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Coherent electrons coupled to the quantized electromagnetic field undergo decoherence which can be

viewed as due either to fluctuations of the Aharonov-Bohm phase or to photon emission. When the

electromagnetic field is in a squeezed vacuum state, it is possible for this decoherence to be reduced,

leading to the phenomenon of recoherence. This recoherence effect requires electrons which are emitted at

selected times during the cycle of the excited mode of the electromagnetic field. We show that there are

bounds on the degree of recoherence which are analogous to quantum inequality restriction on negative

energy densities in quantum field theory. We make some estimates of the degree of recoherence, and show

that although small, it is in principle observable.
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I. INTRODUCTION

The interference of electrons is one of the most basic
phenomena which illustrate the quantum nature of elec-
trons. In recent years, technological advances have allowed
electron interferometry to be used for a variety of inves-
tigations [1–5]. However, the quality of the interference
pattern obtained with electrons is never as good as can be
achieved with light or with neutral atoms. This can be
attributed to the fact that charged particles interact more
strongly with their environment than do photons or neutral
atoms, and are hence more subject to loss of quantum
coherence, or decoherence. This can arise from a variety
of effects, such as interaction with random fields in the
interferometer or with thermal radiation. Recently,
Sonnentag and Hasselbach [5] observed decoherence as a
result of dissipative interaction with image charge fields
near an imperfectly conducting plate. In principle, these
effects could be removed if there are no photons or classi-
cal fields in the interferometer. However, there is still a
decoherence effect even when the quantized electromag-
netic field is initially in its vacuum state [6–12]. This effect
can be interpreted as arising from photon emission by the
electrons. The emission of a photon with sufficiently short
wavelength can reveal which path a particular electron
takes and hence acts to destroy the interference pattern.
(See Fig. 1.) An equivalent description is in terms of a
fluctuating Aharonov-Bohm phase. For neutral particles
with a magnetic moment, an analogous decoherence effect
arises from Aharonov-Casher phase fluctuations [13].

In this paper, we will be concerned with the effects of
squeezed photon states on the electron coherence.
Squeezed states describe reduced quantum fluctuations in

one variable at the expense of increased fluctuations in the
conjugate variable. One remarkable property is that they
can exhibit locally negative energy densities. This phe-
nomenon can be understood as a suppression of vacuum
fluctuations. The normal ordered stress tensor operator is a
difference between an expectation value in a given state

FIG. 1. An electron interference experiment in which the
electrons may take either one of two paths, C1 or C2, from the
source to the point P where the interference pattern is formed.
The emission of photons by the electrons tends to cause deco-
herence. The detection of an emitted photon with wavelength
smaller than the path separation can reveal which path a par-
ticular electron takes, and hence causes decoherence.
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and that in the vacuum, a difference which can become
negative. As will be detailed in the next section, electron
decoherence due to a fluctuating electromagnetic field can
be ascribed to fluctuations of the Aharonov-Bohm phase.
As we will demonstrate, it is possible to use squeezed
states of the quantized electromagnetic field to reduce
these fluctuations, leading to a decrease in decoherence,
which we will call ‘‘recoherence.’’ Squeezed states and
coherent electrons were discussed in a somewhat different
context by Vourdas and Sanders [14], who developed a
procedure by which coherent electrons may be used to
measure quantum states of the electromagnetic field.

The outline of this paper is as follows: In Sec. II, we
outline the formalism of decoherence by a fluctuating
Aharonov-Bohm phase. We then apply this formalism to
the case of a single-mode squeezed state in Sec. III and
calculate the degree of recoherence which is possible.
These calculations are extended to multimode squeezed
states in Sec. IV, and some numerical estimates are given in
Sec. V. In Sec. VI, we summarize and discuss our results.
Some of the properties of squeezed states are reviewed in
the Appendix. Unless otherwise noted, we use Lorentz-
Heaviside units with @ ¼ c ¼ 1.

II. GENERAL FORMALISM

Here we briefly review the effects of electromagnetic
field fluctuations on electron coherence [6–19]. Consider a
double slit interference experiment in which coherent elec-
trons can take either one of two paths, as illustrated in
Fig. 1. First consider the case of no field fluctuations. If the
amplitudes for the electrons to take path C1 and C2 are  1

and  2, respectively, to point P, then the mean number of
electrons at P will be proportional to

nðPÞ ¼ j 1 þ  2j2 ¼ j 1j2 þ j 2j2 þ 2Reð 1 
�
2Þ: (1)

In the presence of a classical, nonfluctuating electromag-
netic field described by vector potential A�, there will be
an Aharonov-Bohm phase shift of the form [20]

’AB ¼ e
I
C
dx�A�; (2)

where the integral is taken around the closed path C ¼
C1 � C2. This shifts the locations of the interference min-
ima and maxima, but does not alter their relative ampli-
tudes, the contrast.

If the electromagnetic field undergoes fluctuations, then
the situation is different. In this case, the fluctuating
Aharonov-Bohm phase causes a change in the contrast
by a factor of

� ¼ eW; (3)

where we define the coherence functional by

W ¼ �1
2h’2

ABi (4)

with the angular brackets denoting averaging over the

fluctuations. This functional can be expressed as

W ¼ �2��
I
C
dx�

I
C
dx0�D��ðx; x0Þ; (5)

where � is the fine-structure constant and

D��ðx; x0Þ ¼ 1
2hfA�ðxÞ; A�ðx0Þgi: (6)

So far, we have not specified the source of the fluctuations,
which could be thermal, quantum, or due to averaging over
classical time variations [16,19]. In this paper, we will be
concerned with quantum fluctuations in a squeezed vac-
uum state.

III. SINGLE-MODE SQUEEZED VACUUM

A. Renormalized coherence functional, WR

In this section, we consider the special case where the
quantized electromagnetic field is in a state in which one
mode is excited to a squeezed vacuum state, and all other
modes remain in the ground state. We take the excited
mode to be a plane wave in a box with periodic boundary
conditions, with wave vector �k and polarization ��, so the
quantum state may be denoted by j� �� �ki. The paths C1 and
C2 are taken to be in the xz plane and we suppose that the
electron wave packet is prepared to be highly localized
about the classical trajectory and its dispersion can be
ignored in the classical limit [8]. If the x component of
the electron velocity is constant, and the trajectories C1 and
C2 are chosen to be symmetric to one another with respect
to the z ¼ 0 plane, then in a comoving frame where the
electron only has the sideways motion along the z axis, the
quantity W can be greatly simplified to

W ¼ �2��
I
C
dz

I
C
dz0Dzzðx; x0Þ: (7)

If we are only interested in the change of the fringe
contrast due to the excitation of a particular squeezed
vacuum mode, then after subtracting the vacuum contribu-
tion of all modes, we have the renormalized coherence
functional given by

WR ¼ ���
I
C
dz

I
C
dz0h� �� �kjfAzðxÞ; Azðx0Þgj� �� �kiR: (8)

Here we use the subscript R to denote the renormalized
quantity, which has the Minkowski vacuum term sub-
tracted. In the Coulomb gauge, the z component of the
vector potential in the plane-wave expansion takes the
form

AzðxÞ ¼ 1ffiffiffiffi
V

p X
k

1ffiffiffiffiffiffiffi
2!

p X2
�¼1

ez � " �ðkÞða�ke�ik�x þ ay�ke
ik�xÞ;

(9)

where ez is the unit vector along the z axis and "� are unit
polarization vectors. The quantity V is the box normaliza-
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tion volume and ! ¼ jkj. If we further assume that the
mode ð ��; �kÞ is polarized in the z direction, and its wave
vector is directed in the y direction, then the renormalized
Hadamard function in a squeezed vacuum is given by

h� �� �kjfAzðxÞ; Azðx0Þgj� �� �kiR ¼ 1

V �!
½���e�i �!ðtþt0Þ

þ j�j2e�i �!ðt�t0Þ þ c:c:�;
(10)

where � ¼ coshr, � ¼ ei� sinhr, and � �� �k ¼ rei� is the
complex squeeze parameter defined in the Appendix.
Then Eq. (8) becomes

WR ¼ ���

V �!

I
C
dz

I
C
dz0½���e�i �!ðtþt0Þ þ j�j2e�i �!ðt�t0Þ

þ c:c:�: (11)

This is the factor that accounts for the contrast change of
the electron interference fringe in the present arrangement,
where we shine a polarized beam in a single-mode
squeezed vacuum state in the direction perpendicular to
the plane of the electron paths.

To evaluate WR, we pick a path which is twice differ-
entiable,

zðtÞ ¼ R

T4
ðt2 � T2Þ2; (12)

where 2T and 2R can be thought of as the effective flight
time and path separation, respectively. Electrons which
start from the source at different times will experience
different fluctuations. We can study this effect by letting
t0 be the electron emission time, in which case the quantity
WR becomes

WR ¼ � 4��

V �!

Z T

�T
dt

Z T

�T
dt0vzv0z½���e�i �!ðtþt0Þ�i2 �!t0þi�

þ �2e�i �!ðt�t0Þ þ c:c:�
¼ � 8���

V �!
½� cosð2 �!t0 � �Þ þ ��M; (13)

with vz ¼ dzðtÞ=dt, � ¼ sinhr, and

M ¼
�
16R

�!4T4

�
2½ð�3þ �!2T2Þ sin �!T þ 3 �!T cos �!T�2:

(14)

The quantity M does not depend on the electron emission
time t0 and is always positive definite, so the sign ofWR is
solely determined by the quantity � cosð2 �!t0 � �Þ þ �.

B. Interpretation of WR

An intriguing feature is that the values of WR are not
always negative, and they can be positive, depending on
the parameters t0, �, and �. It implies that the amplitude
factor eWR may be larger than unity for some moments,

which in turn means that the contrast on the screen can be
higher than it would otherwise be for the vacuum state.
This is generally interpreted as enhancement of coherence,
or recoherence. This contrast change cannot be observed
right away when only one electron is released at each
moment. We have to wait for a sufficiently long time so
that enough electrons are accumulated to have visible
patterns. However, since t0 is related to the electron emis-
sion time and is assumed to be a random variable, if the
time scale of the measurement is much longer than the
flight time 2T, then it is a long-time-averaged result that
should be observed:

�W R � lim
�!1

1

2�

Z �

��
dt0WR ¼ � 8��

V �!
�2M< 0: (15)

Hence, this time-averaged value of WR is always negative.
This means that measurements which average over a long
time will always find decoherence from the presence of the
squeezed vacuum state, but measurements on shorter time
scales have a chance to find WR > 0, which means tran-
sient recoherence.
This feature bears a strong resemblance to the issue of

negative energy density. It is known that quantum field
theory has the remarkable property that local energy den-
sity can be negative even though the energy density is a
positive definite quantity in classical physics. It is a general
feature of both free and interacting theories that there exist
states in which the energy density at a particular point can
be arbitrarily negative [21]. Nonetheless, the total energy,
integrated over all space, is required to be non-negative. It
is also shown that there exist quantum inequalities [22–25]
which constrain the magnitude and duration of the negative
energy density and flux. Physically, the inequalities imply
that the energy density seen by an observer cannot be
arbitrarily negative for an arbitrarily long period of time.
Marecki [26,27] has recently derived variants of the quan-
tum inequalities for limiting the amount of squeezing
which might be observed in photodetection experiments
in quantum optics. Therefore it is interesting to know
whether there exists a similar inequality on the quantity
WR, at least for the squeezed vacuum, to limit how positive
it can be and for how long.
Define a new function gðr; tÞ which includes all r de-

pendence of the quantity WR,

gðr; tÞ ¼ �½� cosð�þ 	t0Þ þ ��; (16)

with

� ¼ �!T � �; 	 ¼ 2 �!: (17)

Then WR can be expressed in terms of gðr; tÞ by

WR ¼ � 8��

V �!
MgðrÞ; (18)

and the behavior of gðr; tÞ will tell us how the quantityWR

depends on the parameter r. From Fig. 2, we see thatWR is
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positive only if the time variable t0 mod �=! lies in the
time interval between ti and tf. If we can somehow collect

only those electrons that are emitted during those mo-
ments, then we can guarantee a positive average value of
the quantity WR. Hence, the recoherence of the electron
interference may be maintained and may remain strong
enough to be observed. Next, we will discuss how to
compute the averaged value, ~WR, formed by averaging
WR over the interval in which it is positive.

C. Behavior of gðr; tÞ
Since only the function gðr; tÞ will affect the overall sign

of WR, it is sufficient to calculate the time-averaged value
of gðr; tÞ between ti and tf. Then ~WR is just proportional to

this averaged value ~gðrÞ. Here we note that gðr; tÞ is only
defined for r � 0. From Fig. 2, the condition gðr; tÞ ¼ 0 is
satisfied when t0 is equal to either ti or tf, and gðr; tÞ is
symmetric about those values of t0 that satisfy �þ 	t0 ¼
ð2nþ 1Þ�, with n an integer. Thus let

�� 
 ¼ �þ 	ti; �þ 
 ¼ �þ 	tf; (19)

where ti is assumed to be smaller than tf. Then it is easy to

see that 
 satisfies

� cosð�� 
Þ þ � ¼ 0 ) cos
 ¼ �

�
< 1; (20)

and from Eq. (19), we have

�t ¼ tf � ti ¼ 2


	
¼ 2

	
cos�1

�
�

�

�
: (21)

On the other hand, the integration of cosð�þ 	t0Þ over t0
between ti and tf yieldsZ tf

ti

dt0 cosð�þ 	t0Þ ¼ � 2

	�
: (22)

Putting the above results together, we have that the time
average of the quantity gðr; tÞ over the interval between ti
and tf is given by

~gðrÞ ¼ 1

tf � ti

Z tf

ti

dt0�½� cosð�þ 	t0Þ þ �� (23)

¼ � �

cos�1ð�=�Þ þ �2; (24)

and thus the average of WR over the same interval is

~W R ¼ � 8��

V �!
M�

�
� 1

cos�1ð�=�Þ þ �

�
: (25)

In addition, the knowledge of the local extrema of the
function gðr; tÞ with respect to t0 will prove useful. Its
local minimum along the t0 axis is given by

gmðrÞ ¼ �ð��þ �Þ ¼ �1
2ð1� e�2rÞ; (26)

while the local maximum value of gðr; tÞ is
gMðrÞ ¼ �ð�þ �Þ ¼ 1

2ðe2r � 1Þ: (27)

Because the function ~gðr; tÞ and the extrema of gðrÞ are
monotonic functions of r, we may consider only two
limiting values of r. In the limit that the parameter r
approaches positive infinity, we have (see Fig. 3)

r! þ1 gmðrÞ � �1
2 þOðe�2rÞ;

gMðrÞ � 1
2e

2r þOð1Þ; (28)

�t � 4

	
e�r þOðe�3rÞ; ~gðrÞ � � 1

3
þOðe�2rÞ:

(29)

On the other hand, when the parameter approaches to 0þ,
we have

r! 0þ gmðrÞ � �rþOðr2Þ;
gMðrÞ � rþOðr2Þ; (30)

�t � �

	
þOðrÞ; ~gðrÞ � � 2

�
rþOðr2Þ: (31)

Thus when r gradually goes to zero, both the maximum
and the minimum of the function gðr; tÞ goes to zero from
above and below, respectively. We intermediately know
that gðr; tÞ will be identically equal to zero in this limit.
The width of the interval, �t, approaches to a finite value

FIG. 2. The left figure shows the behavior of gðr; tÞ defined in Eq. (16), as a function of the emissions time t0. The right figure shows
how the minimum value of g as a function of t0, gmðrÞ, depends on r.
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�=	. Thus the average value ~gðrÞ will be vanishing
accordingly.

In contrast, the maximum of the function gðr; tÞ grows
exponentially as r increases, and the minimum decreases,
approaching a lower bound of �1=2. The width of the
interval, over which the average is performed, decreases to
zero in the limit r! 1. Nonetheless, the average value
~gðrÞ remains finite and is equal to �1=3 in this limit. This
is the lower bound of the function ~gðrÞ.

D. Bound on recoherence and preservation of unitarity

In short, the function gðr; tÞ is always bounded from
below by a finite value of �1=2 while it is unbounded
above. Furthermore, although the width of the integration
interval vanishes as r! 1, the function ~gðrÞ is still
bounded between 0 and�1=3. Thus, we can see that there
does exist a upper bound for the average value ~WR given by

max½ ~WR� ¼ 8��

3V �!
M

¼ 8��

3V �!

�
16R

�!4T4

�
2½ð�3þ �!2T2Þ sin �!T

þ 3 �!T cos �!T�2: (32)

We see that more often than not, WR < 0, meaning that
the photons in the squeezed state tend to increase decoher-
ence above what is already present. However, by forming
an interference pattern with carefully selected electron
emitted in certain time intervals, we can reverse this ten-
dency, and attain positive values of WR, leading to reco-
herence. Note that the recoherence effect is maximal when
r is large, corresponding to a large mean number of pho-
tons in the squeezed vacuum state, given by �n ¼ �2 ¼
sinh2r.

One might be concerned that WR > 0 could lead to a
violation of unitarity, but this is not the case, because the
vacuum effect will always dominate and lead to W ¼
W0 þWR < 0. It suffices to compute this combined con-
tribution of one mode ð ��; �kÞ to W. It is straightforward to
find that, for this mode, W0ð ��; �kÞ is given by

W0ð ��; �kÞ ¼ � 4��

V �!
M (33)

for the same path configuration; while the maximal value
of WR is

WRð ��; �kÞ ¼ 8��

3V �!
M: (34)

Therefore, we have the combined value ofW for this mode
ð ��; �kÞ is negative:

Wð ��; �kÞ ¼ W0ð ��; �kÞ þWRð ��; �kÞ ¼ � 4��

3V �!
M< 0: (35)

Since for the rest of the modes ð�;kÞ � ð ��; �kÞ, we have
Wð�;kÞ ¼ W0ð�;kÞ< 0, which in turn implies thatX

k;�

Wð�;kÞ< 0: (36)

IV. MULTIMODE SQUEEZEDVACUUM OF FINITE
BANDWIDTH

So far, we have considered a single excited mode. Now
we wish to extend our result to the case of many excited
modes. Assume that the electromagnetic field is initially
prepared in the state

j�i ¼ j01i � � � j0rij�rþ1i � � � j�rþnij0rþnþ1i � � � ; (37)

where j�ii is the squeezed vacuum state for mode i. Thus n
modes, rþ 1 to rþ n, are excited in squeezed vacuum
states and the rest remain in the vacuum state. Here the
subscripts in the bra and ket denote the mode labels. We
assume that the excited modes are all linearly polarized in
the same direction. The distribution of the wave vectors for
the excited modes are also assumed to be sharply centered
about some wave vector �k, which is parallel to the y axis,
so that the distribution forms a small cone with a solid
angle d� about �k, and coherence is maintained among
these modes. Thus the quantity WR is then given by

FIG. 3. The left figure shows how ~gðrÞ, the average of gðr; tÞ over the interval when gðr; tÞ< 0, as a function of r. The right figure
illustrates the width of this interval, 4t, also as a function of r.
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WR ¼ � 2

V
e2
X
k

!½�!�! cosð2!t0 � �!Þ þ �2
!�
�
16R

!3T2

�
2

	
�
sin!T þ 3 cos!T

!T
� 3 sin!T

!2T2

�
2
; (38)

where k 2 fkrþ1 . . .krþng and! ¼ jkj. If the distribution
of modes is dense enough, then it can be described by a
smooth mode-distribution function fðkÞ, centered at �k. If
we further assume that fðkÞ depends only on the frequency
!, we can rewrite the mode summation as an integration
over the phase space volume,

1

V

X
k

¼
Z d3k

ð2�Þ3 ¼
d�

ð2�Þ3
Z 1

0
d!!2fð!Þ; (39)

where fð!Þ is the mode-distribution function, peaked at
! ¼ �! with the width �!. If �!
 �!, so the bandwidth
is not overly wide, we may assume the squeeze parameters
r!, �!, �!, and �! are constants, independent of fre-
quency for all excited modes within the band, thus remov-
ing the subscript ! from now on. Therefore, WR becomes

WR ¼ �2e2
�
16R

T2

�
2 d�

ð2�Þ3
Z 1

0
d!fð!Þ

	 ½�� cosð2!t0 � �Þ þ �2�
	 1

!3

�
sin!T þ 3 cos!T

!T
� 3 sin!T

!2T2

�
2
: (40)

If we only sample electrons which will contribute to
recoherence, then according to the discussion in the pre-
vious section, the expression �� cosð2!t0 � �Þ þ �2 is
replaced by ~gðrÞ, given by Eq. (24), which is independent
of frequency. Note that time interval �t over which we
sample is inversely proportional to �!, but the bandwidth
�! is independent of �t, so long as �!
 �!. Moreover,
if we assume that the mode-distribution function takes the
form

fð!Þ ¼
�
1; if �!��! � ! � �!þ �!;
0; otherwise;

(41)

then the quantity ~WR reduces to

~WR ¼ �2e2
�
16R

T2

�
2
�gðrÞ d�ð2�Þ3

Z �!þ�!

�!��!
d!

1

!3

	
�
sin!T þ 3 cos!T

!T
� 3 sin!T

!2T2

�
2
: (42)

In principle, the integration on the right-hand side can be
carried out exactly; however, for simplicity, we only show
the result of the integral to the order Oð�!= �!Þ,

Z �!þ�!

�!��!
d!

1

!3

�
sin!T þ 3 cos!T

!T
� 3 sin!T

!2T2

�
2

¼ 2

�!6T4
½ �!2T2 sin �!T þ 3 �!T cos �!T � 3 sin �!T�2 �!

�!

þO
�
�!2

�!2

�
; (43)

where we have assumed �!T 
 1 and �!= �!
 1.
Therefore, the leading contribution of ~WR is given by

~WR ¼ �e2 R
2

T2
�gðrÞ d�ð2�Þ3

�
32

�!3T3

�
2½ �!2T2 sin �!T

þ 3 �!T cos �!T � 3 sin �!T�2 �!
�!
: (44)

V. SOME NUMERICAL ESTIMATES

A. Single mode in a cavity

Our treatment of a single excited mode in Sec. III as-
sumed periodic boundary conditions for simplicity.
However, the result should be useful for making an
order-of-magnitude estimate of the effect in a cavity with
more realistic boundary conditions. First, define the func-
tion

FðxÞ ¼
�
32

x3

�
2½ðx2 � 3Þ sinxþ 3x cosx�2; (45)

in terms of which we can write Eq. (44) as

~W R ¼ �e2 R
2

T2
�gðrÞ d�ð2�Þ3 Fð �!TÞ

�!

�!
: (46)

The function FðxÞ has a maximum value of Fð3:34Þ � 96:4
at x � 3:34, and for large arguments is approximately

FðxÞ � 1024

x2
sin2x; x� 1: (47)

Let � ¼ 2�= �! be the wavelength of the excited mode. If
we assume that the averaged coherence functional, ~WR,
attains its maximum value given in Eq. (32), then we can
express this value as

~W R � �

12�2

�3

V

�
R

T

�
2
Fð2�T=�Þ: (48)

If we assume 2�T � �, and use the large argument form
for F, Eq. (47), we can write

~W R � 8	 10�4 �
3

V

�
R

T

�
2
�
�

T

�
2
: (49)

For a rough estimate, let us take V � �3 and R � �,
corresponding to the lowest frequency mode in the cavity
and a path separation of the order of the cavity size. This
leads to
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~W R � 10�3

�
R

T

�
4
: (50)

Nonrelativistic motion requires T � R. If, for example, we
take R=T � 1=10, we would get the estimate ~WR � 10�7.
However, it is plausible that a treatment which allows for
relativistic motion of the electrons would yield a larger
result, perhaps approaching the limiting value of ~WR �
10�3 which arises from Eq. (50) when R � T. This is a
topic for future study.

B. Multiple modes in empty space

Now let us return to the main result of Sec. IV, Eq. (44),
which describes the effect of a finite bandwidth of excited
modes without a cavity. This expression may be written in
terms of the function F as

~W R ¼ � �

2�2
�gðrÞ

�
R

T

�
2 �!

�!
Fð �!TÞd�: (51)

Suppose that �gðrÞ � �1=3 and we integrate over a small
but finite solid angle ��. Then we have the estimate

~W R � 10�4

�
R

T

�
2 �!

�!
Fð �!TÞ��: (52)

If we further assume that �!T � 3, so that F attains its
maximum value of about 102, then we get the estimate

~W R � 10�2

�
R

T

�
2 �!

�!
��: (53)

All of the factors in the above expression, R=T, �!= �!,
and ��, should be small compared to unity for our analy-
sis to be strictly valid. If we take all three of these factors to
be of order 10�1, then we would obtain ~WR � 10�6.
Again, it may be possible to do better with an analysis
which removes the restrictions on these factors.

VI. DISCUSSION AND CONCLUSIONS

Coherent electrons can undergo decoherence due to
coupling to the quantized electromagnetic field, even if
no real photons are initially present. The effect can be
given two complementary descriptions in terms of either
a fluctuating Aharonov-Bohm phase, or of photon emis-
sion. In general, the presence of real photons increases the
degree of decoherence. However, as we have seen, it is
possible to temporarily decrease the decoherence if the
photons are in a squeezed vacuum state. This recoherence
requires that the electrons be selected to pass through the
interferometer in the correct phase relative to the excited
mode or modes of the electromagnetic field. An interfer-
ence pattern formed from such selected electrons can have
a slightly increased contrast compared to the case where no
photons are initially present. This can be interpreted as a
transient suppression of Aharonov-Bohm phase fluctua-
tions, analogous to the suppression of vacuum fluctuations
which can lead to negative energy densities. Just as there

are quantum inequalities which limit negative energy den-
sity, we have found limits on the amount of recoherence
possible in a squeezed vacuum state. Although the reco-
herence effect is small, it is in principle observable, but
probably beyond the limits of present technology.
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APPENDIX: PROPERTIES OF THE SQUEEZED
VACUUM STATE

The single-mode squeezed vacuum state j�i is defined
by

j�i ¼ Sð�Þj0i;
where the squeeze operator Sð�Þ is [28,29]

Sð�Þ ¼ exp½1
2ð��a2 � �ay2Þ�:

The operators ay and a are creation and annihilation
operators, respectively, satisfying the commutation rela-
tion ½a; ay� ¼ 1. The vacuum state j0i is annihilated by the
action of a, that is, aj0i ¼ 0. The squeeze parameter � ¼
rei� is an arbitrary complex number with r, � 2 R.
With the help of the operator expansion theorem,

e�ABe��A ¼ Bþ �½A; B� þ �2

2!
½A; ½A; B�� þ � � � ; (A1)

we readily find for the unitary transformation of the op-
erator a by Sð�Þ,

Syð�ÞaSð�Þ ¼ �a� �ay;

and Syð�ÞaySð�Þ ¼ �ay � ��a;
(A2)

where

� ¼ coshr � ¼ ei� sinhr; (A3)

and �2 � j�j2 ¼ 1.
The expectation value of a in the squeezed vacuum is

given by

h�jaj�i ¼ h0jSyð�ÞaSð�Þj0i ¼ 0 (A4)

from Eq. (A2), and the expectation value of ay is

h�jayj�i ¼ 0: (A5)

Moreover, we have

h�ja2j�i ¼ ��� (A6)

h�jay2j�i ¼ ���� (A7)

h�jayaj�i ¼ j�j2: (A8)
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From Eq. (A8), it is apparent that the squeezed vacuum
state is not a vacuum state at all, and it has j�j2 photons on
the average.

Next we evaluate the energy density of the electromag-
netic fields in a single-mode squeezed vacuum state, as
well as the total energy. It is assumed that only one of the
modes of the electromagnetic fields is excited to the
squeezed vacuum state while the rest of the modes remain
in the vacuum state. This excited mode is denoted by the
wave vector �k and polarization ��. Thus the squeezed
vacuum state is created by

j� �� �ki ¼ Sð� �� �kÞj0 �� �ki; (A9)

where Sð� �� �kÞ is the squeeze operator for mode ð ��; �kÞ,
Sð� �� �kÞ ¼ exp½12ð���� �k

a2 � � �� �ka
y2Þ�: (A10)

Here � �� �k ¼ rei� is an arbitrary complex number. The
energy density % of the electromagnetic fields in a
single-mode squeezed state is given by the expectation
value of the corresponding energy density operator � in
the squeezed vacuum state j� �� �ki, that is, %ðxÞ ¼
h� �� �kj�ðxÞj� �� �ki, where the energy density operator is

�ðxÞ ¼ 1
2½EðxÞ2 þ BðxÞ2�: (A11)

Let the vector potential AðxÞ take the form of the plane-
wave expansion

AðxÞ ¼ 1ffiffiffiffi
V

p X
k

1ffiffiffiffiffiffiffi
2!

p X2
�¼1

"�ðkÞða�ke�ik�x þ ay�ke
ik�xÞ;

(A12)

where "�ðkÞ is the unit polarization vectors. V is the

normalization volume and ! ¼ jkj. The commutation re-
lations between the creation and the annihilation operators
are

½a�k; ay�0k0 � ¼ ���0�kk0 ; (A13)

½a�k; a�0k0 � ¼ ½ay�k; ay�0k0 � ¼ 0: (A14)

Then the electric field EðxÞ and the magnetic field BðxÞ are
given, respectively, by

EðxÞ ¼ iffiffiffiffi
V

p X
k

ffiffiffiffi
!

2

r X2
�¼1

"�ðkÞða�ke�ik�x � ay�ke
ik�xÞ;

(A15)

BðxÞ ¼ iffiffiffiffi
V

p X
k

1ffiffiffiffiffiffiffi
2!

p X2
�¼1

k	 " �ðkÞða�ke�ik�x � ay�ke
ik�xÞ:

(A16)

Hence, the energy density operator is given by

�ðxÞ ¼ � 1

2V

X
kk0

ffiffiffiffi
!

2

r ffiffiffiffiffiffi
!0

2

s X2
��0¼1

ð"�ðkÞ � "�0 ðk0Þ

þ ½�	 "�ðkÞ� � ½� 0 	 "�0 ðk0Þ�Þ
	 ða�ke�ik�x � ay�ke

ik�xÞða�0k0e�ik0�x � ay�0k0eik
0�xÞ;

(A17)

where � is a unit vector along the direction of the wave
vector. It is straightforward to evaluate the expectation
value of the energy density operator

h� �� �kj�ðxÞj� �� �ki ¼
1

2V

� X
ð�;kÞ�ð ��; �kÞ

!

2
ð"�ðkÞ � "�ðkÞ þ ½�	 "�ðkÞ� � ½�	 "�ðkÞ�Þ þ �!

2
ð" ��ð �kÞ � " ��ð �kÞ þ ½ ��	 " ��ð �kÞ�

� ½ ��	 " ��ð �kÞ�Þ 	 ½ð2j�j2 þ 1Þ þ��e�2i �k�x þ���e2i �k�x�
�
: (A18)

We notice that

" �ðkÞ � "�ðkÞ þ ½�	 "�ðkÞ� � ½�	 "�ðkÞ� ¼ 2: (A19)

After subtracting the vacuum contribution, we have the
renormalized energy density %R in a squeezed vacuum
given by

%RðxÞ ¼ 1

V

�
j�j2 þ 1

2
ð��e�i2 �k�x þ���eþi2 �k�xÞ

�
�!

¼ 1

V
�½� cosð2 �k � x� �Þ þ �� �!; (A20)

where � ¼ sinhr. Note that this can be negative when the
condition cosð2 �k � x� �Þ< 0 is met. Note that the factor
which governs the sign of %R is of the same form as gðr; tÞ
defined in Eq. (16), apart from the fact that the cosine
function depends upon different variables in the two cases.

Accordingly, the renormalized total energy ER in the
squeezed vacuum state is given by integrating the renor-
malized energy density over all quantization volume. If the
quantization volume is sufficiently large, or the periodic
boundary conditions are used for convenience, then the
term proportional to cosð� � �Þ will vanish and we have

ER ¼
Z
V
d3x%RðxÞ ¼ �2 �!: (A21)

The spatial average of the renormalized energy density is
then given by

�% R ¼ ER
V

¼ 1

V
�2 �!; (A22)

which is always positive.
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