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We study vortex dynamics in three-dimensional theories with Chern-Simons interactions. The dynam-

ics is governed by motion on the moduli space M in the presence of a magnetic field. For Abelian

vortices, the magnetic field is shown to be the Ricci form over M; for non-Abelian vortices, it is the first

Chern character of a suitable index bundle. We derive these results by integrating out massive fermions

and following the fate of their zero modes.
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I. INTRODUCTION

The moduli space approximation provides an elegant
description of the low-energy behavior of solitons [1].
Information about soliton interactions is packaged in a
simple geometric form which has proven useful in extract-
ing both the classical and quantum dynamics of the system.
In this paper we use the moduli space approximation to
study the motion of vortices in the presence of Chern-
Simons interactions [2].

For vortices in the Abelian-Higgs model in d ¼ 2þ 1
dimensions, a moduli space M of solutions exists only
when the potential is tuned to critical coupling, meaning
that the theory lies on the borderline between type I and
type II superconductivity. For k vortices, the moduli space
has dimension dimðMÞ ¼ 2k, with the coordinates Xa,
a ¼ 1; . . . ; 2k, on M corresponding to the positions of
the vortices on the plane [3,4]. At low energies, the scat-
tering of vortices can be described as geodesic motion on
M with respect to a metric gab,

Lvortex ¼ 1
2gabðXÞ _Xa _Xb: (1.1)

Although the metric gab is not known explicitly for k � 2,
its properties have been well studied [5–7]. Most notably,
gab is Kähler.

One can ask how the dynamics of the vortices is affected
by the addition of a Chern-Simons interaction [8–10]. On
general grounds, one expects the low-energy dynamics of
vortices to be governed by geodesic motion onM, now in
the presence of a magnetic field F 2 �2ðMÞ. Locally we
may write F ¼ dA and the Lagrangian takes the form

Lvortex ¼ 1
2
~gabðXÞ _Xa _Xb � �AaðXÞ _Xa; (1.2)

where � is the coefficient of the Chern-Simons term in
three dimensions. Working perturbatively in �, Kim and
Lee found that to leading order ~gab ¼ gab, while an ex-
pression for A was given in terms of the profile functions

of the vortices [10]. However, the geometric meaning ofA
has remained mysterious. Here we remedy this. We show
that F is the Ricci form on M.
We further study the dynamics of non-Abelian UðNÞ

vortices introduced in [11,12] in the presence of Chern-
Simons interactions. In this case the moduli space has
dimension dimðMÞ ¼ 2kN and the dynamics is again
given by (1.2). We show that F is the first Chern character
of a particular index bundle over M.
The technique we use to derive these results is simple yet

indirect, and can be viewed as an application of the
Goldstone-Wilczek method [13,14]. We make use of the
well-known fact that the Chern-Simons terms can be in-
duced by integrating out heavy fermions in three dimen-
sions [15,16]. We follow the fate of these fermions from
the perspective of the vortices. The fermi zero modes live
in an index bundle overM and we show that, as their mass
becomes large, they may be integrated out to reproduce the
result (1.2). It is then simple to show that there is no further
contribution from nonzero modes. We recently employed
this method to derive the dynamics of instantons in five-
dimensional Yang-Mills Chern-Simons theories [17].
The plan of the paper is as follows: in Sec. II we

introduce the model of interest and describe its vortex
solutions. It is a UðNÞ Yang-Mills theory, with Chern-
Simons interactions, coupled to matter fields. The
Lagrangian admits N ¼ 2 supersymmetry and the vorti-
ces are Bogomol’nyi-Prasad-Sommerfield (BPS). In
Sec. III we present our main results, analyzing the impact
on the vortex dynamics as fermions are introduced, made
heavy, and finally integrated out. Section IV is devoted to
two examples. In the first example, we study the qualitative
dynamics of two Abelian vortices and describe the bound
orbits. We also show that our technique correctly reprodu-
ces the fractional statistics of Abelian vortices. The second
example concerns a single vortex in the UðNÞ theory for
which the moduli space is CPN�1 and the appropriate
magnetic field F is proportional to �, the Kähler form.
We also show how to reproduce this magnetic field from a
direct study of the vortex equations in the moduli space
approximation.
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II. THE VORTEX EQUATIONS

The literature contains a veritable smorgasbord of
Chern-Simons models which admit vortex solutions.
These include Abelian theories with [18] and without
[19–21] a Maxwell term, non-Abelian theories [22,23],
and theories with nonrelativistic kinetic terms for the mat-
ter fields [24–27]. The properties of many of these models
are summarized in the excellent review [28].

Our interest in this paper lies in a UðNÞ Yang-Mills-
Chern-Simons theory coupled to a real adjoint scalar� and
Nf scalars qi, i ¼ 1; . . . ; Nf, each of which transforms in

the fundamental representation of the gauge group. With
suitable fermion content, the theory enjoys N ¼ 2 super-
symmetry (i.e. four supercharges) which dictates the form
of the bosonic interactions:

L ¼ � 1

2e2
TrF��F

�� � �

4�
Tr����

�
A�@�A�

� 2i

3
A�A�A�

�
þ 1

e2
TrðD��Þ2 þ jD�qij2

� qyi �2qi � e2

4
Trðqiqyi � ��=2�� v2Þ2: (2.1)

Notice that we have not considered separate Chern-Simons
coefficients for the Uð1Þ and SUðNÞ parts of the gauge
group, but instead have taken a specific combination in
which they are packaged together in UðNÞ. For N � 2,
invariance of the partition function under large gauge
transformation requires that � 2 Z. For the Abelian the-
ory, there is no such constraint.

To make contact with the other models on the market, it
is instructive to consider various limits of this Lagrangian.

(i) For the Uð1Þ gauge group, the Lagrangian reduces to
the Maxwell-Chern-Simons-Higgs theory intro-
duced in [18].

(ii) When � ¼ 0, the Lagrangian reduces to Yang-Mills
theory coupled to a number of fundamental scalar
fields. This theory is known to admit non-Abelian
vortices, first introduced in [11,12] and since studied
in some detail. (See, for example, [29–31] for re-
views). We will make much use of this limit.

(iii) When e2 ! 1, the Yang-Mills term vanishes, and
the scalar field � becomes auxiliary. Integrating out
� reproduces the Chern-Simons-Higgs theory with
sixth order scalar potential, first introduced in the
Abelian case in [19–21], and studied more recently
in the non-Abelian case in [23].

Two important ground states of the theory are the un-
broken phase and the Higgs phase. The gauge symmetry is
unbroken when the scalar fields take the vacuum expecta-
tion values

unbroken phase : �a
b ¼ � 2�v2

�
�ab; qi ¼ 0;

(2.2)

where a, b ¼ 1; . . . ; N is the color index. This state exists
regardless of the number Nf of fundamental flavors. In

contrast, a ground state with fully broken gauge symmetry

only exists when Nf � N and the rank Nf term qiq
y
i in the

potential can successfully cancel the rank N term v2

(which comes with an implicit N � N unit matrix). For
simplicity, in what follows we choose Nf ¼ N. There is

then a unique ground state with fully broken gauge sym-
metry given by

Higgs phase : � ¼ 0; qi
a ¼ v�i

a: (2.3)

In this vacuum, both the UðNÞ gauge symmetry and the
SUðNÞ flavor symmetry which rotates the Higgs fields qi
are spontaneously broken. However, the diagonal of the
two survives: UðNÞgauge � SUðNÞflavor ! SUðNÞdiag. The
theory also has several ground states with partly broken
gauge symmetry. For each such state, the vacuum expec-
tation values of the fields have some diagonal entries equal
to those in (2.2) and the rest equal to those in (2.3). We will
not consider these partly broken phases further.
In the Higgs phase, the model admits topologically

stable BPS vortices. First order equations of motion may
be derived using the standard Bogomol’nyi trick, and read

B ¼ e2

2
ðqiqyi � ��=2�� v2Þ;

Dzqi � D1qi � iD2qi ¼ 0;

(2.4)

E	 þD	� ¼ 0; D0� ¼ 0; D0qi þ i�qi ¼ 0:

(2.5)

Here B ¼ F12 and E	 ¼ F0	. Note however that, in con-
trast to vortices in � ¼ 0 theories, it is not enough to solve
these first order equations alone: we must also solve Gauss’
law. This is most simply written in static gauge @0 ¼ 0.
Then the three equations in (2.5) may all be solved by
setting A0 ¼ �, which is determined by Gauss’ law

2D2�þ �

2�
e2B� e2f�; qiqyi g ¼ 0: (2.6)

Note that the presence of the Chern-Simons coupling
ensures that � is sourced at the core of the vortex where
B � 0. The fact that the first order vortex equations (2.4)
must be supplemented by the second order equation (2.6) is
what makes the study of vortex dynamics somewhat more
of a technical challenge in the presence of a Chern-Simons
interaction.
Configurations satisfying (2.4) and (2.6) have energy,

E ¼ �v2
Z
d2xTrB ¼ 2�v2k; (2.7)

where k 2 Zþ is the topological charge of the vortex. It is
expected that Eqs. (2.4) and (2.6) enjoy a moduli space of
solutions of dimension dimðMÞ ¼ 2kN. This is suggested
by the counting of zero modes using index theorems
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[3,11,19]. However, to our knowledge the only rigorous
proof of this statement when � � 0 holds in the Abelian
theory in the limit e2 ! 1 [32]. To some extent, the
method we propose in the next section circumvents this
issue since our starting point will be the theory with � ¼ 0
where the existence of a moduli space has been rigorously
proven [4].

Our theory has N ¼ 2 supersymmetry. Yet so far we
have not mentioned the fermions. They consist of a single
Dirac fermion 
 in the adjoint representation of the gauge
group (this is the superpartner of A� and �) together with

Nf Dirac fermions  i in the fundamental representation

(the superpartners of qi). In the background of the vortex,
these fermions carry zero modes. These zero modes will
not be the focus of our discussion in the next section,
although one should remember that they are present.
Instead we will be interested in the zero modes of some
extra, supplementary, fermions that we now introduce.

III. INTEGRATING OUT FERMIONS

Our strategy in this section is to replace the Chern-
Simons interactions in the bosonic Lagrangian (2.1) with
something that we understand better, namely, fermions. To
this end, we start with the theory without Chern-Simons
interactions by setting � ¼ 0 in (2.1). We now introduce ~N

chiral multiplets ~Q, each transforming in the antifunda-
mental representation of the UðNÞ gauge group. Each of
these chiral multiplets may be given a mass m consistent
with supersymmetry.1 In the limit m! 1, the chiral mul-
tiplets may be happily integrated out. All of their effects
decouple, except for a remnant UðNÞ Chern-Simons term,
with coefficient [15,16]

� ¼ � ~N

2
signðmÞ: (3.1)

Importantly, the �� term in the potential in (2.1) is the
supersymmetric partner of the Chern-Simons term.
Supersymmetry is unbroken in this model (the Witten
index is nonvanishing), so when we integrate out the chiral

multiplets ~Q, the �� term must be generated together with
the Chern-Simons term. In fact, there is one further, re-
lated, effect that is important: the scalar vacuum expecta-
tion value (vev) v2 (which is a Fayet-Iliopoulos parameter
in the language of supersymmetry) picks up a finite renor-
malization [33,34]:

v2 ! v2eff ¼ v2 þm�

2�
¼ v2 � ~Njmj

4�
: (3.2)

Notice that for suitably large jmj, we have v2 < 0, and the
theory exits the Higgs phase where the vortices live. If we
wish to stay in the Higgs phase, and keep the vortex mass
fixed, we must scale v2 so that v2eff remains constant as

m! 1. If we perform such a scaling, we conclude that the
Chern-Simons theory (2.1) is equivalent to the Yang-Mills
theory coupled to ~N ¼ 2� supplementary massive chiral

multiplets ~Q in the limit m! �1.

A. The index bundle of Fermi zero modes

Let us now follow the effect of this procedure on the

vortex dynamics, focussing first on a Dirac fermion ~ in

one of the chiral multiplets ~Q. The Dirac equation is given
by

i 6D ~ � ~ � ¼ m ~ : (3.3)

We are interested in the solutions to this equation in the
background of the vortex. Since we are working in the
theory with � ¼ 0, the bosonic fields of the vortex are
solutions to

B ¼ e2

2
ðqiqyi � v2Þ; Dzqi ¼ 0; A0 ¼ � ¼ 0:

(3.4)

Of the full spectrum of solutions to the Dirac equation (3.3)
in the background of the vortex, only the zero modes will
prove important. We discuss these first, returning to the
nonzero modes shortly. We work with the basis of gamma
matrices �� ¼ ð�3; i�2;�i�1Þ. The zero modes then take
the form [35]

~ ðt; x	Þ ¼ e�imt
~ �ðx	Þ

0

 !
or

~ ðt; x	Þ ¼ eþimt 0
~ þðx	Þ

� �
;

(3.5)

where D�z
~ � ¼ Dz

~ þ ¼ 0. Standard index theorems

state that the equation D�z
~ � ¼ 0 has k solutions in the

background of the vortex, whileDz
~ þ ¼ 0 has none.2 For

example, in the Abelian case this follows from the fact that
there is no holomorphic line bundle of negative degree.
The space of zero modes of the Dirac equation defines a

bundle over the vortex moduli space M, with fiber Ck.
This is commonly referred to as the index bundle. As we
move in moduli space by adiabatically changing the back-
ground vortex configuration, the Fermi zero modes
undergo a holonomy described by a Hermitian uðkÞ con-
nection ! over M. The index bundle can be defined by
introducing a set of basis vectors�lðx; XÞwith l ¼ 1; . . . ; k

1This mass term is not possible in d ¼ 3þ 1 dimensions,
where it would break Lorentz invariance. It is allowed in d ¼
2þ 1, and was called a ‘‘real mass’’ in [33] to distinguish it from
the more familiar complex mass that appears in the superpoten-
tial. For the present purposes, the important point is its effect on
the fermions which is shown in the Dirac equation (3.3).

2Recall that ~ transforms in the �N representation, while qi
transforms in the N representation—this is responsible for the
fact thatD�z carries the zero modes in the backgroundDzqi ¼ 0.
More details on these Fermi zero modes in the context of vortex
strings in related four-dimensional theories can be found in [36].
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for the Fermi zero modes. The connection is defined by

ið!aÞlm ¼
Z
d2xð�lÞy @

@Xa
�m: (3.6)

For the case of Fermi zero modes in the background of a
magnetic monopole, the connection on the index bundle
has been studied in [37,38]. However, in the case of vor-
tices, it appears to have received less attention in the
literature. We will provide some explicit examples of the
connection ! in Sec. IV of this paper.

We denote the Grassmann-valued coordinates of the Ck

fiber as 
l, l ¼ 1; . . . ; k. The low-energy dynamics of the
vortex should now be augmented to include the Fermi zero
modes, which are described by the kinetic terms3

L ¼ �
lðiDt �mÞ
l; (3.7)

where the covariant derivative is defined by

Dt

l ¼ @t


l þ ið!aÞlm _Xa
m: (3.8)

Let us pause briefly to discuss how one should quantize
these zero modes. As usual, each complex fermionic zero
mode gives rise to two states—occupied and unoccupied—
whose energy differs by m. However, the question of the
absolute ground state energy requires us to resolve the
usual ordering ambiguities. Comparison with the renor-
malization of v2 given in (3.2) shows that a single Fermi
zero mode should cause the mass of the vortex to shift by
Mvortex ! Mvortex � jmj=2. This strongly suggests that we
should take the ground state of the Fermi zero modes to
have energy �jmj=2, and the excited state to have energy
þjmj=2. It would be interesting to understand better why
this choice of ordering is forced upon us.

B. Integrating out the index bundle

Throughout this discussion, we have been referring to
the relevant solutions of the Dirac equation as ‘‘zero
modes.’’ This is a slight misnomer because, as is clear
from (3.7), they are excited at a cost of energy equal to
jmj. They become true zero modes only in them! 0 limit
which is, of course, to be expected since they arose from
fermions with mass m. However, we are interested in the
opposite limit m! 1. In this limit, the effect of the fermi
zero modes almost decouples. They do not correct the
metric gab. However, as we now show, they do give rise

to new Chern-Simons terms for the moduli space
dynamics.
Integrating out the fermion 
 in the path integral leads to

the ratio of determinants

det

�
iDt �m

i@t �m

�
: (3.9)

We can compute this ratio using standard methods. We
work with compact Euclidean time � ¼ it, with periodicity
� 2 ½0; �Þ. We look for the eigenvalues 
 of the operator

ð�@� � i!�mÞ� ¼ 
�; (3.10)

where ! ¼ !a@�X
a. The eigenfunctions are subject to

periodic boundary conditions �ð0Þ ¼ �ð�Þ. Solutions are
given by the usual time-ordered product

� ¼ e�ðmþ
Þ�Vð�Þ�
with Vð�Þ ¼ T exp

�
�i

Z �

0
d�0!ð�0Þ

�
2 UðkÞ:

(3.11)

Let us denote the eigenvalues of Vð�Þ as evl , l ¼ 1; . . . ; k.
Then the periodicity requirement �ð0Þ ¼ �ð�Þ means that
the eigenvalues 
 are given by


¼ 2�inþ vl
�

�m; n2 Z; l¼ 1; . . . ; k: (3.12)

From this we compute the ratio of determinants

det

�
D� þm

@� þm

�
¼ Yk

l¼1

Y
n2Z

�
2�in=�þ vl=��m

2�in=��m

�

¼ Yk
l¼1

�
1� vl

m�

��
sinhð�m=2� vl=2Þ

sinh�m=2

�

!�!1
exp

�
� 1

2
signðmÞX

l

vl

�
; (3.13)

where we assume that ! has compact support in taking the
limit in the last line. Translating back to Minkowski space,
we can write this as a contribution to the effective
Lagrangian involving the original uðkÞ connection !,

Leff ¼ 1
2signðmÞðTr!aÞ _Xa: (3.14)

This is the promised result. We see that, even in the limit
m! 1, the zero modes leave a remnant of their existence
by inducing an effective magnetic field F ¼ dA on the
moduli space, where A ¼ Tr! is defined in terms of the
connection on the index bundle. F is proportional to the
first Chern character of the index bundle while, conven-
iently enough,A is known as the Chern-Simons one-form.
This is the worldline counterpart to the statement that the
parent three-dimensional fermions induce a Chern-Simons
term.
The result (3.14) holds for integrating out the zero modes

associated to a single chiral multiplet fermion. As we saw
in (3.1), we must integrate ~N ¼ 2� chiral multiplets. Our

3There is an important caveat here: the zero modes under
discussion are non-normalizable; they have a long-range 1=r tail,
causing them to suffer from an infrared logarithmic divergence.
In the context of four-dimensional theories, there are several
examples where ignoring this fact, and treating these modes with
kinetic terms of the form (3.7), leads to quantitatively and
qualitatively correct physics [39,40]. This approach has been
criticized in [41]. For the time being, we proceed by ignoring this
issue. However, in Sec. III C we will present a slightly more
involved construction that yields the same answer, but does not
suffer from this technical problem.
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final result is that the low-energy dynamics of vortices in
the Chern-Simons theory (2.1) is given by

L ¼ 1
2gab

_Xa _Xb � �Aa
_Xa: (3.15)

1. Why only zero modes matter

In deriving the Lagrangian (3.15), we have integrated
out only the zero modes on the vortex worldline, while
ignoring the infinite tower of higher solutions to the Dirac
equation. We now show that this is consistent. The key
point is that higher excitations of fermions come in pairs,
with energy �E:

0 iDz

�iD�z 0

 !
~ �
~ þ

 !
¼ E

~ �
~ þ

 !

) 0 iDz

�iD�z 0

 !
~ �

� ~ þ

 !
¼ �E

~ �
� ~ þ

 !
:

Contributions to the Chern-Simons term on the vortex
worldline cancel between each pair. To see this, we write

the general eigenfunction as ~ T ¼ ð ~ ���; ~ þ�þÞ and pro-
mote �� to time-dependent Grassmann fields. The action
for these objects is schematically

Lnonzero modes ¼ ��þðiDt �mÞ�þ þ ���ðiDt þmÞ��
þ Eð ��þ�� þ ����þÞ; (3.16)

which is schematic only in the sense that we have dropped
overall coefficients that arise from the overlap of the
eigenfunctions. Integrating out the nonzero modes now
gives us a determinant of the form,

det
iDt �m E

E iDt þm

� �
¼ detðiDt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ E2

p
Þ

� detðiDt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ E2

p
Þ:

(3.17)

We see that the effective mass of these objects is

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ E2

p
, leading to a cancellation due to the presence

of the signðmÞ term in (3.14). In the limit m! 1, these
nonzero modes leave no trace of their existence on the
vortex dynamics.

C. Abelian vortices and the tangent bundle

Our final answer (3.15) for the vortex dynamics is pleas-
ingly simple and geometrical. Yet it suffers from two
drawbacks. First, we have no concrete expression for the
index bundle and its associated first Chern character.
Second, as mentioned in footnote 3, there is a technical
subtlety due to the non-normalizability of the zero modes.
In this section we remedy both of these issues for Abelian
vortices. In Sec. III D we shall also remedy the problem of
non-normalizability for non-Abelian vortices.

Our strategy is a slightly more refined version of that
described above. We again generate the Chern-Simons

terms by integrating out supplementary matter multiplets.
The only thing that differs from the previous discussion is
the matter that we choose to integrate out. Our starting
point this time will be the Abelian-Higgs model withN ¼
4 supersymmetry (i.e. 8 supercharges). We set � ¼ 0 in
(2.1), and introduce a neutral chiral multiplet A, containing
the Dirac fermion �, together with a single chiral multiplet
~Q of charge �1, containing the fermion ~ . The extended
supersymmetry requires that these are coupled to the origi-
nal chiral multiplet Q, containing the scalar q, through the
superpotential,

W ¼ ffiffiffi
2

p
~QAQ: (3.18)

The benefit of working in the N ¼ 4 model is that the
geometry of the Fermi zero modes is well understood.
Indeed, in the background of the Abelian vortex, the

Dirac equations for � and ~ reduce to4

iD�z�� � ffiffiffi
2

p
qy ~ y� ¼ 0; �iDz

~ y� � ffiffiffi
2

p
��q ¼ 0:

(3.19)

The index theorem remains the same as before, and these
equations again have k complex zero modes. However, the
presence of the coupling to q—which has a nonzero vac-
uum expectation value—ensures that the zero mode pro-
files are localized exponentially near the vortex cores and
are normalizable. This resolves the problem described in
footnote 3.
Moreover, it can be shown that the k Fermi zero modes

are proportional to the bosonic zero modes of the vortex:
they are related by the extended supersymmetry. The up-
shot of this is that the Fermi zero modes live—like their
bosonic counterparts—in the tangent bundle over M. The
appropriate covariant derivative for the k Grassmann col-
lective coordinates 
 is now

ðDt
Þa ¼ @t

a þ �abc

_Zb
c; (3.20)

where, in contrast to previous formulae, we have switched
to complex notation, defining the holomorphic coordinates
Za, a ¼ 1; . . . ; k on a patch of the moduli space M. The
�abc are the holomorphic components of the Levi-Civita

connection.
The above is merely a review of well-known results

about Fermi zero modes of vortices in theories with N ¼
4 supersymmetry. As before, we now deform our theory by

adding a real mass m for the chiral multiplets A and ~Q. We

then integrate A and ~Q out. The multiplet A is neutral and

decouples in the m! 1 limit. In contrast, ~Q induces a
Chern-Simons interaction with coefficient � ¼
� 1

2 signðmÞ.

4A recent detailed discussion of these issues, with an explicit
demonstration of the relationship between fermionic and bosonic
zero modes, can be found in [36].
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Integrating out the Fermi zero modes on the worldline
proceeds as before. But, since the zero modes live in the
tangent bundle, locally we have dA ¼ R where R is the
Ricci form. This is defined in terms of the metric ga �b by

R ¼ i@ �@ ln
ffiffiffi
g

p
: (3.21)

In terms of local complex coordinates on M, the vortex
dynamics becomes

L ¼ ga �b _Za _�Z
�b � �ðAa

_Za þ �A �a
_�Z
�aÞ; (3.22)

where the complex Chern-Simons one-form can be written
locally as

A a ¼ � i

2

@

@Za
ln

ffiffiffi
g

p
: (3.23)

D. Non-Abelian vortices revisited

The discussion in Sec. III C was solely for Abelian
vortices. What goes wrong if we try to repeat it for non-
Abelian vortices? In order to build the non-Abelian theory
with N ¼ 4 supersymmetry, we must augment the � ¼ 0

Lagrangian with N chiral multiplets ~Q in the antifunda-
mental representation, and a single chiral multiplet A in the

adjoint representation. Integrating out the ~Q results in a
UðNÞ Chern-Simons interaction of the type given in (2.1).
However, integrating out the adjoint multiplet A contrib-
utes to the SUðNÞ Chern-Simons term, but not the Uð1Þ
Chern-Simons term. Thus the mass deformed N ¼ 4
theory does not yield the UðNÞ N ¼ 2 theory of the
form (2.1), but rather a theory with different Chern-
Simons coefficients for the SUðNÞ and Uð1Þ parts of the
gauge group.

To make progress, we could instead augment the � ¼ 0

Lagrangian with N chiral multiplets ~Q in the antifunda-
mental representation, and a single neutral chiral multiplet
A. The theory no longer admitsN ¼ 4 supersymmetry, so
we cannot use the above argument to show that the zero
modes live in the tangent bundle. Nonetheless, adding a
superpotential of the form (3.18) means that the Dirac
equations are once more of the form (3.19), and the
Fermi zero modes are rendered normalizable. Thus,
although we cannot show that the magnetic field on the
moduli space of non-Abelian vortices takes the simple
form (3.23), any lingering worries caused by footnote 3

may now be left behind.

IV. EXAMPLES

In this section, we illustrate our result with two ex-
amples. We first examine the qualitative dynamics of two
Abelian vortices and show that the moduli space dynamics
correctly captures their fractional statistics. Second, we
look at a single vortex in the UðNÞ theory, for which the
internal moduli space is CPN�1. We derive the dynamics

both from the method described in Sec. III, and also from a
direct moduli space computation.

A. Two Abelian vortices

The relative dynamics of two Abelian vortices takes
place in the moduli spaceM ffi C=Z2. The metric is given
by

ds2 ¼ f2ð�Þðd�2 þ �2d�2Þ; (4.1)

where � 2 ½0; �Þ. Asymptotically, as �! 1, we have
f2ð�Þ ! 1þOðe��Þ [5,7] and the moduli space is a
cone with deficit angle �. Although the function fð�Þ is
not known analytically, it can be shown that f2ð�Þ � �2 as
�! 0, ensuring that the tip of the cone is smooth. The
moduli space is sketched in Fig. 1, together with an ex-
ample of the motion which we will describe shortly.
We work with the single valued holomorphic coordinate

z ¼ �2e2i�. Then the Chern-Simons one-form (3.23) on the
vortex worldline is given by

LCS ¼��ðA _zþ �A _�zÞ ¼ ��
�
�

2

@

@�
logf2 � 1

�
_�: (4.2)

A similar expression, expressed in slightly different varia-
bles, can be found in Eq. (85) of [10].
Although the explicit function fð�Þ is not known, we

may still study the qualitative behavior of vortices. The
conserved Noether charge associated to � is given by

J ¼ f2�2 _�þ �

�
1� �

2

@ logf2

@�

�
: (4.3)

As explained in [10], this differs from the angular momen-
tum of the two vortices by a constant. Meanwhile the
conserved Hamiltonian is

H ¼ 1
2f

2 _�2 þ Veffð�Þ; (4.4)

where the effective potential is due to the Chern-Simons
term, together with the usual angular momentum barrier,

Veffð�Þ ¼ 1

2f2�2

�
J � �þ ��

2

@ logf2

@�

�
2
: (4.5)

The classical scattering of vortices depends on the form of

FIG. 1. The moduli space is a cone.
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Veff which, in turn, depends on the relative values of � and
J. Let us fix � > 0. On physical grounds, the form of the
effective potential is shown in Fig. 2:

(i) J > �. In this regime, we have _� > 0 and Veff is
shown in Fig. 2(a). Veff acts as an effective angular
momentum barrier and the scattering of vortices is
not qualitatively different from the case without a
Chern-Simons term.

(ii) The regime 0< J < � is more interesting. The ef-
fective potential is shown in Fig. 2(b). The root of the
effective potential corresponds to the static solution.
We see that, as emphasized in [10], static solutions
with different vortex separation � carry different
angular momentum J.
Small oscillations around the minimum of Veff give
rise to bound orbits of vortices. From the expression
(4.3), we see that _� oscillates from negative to posi-
tive in such orbits. The corresponding motion on the
moduli space is drawn in Fig. 1. The two vortices
trace Larmor circles, while orbiting one another.
This moduli space motion can be understood using
a standard argument involving adiabatic invariants:
in the slowly varying magnetic field, a particle drifts
along lines of constant field strength.

(iii) For J < 0, we have _� < 0. There are two distinct
shapes of Veff . For suitably small jJj, the effective
potential takes the form shown in Fig. 2(c). There are
once again bound orbits, including one at fixed �.
For J � 0, the minimum of Veff disappears and the
potential once again takes the shape of Fig. 2(a), with
only scattering trajectories.

Before we move on, we also note that there is a simple
quantum effect that follows from (4.2). The first term
vanishes as �! 1, while the second survives. This en-
sures that as the particles orbit asymptotically, the wave
function picks up a phase expð�i��Þ. For � =2 Z, this
endows the vortices with fractional statistics in agreement
with the analysis of [8–10].

B. One non-Abelian vortex

For our second example, we examine a single vortex in
UðNÞ. We first review the dynamics of the vortex in the
� ¼ 0 case. The vortex has an internal moduli spaceM ffi
CPN�1, describing its orientation in color and flavor space
[11,12]. We introduce homogeneous coordinates onM by

starting with a solution B? for the magnetic field of a single
Abelian vortex configuration. We can embed the Abelian
solution into a non-Abelian configuration by writing

Bab ¼
B?
r
’a �’b (4.6)

with a similar expression for the Higgs field which we will
describe in more detail in Sec. IVC. The coordinates ’a 2
C, a ¼ 1; . . . ; N, satisfy the constraint

XN
a¼1

j’aj2 ¼ r; (4.7)

where r is a constant which is determined to be r ¼ 2�=e2

[11,12,42]. The solutions (4.6) are invariant under the
simultaneous rotation

’a ! ei#’a: (4.8)

The ’a, subject to the constraint (4.7) and identification
(4.8), provide homogeneous coordinates on the moduli
space M ffi CPN�1. The low-energy dynamics of the vor-
tex is described by a sigma-model onM endowed with the
Fubini-Study metric and Kähler class r. There is a simple
way to impose the identification (4.8) by introducing an
auxiliary gauge field 	 on the worldline. The Lagrangian
for the internal modes of the vortex takes the form

Lvortex ¼
XN
a¼1

jDt’aj2; (4.9)

where the degrees of freedom are subject to the constraint
(4.7), and the covariant derivative is given by Dt’a ¼
_’a � i	’a.
Let us now ask how this dynamics is altered by the

presence of the Chern-Simons term. The moduli space is
compact and the cohomology is generated by �, the
Kähler form. Thus the first Chern character F of the index
bundle must be proportional to�. We need only determine
the proportionality constant. In fact, this is simple to

achieve in the language introduced above. Let ~ ? denote
the solution to the Abelian Dirac equation (3.3). Then the
solution to the non-Abelian Dirac equation, with gauge
field given by (4.6), is

~ b ¼ ~ ?
 �’b: (4.10)

This is compatible with the symmetry (4.8) if the

V eff V eff V eff

J<00<J<J>

a) b) c)

σσσκ κ

FIG. 2. The effective potential for different values of J.
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Grassmann collective coordinate 
 is assigned charge,


! ei#
: (4.11)

This transformation rule determines the index bundle, for it
fixes the kinetic term of the Grassmann variable to be given

by the covariant derivative Dt
 ¼ _
� i	
. We may now
take m! 1, and integrate out 
. The calculation is the
same as that described in Sec. III, and yields

L1�vortex ¼
XN
a¼1

jDt’aj2 � �	: (4.12)

An example of the example

For a single vortex in the Uð2Þ theory, the moduli space
is S2 ffi CP1. We now provide a more explicit description
of the dynamics in this case. The constraints (4.7) are
simply solved by

’1 ¼
ffiffiffi
r

p
ei �i�=2 cosð�=2Þ;

’2 ¼
ffiffiffi
r

p
ei þi�=2 sinð�=2Þ;

(4.13)

where the angles take ranges  2 ½0; 2�Þ, � 2 ½0; 2�Þ,
and � 2 ½0; �Þ. Expanding out the Lagrangian gives

Lvortex ¼ rcos2ð�=2Þð _ � _�=2� 	Þ2

þ rsin2ð�=2Þð _ þ _�=2� 	Þ2 þ r

4
_�2 � �	:

We now eliminate the gauge field 	 by its equation of
motion. Ignoring an overall constant term and treating total
derivatives carefully, the resulting dynamics is given by

L1�vortex ¼ r

4
½ _�2 þ sin2� _�2	 þ �

2
ðcos�� 1Þ _�: (4.14)

We recognize the first term as the familiar sigma-model on

S2 with radius R ¼ ffiffiffiffiffiffiffiffi
r=2

p
. The second term is the Dirac

monopole connection of strength �, expressed in a form
which gives a well-defined potential everywhere except at
the south pole.

C. One non-Abelian vortex: Explicit moduli space
computation

In this final section, we show how to rederive the Dirac
monopole connection (4.14) from an explicit moduli space
calculation. As we shall see, the calculation requires that
we take care with the topology of the moduli space.

Following [10], we work perturbatively both in the
velocity of the vortices, and in �. Practically, this means
that we start with the Bogomol’nyi equations with � ¼ 0,

B ¼ e2

2
ðqiqyi � v2Þ; Dzqi ¼ 0; (4.15)

but with � ¼ A0 determined by Gauss’ law (2.6).5 Let us
first quantify the price that we pay by working perturba-
tively in �. Since the Chern-Simons term clearly plays a
crucial role in this discussion, it is necessary to work with
the Lagrangian instead of the energy functional. We evalu-
ate the Lagrangian (2.1) on the solution to Eqs. (2.6) and
(4.15), with @0 ¼ 0. This gives

L ¼
Z
d2xL ¼ �2�v2k� e2�2

16�2

Z
d2xTr�2: (4.16)

The last term is the correction to the Lagrangian due to the
fact that we chose to work with the � ¼ 0 Bogomol’nyi
equations, rather than the true Eqs. (2.4) and (2.5). The
mass of the configuration is

Mvortex ¼ 2�v2k

�
1þO

�
e4�4

v4

��
: (4.17)

The extra term is the price we pay for our approximation.
At our level of approximation, we neglect all terms of this
order in what follows.

1. Zero modes

Let us now turn to the dynamics of the system. Here we
see the advantage of our approximation, because we may
deal with the familiar vortex equations (4.15). Denote the
collective coordinates of this system by Xa, with a ¼
1; . . . ; 2kN. The zero modes of the solution are then given
by differentiating, together with a gauge transformation:

�aA	 ¼ @A	
@Xa

�D	wa; �aqi ¼ @qi
@Xa

� iwaqi:

(4.18)

The gauge transformation wa 2 uðNÞ is dictated by the
gauge fixing condition,

D 	�aA	 ¼ � ie2

2
ð�aqiqyi � qi�aq

y
i Þ: (4.19)

We next write A0 ¼ wþ�, where w � wa _Xa, which en-
sures that the zero modes are related to the covariant time
derivatives as follows:

D 0qi ¼ �aqi _X
a � i�qi; E	 ¼ �aA	 _Xa �D	�:

(4.20)

The presence of the� terms on the right-hand side of these
equations is what distinguishes the Chern-Simons dynam-
ics from the case � ¼ 0. Notice that in our approximation,
we have not needed to linearize the second order Gauss’
law equation (2.6) since the terms ðD0�Þ2 are of order
�2 _X2 and may be safely ignored. Substituting into the
Lagrangian (2.1), and making use of the constraint (4.19),

5Since � 2 Z, it does not seem like a good candidate for
perturbation theory. A more careful study shows that e2�2=v2 �
1 is the small parameter.
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we derive an expression for the Lagrangian governing the
dynamics of the vortex,

L ¼ gab _Xa _Xb � 2�v2k� �

4�

Z
d2xTrð2Bwa _Xa

� �	�A	 _A�Þ: (4.21)

This generalizes the result derived in [8–10] to the non-
Abelian case. The first term in this expression is the usual
metric on the vortex moduli space, given by

gab ¼
Z
d2x

�
1

e2
Tr�aA	�bA	 þ �ðaq

y
i �bÞqi

�
: (4.22)

The effect of the Chern-Simons interaction is shown in the
last term of (4.21), which is of order � _X.

2. Nonsingular gauge

We now apply this formula to the simple case of a single
vortex in the Uð2Þ gauge theory. In this case, the moduli
space isCP1. Previous field theoretic studies of this system
have always employed singular gauge [12], in which the
Higgs field qi has no winding at infinity. While this gauge
is perfectly adequate for studying the metric on moduli
space (see, for example [42]), it hides the interesting
topology of the moduli space and is not suitable for study-
ing the effect of the Chern-Simons term. We therefore first
describe the collective coordinates of the single Uð2Þ vor-
tex in a gauge that does not suffer from singular behavior.

Consider the Uð1Þ vortex equations (4.15). We work in
polar coordinates on the spatial plane: x1 ¼ � cos� and
x2 ¼ � sin�. Then the solution to the equations for the k ¼
1 vortex is given by

q ¼ vq?ð�Þei� and A� ¼ 1� fð�Þ; A� ¼ 0;

(4.23)

where the profile functions satisfy the ordinary differential
equations,

�q0? ¼ �fq? and
f0

�
¼ � e2v2

2
ðq2? � 1Þ (4.24)

subject to the boundary conditions q?ð�Þ ! 1, 0 and
fð�Þ ! 0, 1 as �! þ1, 0. Given these Abelian solutions,
it is now a simple matter to embed them into the fields of
the Uð2Þ theory to arrive at new solutions. There are two
natural embeddings:

ðiÞ qð1Þ ¼v
q?e

i� 0
0 1

� �
; A�¼ ð1�fÞ 0

0 0

� �
; A�¼0;

(4.25)

ðiiÞ qð2Þ ¼v
1 0
0 q?e

i�

� �
; A�¼ 0 0

0 ð1�fÞ
� �

; A�¼0:

(4.26)

Here the rows and columns of the q matrix correspond to

color and flavor indices, respectively. However, these em-
beddings are not the only two. Given either of these
solutions, one may act upon it with a diagonal combination
of the SUð2Þflavor symmetry and SUð2Þgauge symmetry of

the model in such a way that the diagonal structure of the
vacuum remains invariant,

q! UqVy; A! UAUy � ið@UÞUy; (4.27)

where V 2 SUð2Þflavor is a constant matrix, and U ¼
Uð�; �Þ 2 SUð2Þgauge. In singular gauge, wewould impose

the condition that U ! V as �! 1. However, the pres-
ence of the winding scalar field in (4.25) and (4.26) means
that cannot be quite right in the present case. Indeed, the
only transformation such that U ! V that is allowed is

U ¼ V ¼ 0 i
i 0

� �

which maps qð1Þ to qð2Þ. For more general transformations,

U must itself include some winding. The necessary condi-
tion is not difficult to determine. For

V ¼ â1 â2
â3 â4

� �
2 SUð2Þflavor;

we require

Uð1Þð�; �Þ ¼ a1ð�Þ a2ð�Þei�
a3ð�Þe�i� a4ð�Þ

� �
or

Uð2Þð�; �Þ ¼ a1ð�Þ a2ð�Þe�i�
a3ð�Þei� a4ð�Þ

� �
;

(4.28)

where the matrix Uð1Þ is to be used for transformations

away from qð1Þ, while the matrix Uð2Þ is required for trans-

formations away from qð2Þ. In both cases, the profile func-

tions in the gauge transformation satisfy the boundary
conditions aið�Þ ! âi as �! 1.
Perhaps unsurprisingly, the picture that emerges is that

two patches are required to cover the moduli space. The
solution qð1Þ can be thought of as the north pole ofCP1, and

combined gauge and flavor transformations given by Uð1Þ
cover nearly all the space, but cannot take us to qð2Þ.
Similarly, qð2Þ is thought of as the south pole of the moduli

space and transformations using Uð2Þ can reach the full

moduli space, except for the north pole.

3. Finding the Dirac monopole connection

We now use these results to derive the Dirac monopole
connection on moduli space. Let us start with the solution
q ¼ qð1Þ. We look for zero modes corresponding to a

simultaneous SUð2Þ gauge and flavor rotation, with pa-

rameters� and �̂, respectively. The zero modes are given
by

�q � �aq _Xa ¼ ið�q� q�̂Þ;
�A	 � �aA	 _Xa ¼ D	�:

(4.29)
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The requirement that the vacuum remains invariant fixes

�1 � lim�!1�ð�; �Þ in terms of �̂. The remaining free-

dom in� is fixed by the constraint (4.19), which now reads

D 2� ¼ e2

2
ðf�; qqyg � 2q�̂qyÞ: (4.30)

We demand that varying the fields with respect to the
collective coordinates corresponds to the ‘‘large’’ part of

the gauge and flavor rotation, with parameters �1 and �̂.
This means that

@0q ¼ @q

@Xa
_Xa ¼ ið�1q� q�̂Þ and

@0A	 ¼ @A	
@Xa

_Xa ¼ D	�1:
(4.31)

To achieve this and satisfy (4.29), we set w ¼ �1 �� in
(4.18).

We choose our flavor transformation to be

�̂ ¼
_�

2

0 1
1 0

� �
2 suð2Þflavor;

where we are using the coordinates (4.13), and the factor of
�=2 in this expression follows directly from the same factor
in (4.13). Then (4.30) is solved by [42]

� ¼
_�

2

0 q?ð�Þei�
q?ð�Þe�i� 0

� �
; (4.32)

where the boundary condition on � is inherited from �̂.
The asymptotic winding in (4.32) results from working in
nonsingular gauge as in Eq. (4.28).

To compute the terms in the low-energy dynamics of the
Lagrangian, we substitute (4.31) and w ¼ �1 �� into
our moduli dynamics (4.21) to get

LCS ¼ � �

4�

Z
d2xTrð2Bð�1 ��Þ � �	�A	D��1Þ:

(4.33)

Using (4.25) and (4.32), we see that ð�1 ��Þ andD��1
are off diagonal, while B and A� are diagonal and A� is

zero. Hence (4.33) vanishes.
However, we should not be too hasty in concluding that

the Chern-Simons term has no effect on the vortex dynam-
ics. We should first compare with the expected Dirac
monopole solution found in Sec. IVB. We have worked
about the ‘‘north pole’’ solution (4.25). As discussed pre-
viously, this patch covers all but the south pole of CP1. If
we were to write the Dirac monopole in these coordinates,
the Dirac string would point along the direction of the
south pole. The corresponding term on the worldline is
given by

LDirac ¼ �

2
ðcos�� 1Þ _�: (4.34)

However, as shown in Fig. 3, the calculation that we have

just done corresponds to moving downwards from the
north pole. This is equivalent to looking for a _� term in
the effective action. It is not surprising that it gave a
vanishing answer. Said another way, there is always a
coordinate choice so that a given infinitesimal motion
does not reveal a Dirac monopole connection in the
Lagrangian. We have made that coordinate choice above;
moreover, such a coordinate choice is always made im-
plicitly if we work in singular gauge because this gauge
disguises the presence of the Dirac string.
With this understanding of the topology of moduli space,

it is a simple matter to perform a calculation that does see
the Dirac monopole connection. Our first goal is to rotate
the qð1Þ solution to a configuration corresponding to lati-

tude � on the moduli space. This is done by a flavor
rotation of the form

V ¼ cosð�=2Þ i sinð�=2Þ
i sinð�=2Þ cosð�=2Þ

� �
2 SUð2Þflavor (4.35)

together with a suitable gauge transformation Uð1Þ with

boundary conditions given in (4.28). We now search for
zero modes around this new background. Our task is to
solve for the infinitesimal gauge transformation � satisfy-
ing (4.30), subject to the appropriate boundary condition.
This boundary condition comes from the requirement that
the gauge transformation acts in the longitudinal � direc-
tion, and returns us to our starting point after � has
increased by 2�. Using the coordinates (4.13), we see
that this can be achieved if we supplement our gauge and
flavor transformations by Uð1Þ rotations corresponding to
motion in the  direction. An appropriate choice is

�̂ ¼ _�
0 0
0 1

� �
:

Since this is diagonal, we have �1 ¼ �̂ [see (4.28)].
Using the fact that @	�1 ¼ 0 and performing an integra-
tion by parts, we may write

Z
d2xTrð��	�A	D��1Þ ¼

Z
d2xTrð�2B�1Þ:

(4.36)

q
(1)

q
(2)

φ

θ

FIG. 3. Coordinates on the moduli space.
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Once we substitute this into the Lagrangian (4.33), we are
left with

LCS ¼ � �

4�

Z
d2xTrð�2B�Þ: (4.37)

We may make use of the gauge covariance of (4.30) to
translate the task of finding � into something equivalent:
solving (4.30) in the background of the original vortex
solution (4.25) now subject to the boundary condition
arising from

Vy�̂V ¼ _�Vy 0 0
0 1

� �
V ¼

_�

2

1� cos� �i sin�
i sin� 1þ cos�

� �
:

(4.38)

It is straightforward to show that the solution is given by

Uy�ð�; �ÞU ¼
_�

2

1� cos� �iei�q?ð�Þ sin�
ie�i�q?ð�Þ sin� 1þ cos�

� �
:

(4.39)

We now substitute our results into the expression (4.37)
arising from moduli space dynamics. Noting that the mag-
netic field associated with (4.25) is given by UyBU, we
have

LCS ¼ �

2�

Z
d2xTrUy�UUyBU

¼ �ð1� cos�Þ _�

4�

Z
d2xTrB ¼ �

2
ðcos�� 1Þ _�:

(4.40)

This reproduces the Dirac monopole connection as
claimed.
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