! Lþ FðK�Þ; (2.3)

where the original Lagrangian is given by (2.1), and FðK�Þ
is such that Fð0Þ ¼ 0.

The variation of the Lagrangian (2.1) with respect to f�
leads to the Euler vectors K�:

K� ¼ �m2f� þm����@�f� þ 2m�v�; (2.4)

where the equations of motion are given by the condition
K� ¼ 0.

Let us follow the gauge embedding approach similar to
[17]. Since our aim is to obtain the gauge invariant theory,
let us suggest that the desired gauge transformation for the
vector field f� be �f� ¼ @��, where � is a parameter of

gauge transformations. Thus, the variation of the
Lagrangian under these transformations is �L ¼ K�@��.

Then, we introduce the first-order iterated Lagrangian

L ð1Þ ¼ L���K�; (2.5)

where �� is a Lagrange multiplier. We suppose the gauge
transformation for the �� to be ��� ¼ @��, where we

choose to cancel the variation of L (cf. [17]). Thus, the

variation of Lð1Þ under the gauge transformations is

�Lð1Þ ¼ ����K�; since �K� ¼ �m2@��, we find

�Lð1Þ ¼ m2��@�� ¼ m2

2 �ð����Þ. To cancel this term,

we add to the Lagrangian the term � m2

2 �ð����Þ, thus
obtaining the second-order iterated, gauge invariant
Lagrangian

L ð2Þ ¼ L���K� �m2

2
����; (2.6)

which after elimination of the auxiliary field �� via its

equations of motion (which reads as K� ¼ �m2��) gets

the form

L eff ¼ Lþ 1

2m2
K�K�

¼ 1

2
F�F

� �m

4
����A�F�� þ 1

2
@��@

��

þ�����v�F�� þ 2�2v�v
�; (2.7)

where we have renamed f� ! A� to reflect the invariant

character of the theory. Here

F� � 1
2�
���F�� (2.8)

is the dual of the tensor F��. Thus, we succeeded in
constructing the dual projection of the Lorentz-breaking
self-dual model.

To establish the duality, it remains to compare the equa-
tions of motion for the matter sector of both models, that is,
the self-dual one (2.1) and the Maxwell-Chern-Simons one
(2.7). The equations of motion to the scalar field, �, of the

self-dual model read

@�@
�� ¼ 2mv�f

�: (2.9)

From the MCS model we find the equations for the field�,

@�@
�� ¼ 2mv�

�
F�

m
þ 2�

m
v�
�
: (2.10)

Comparing the right-hand sides of these equations, we
finally obtain the correct map from a self-dual model to
the Maxwell-Chern-Simons one which is given by the
following relation between the vector fields of two models:

f� ! F�

m
þ 2�

m
v�: (2.11)

Thus, the constructing of the dual mapping of the Lorentz-
breaking self-dual model and the Lorentz-breaking
Maxwell-Chern-Simons model is complete.
It is also interesting to study dispersion relations of the

Maxwell-Chern-Simons theory we obtained and the self-
dual theory. First we turn to the Maxwell-Chern-Simons
theory. We note that the theory studied in [12] involves a
massless scalar field; thus, our result will differ from the
one in [12], reproducing the last one in the case of the
lightlike v�.
Using the coefficients (A7) and (A9) of the expansion of

the propagators (see the Appendix), we find that the dis-
persion relations corresponding to the propagator of the
Maxwell-Chern-Simons theory are as follows: first, the
common Lorentz-invariant massless one, E2 ¼ ~p2; second,
the common Lorentz-invariant massive one E2¼ ~p2þm2;
third, for the spacelike or lightlike v�, also the Lorentz-
invariant one E2 ¼ ~p2 þ 4v2; and fourth, the Lorentz-
violating one, produced by the condition R ¼ 0: ðE2�
~p2�m2ÞðE2� ~p2�M2Þþv2ðE2� ~p2Þþð ~v � ~p�v0EÞ2¼
0, with M2 ¼ 4v2.
For the self-dual theory, the corresponding dispersion

relations are again as follows: first, the common Lorentz-
invariant massless one, E2 ¼ ~p2; and second, the common
Lorentz-invariant massive one E2 ¼ ~p2 þm2. However,
the third dispersion relation, unlike the Maxwell-Chern-
Simons case, is also the Lorentz-invariant one ðE2 �
~p2Þ2 � ðE2 � ~p2Þm2 þ 4m2v2 ¼ 0. Thus, one can con-
clude that the physical states in the self-dual theory are
Lorentz invariant, so, dual embedding of the self-dual
theory modifies the dispersion relations in a nontrivially
Lorentz-breaking way. Whereas in the case of the self-dual
theory, the dispersion relations are Lorentz invariant, and
the only impacts of the Lorentz-breaking vector v� are in

the numerator of the propagator and in the modification of
the mass. From a formal viewpoint this is related by the
fact that in the self-dual theory the v� enters the denomi-

nator only in the form of an invariant square v2, whereas in
the case of the MCS theory, within the object T�T� which

evidently introduces the preferential directions. At the
same time, it should be noted that the difference of the
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mass spectra of the dual theories is not an unusual fact
since only the physical sectors of spectra of the dual
theories must coincide.

Indeed, the propagators of both theories, being both of
the form � (A4), but with different M�� and T�, are the

Hermitian operators which can be simultaneously trans-
formed to the diagonal form. Afterward, the dispersion
relations do not change, persisting to be of the same form
as above. Imposing an appropriate gauge for the Maxwell-
Chern-Simons theory and solving constraints for the self-
dual theory, we can eliminate the irrelevant degrees of
freedom corresponding to the nonphysical sector, thus
remaining with the only physical particles whose disper-
sion relations in both theories read as E2 ¼ ~p2 and E2 ¼
~p2 þm2, for 2 physical degrees of freedom. The detailed
study of the unitarity and causality aspects of the Lorentz-
breaking Maxwell-Chern-Simons theory (2.7), within
which the nonphysical sector is shown to decouple, was
carried out in [12] for the case of the M2 ¼ 0, which
corresponds to the case of the lightlike v� and can be
straightforwardly generalized for the case M2 � 0 (see
also [19] for general issues related to the problems of
unitarity and causality in Lorentz-breaking theories).

III. DUAL EMBEDDING FOR THE LORENTZ-
BREAKING SELF-DUAL THEORY COUPLED TO

THE SPINOR MATTER

Let us extend the self-dual Lorentz-breaking model via
coupling of the vector field to the extra spinor matter. We
introduce the current j� ¼ � �� , and hence the
Lagrangian can be

L ¼ m

2
����f�@�f� �m2

2
f�f

� þ 1

2
@��@

��

þ 2m�v�f� þ f�j�: (3.1)

The corresponding Euler vector for the vector field is

K� ¼ m����@
�f� �m2f� þ 2m�v� þ j�: (3.2)

We can proceed with the gauge embedding algorithm as in
the previous section. As a result, we arrive at the following
second-order iterated Lagrangian:

L eff ¼ Lþ 1

2m2
K�K�

¼ 1

2
F�F

� �m

4
����A�F�� þ 1

2
@��@

��

þ�����v�F�� þ 1

2m2
j�j� þ 1

m
j�F�

þ 2

m
�v�j� þ 2�2v�v

�: (3.3)

We find that, due to coupling of the vector field to the
spinor field, we find, first, a Thirring-like current-current
interaction; second, a ‘‘magnetic’’ coupling of the matter to

the vector field; and third, a new, Lorentz-breaking cou-
pling of the spinor matter to the scalar field.
In this case, the analog of the dual mapping (2.11) reads

as

f� ! F�

m
þ 2�

m
v� þ 1

m2
j�; (3.4)

thus, the dual projection of the self-dual field depends on
the electromagnetic field, the spinor matter, and the
Lorentz-breaking vector. We note that for the spinor matter
current j�, generalization for the noncommutative case is
straightforward.

IV. DUALITY OF TWO MODELS WITHIN THE
MASTER ACTION APPROACH

Let us show the duality of the self-dual Lorentz-breaking
model coupled to the matter (3.1) and of the Maxwell-
Chern-Simons Lorentz-breaking model coupled to the
matter (3.3) in a way similar to [16]. First of all, we find
that there is a dual identification f� ! 1

mF
�, as in [15].

Second, to confirm the duality we can introduce a master
Lagrangian

Lmaster ¼ �m2

2
f�f� þmf�F� �m

2
F�A�

þ 1

2
@��@

��þ f�ð2m�v� þ j�Þ

� 1

2	
ð@�A�Þ2: (4.1)

If one integrates over the fields f�, the result be

Leff
MCS ¼

1

2
F�F� �m

4
����A�F�� � 1

2	
ð@�A�Þ2

þ 1

m
F�ðj� þ 2m�v�Þ þ 1

2m2
ðj� þ 2m�v�Þ

� ðj� þ 2m�v�Þ þ 1

2
@��@

��; (4.2)

which reproduces the Lagrangian (3.3).
At the same time, if one integrates over the fields A�,

one arrives at

Leff
SD ¼ �m2

2
f�f� þm

2
����f�@�f�

þ f�ð2m�v� þ j�Þ þ 1

2
@��@

��; (4.3)

which reproduces the Lagrangian (3.1). Thus, we con-
firmed the duality of these theories. It is clear that after
the integration over the remaining vector fields they imply
in the same generating functionals, that is
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Z½j; �� ¼ exp

�
� i

2
ð2m�v� þ j�Þ 1

h�m2

�
�

�� �

@�@�

m2
� 1

m
����@

�

�
ð2m�v� þ j�Þ

þ i

2
@��@

��

�
: (4.4)

Thus, the proof of equivalence is completed. Indeed, we
have shown that the Lagrangians (3.1) and (3.3) imply in
the same quantum dynamics.

V. SUMMARY

Let us discuss our results. We succeeded, via the gauge
embedding method, to construct a new Lorentz-breaking
theory described by the Lagrangian (2.7), where further
this duality was confirmed via the master action approach.
First of all, we find that it involves not only the massive
term for the vector field, which is the well-known Chern-
Simons term (a similar situation takes place in the Lorentz-
invariant case [17]), but also the massive term for the scalar
field, that is, the last term in Eq. (2.7), which is fundamen-
tal in maintaining the contents of the scalar sectors un-
changed. Thus, the gauge embedding generates the mass
both for the vector field and for the matter field. Second, it
includes the desired mixed scalar-vector term [11]
�����v�F�� which earlier was obtained via dimensional

reduction [12].
This mixed term possesses the ‘‘restricted’’ gauge sym-

metry; that is, only the vector field is transformed under the
gauge transformations, whereas the matter field remains
unchanged. However, this is very natural since the gauge
embedding algorithm requires that the matter field should
be unchanged [17]. Indeed, even in the Lorentz-invariant
theories [17], the action obtained after the gauge embed-
ding procedure also possessed only restricted gauge sym-
metry; thus, the restricted gauge invariance of the theory
obtained in this case is very natural.

We have studied the dispersion relations for two theories
and found that, in the Maxwell-Chern-Simons theory, a
nontrivial Lorentz-breaking modification of the dispersion
relations takes place, whereas in the self-dual theory, the
dispersion relations do not involve Lorentz symmetry
breaking. Thus, the dual embedding increases Lorentz
symmetry breaking.

The natural continuation of this study would contain,
first, a more detailed study of the phenomenological appli-
cations of the new mixed term, and second, its generation
via an appropriate coupling of the vector and scalar fields
to the spinor matter, similar to [6].

ACKNOWLEDGMENTS

This work was partially supported by the Conselho
Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq). The work by A.Y. P. was been supported by the

CNPq-FAPESQ DCR program, CNPq Project No. 350400/
2005-9.

APPENDIX

In this Appendix, we derive the propagators of the
Lorentz-breaking self-dual and Maxwell-Chern-Simons
theories.
We start with the Maxwell-Chern-Simons theory whose

action (2.7) is gauge invariant. To obtain the propagator, we
add the simplest Feynman-like gauge fixing term Lgf ¼
� 1

2 ð@ � AÞ2; thus, the Lagrangian takes the form

Lfixed
eff ¼ 1

2A�ð
��hþm����@�ÞA� � 1
2�ðh� 4v2Þ�

þ 2�����v�@�A�: (A1)

We can find a propagator in a manner similar to [13].
Indeed, the Lagrangian can be presented in the matrix form

L fixed
eff ¼ 1

2
ðA�� Þ M�� T�

�T� �hþM2

� �
A�

�

� �
:

Here M2 ¼ 4v2, the signature is ð� þþÞ, and

M�� ¼ h��� �mS�� þh

	
!�� (A2)

(after the calculations we put 	 ¼ 1), and T� ¼ S��v
�,

S�� ¼ ����@
�, ��� ¼ 
�� �!��, and !�� ¼ @�@�

h
. The

operator determining the theory is

P ¼ M�� T�
�T� �hþM2

� �
: (A3)

The corresponding inverse operator is

� ¼ P�1

¼ � 1

ðh�M2ÞM�� � T�T�

�hþM2 T�
�T� M��

 !
:

(A4)

From here we can find the propagators

hA�A�i ¼ ð�11Þ��
¼ ½ðh�M2ÞM�� � T�T���1ðh�M2Þ;

h��i ¼ �22 ¼ ½ðh�M2ÞM�� � T�T���1M��;

hA��i ¼ �h�A�i ¼ ��
12 ¼ ���

21

¼ �T�½ðh�M2ÞM�� � T�T���1: (A5)

Thus, all propagators can be expressed in terms of the
operator � ¼ ½ðh�M2ÞM�� � T�T���1, which we also

use to find dispersion relations. Thus, we face a problem to
obtain this operator, that is, to solve an equation P� ¼ 1.
To do it, we use an ansatz similar to [13]
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��� ¼ a1�
�� þ a2!

�� þ a3S
�� þ a4�

�� þ a5T
�T�

þ a6Q
�� þ a7Q

�� þ a8�
�� þ a9�

��

þ a10�
�� þ a11�

��; (A6)

where Q�� ¼ v�T�, ��� ¼ v�v�, ��� ¼ v�@�, ��� ¼
T�@�, and � ¼ v�@�.

After straightforward but quite tedious calculations we
find

a1 ¼ 1

ðh�M2Þðh�m2Þ ; a2 ¼ 1

hðh�M2Þ �
m2�2

hðh�m2Þðh�M2ÞR ; a3 ¼ m

hðh�m2Þðh�M2Þ ;

a4 ¼ m2

hðh�m2Þðh�M2ÞR ; a5 ¼ 1

hðh�m2Þðh�M2ÞR ; a6 ¼ m

ðh�m2Þðh�M2ÞR ; a7 ¼ �a6;

a8 ¼ m2�

hðh�m2Þðh�M2ÞR ; a9 ¼ �a8; a10 ¼ � m�

hðh�m2Þðh�M2ÞR ; a11 ¼ �a10: (A7)

Here R ¼ ðh�M2Þðh�m2Þ � T2. One can verify that
for M2 ¼ 0, the result of [13], where the detailed study of
the unitarity, causality, and splitting of degrees of freedom
into physical and nonphysical ones in the theory governed
by this propagator (but with M2 ¼ 0) is carried out, is
reproduced.

Applying a similar method to the self-dual theory with
the action (2.1), we find that the operator determining the
quadratic action of the theory is given by the expression

(A2), where M�� and P� are

M�� ¼ mS�� �m2ð��� þ!��Þ; (A8)

and T� ¼ 2mv� and M2 ¼ 0. In this case the propagators

are given by (A5), with M2 ¼ 0 as we had already noted
and M�� is given by (A8). The key role is played by the

operator � whose expansion again has the form (A6).
Solving again the system for the coefficients ai we find

a1 ¼ 1

hðh�m2Þ ; a2 ¼ � 1

m2h
� �

m2ðh�m2Þ ~R ; a3 ¼ 1

mhðh�m2Þ ; a4 ¼ 1

hðh�m2Þ ~R ;

a5 ¼ 1

hðh�m2Þ ~R ; a6 ¼ � 1

mðh�m2Þ ~R ; a7 ¼ � 1

mðh�m2Þ ~R ; a8 ¼ 1

hðh�m2Þ ~R ;

a9 ¼ �

m2ðh�m2Þ ~R ; a10 ¼ � 1

mðh�m2Þ ~R ; a11 ¼ �

mhðh�m2Þ ~R ;

(A9)

where ~R ¼ h2 �hm2 � T2, which is similar to the case of the MCS theory, but with other T� [applying the definition of
the propagators (A5) for M ¼ 0, we find that the a2 contribution will generate a contact term which is known to present
always in self-dual theories [17]].
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