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We systematically classify all possible Bogomol’nyi-Prasad-Sommerfield (BPS) equations in Euclidean

dimension d � 8. We discuss symmetries of BPS equations and their connection with the self-dual Yang-

Mills equations. Also, we present a general method allowing to obtain the BPS equations in any

dimension. In addition, we find all BPS equations in the Minkowski space of dimension d � 6 and

apply the obtained results to the supersymmetric Yang-Mills theories. In conclusion, we discuss the

possibility of using the classification to construct soliton solutions of the low-energy effective theory of

the heterotic string.
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I. INTRODUCTION

Bogomol’nyi-Prasad-Sommerfield (BPS) states are the
most important ingredients for recent developments in
nonperturbative aspects of supersymmetric Yang-Mills
theory, string theory, and M-theory. In dimensions higher
than four, BPS configurations can be found as solutions to
first-order equations, known as generalized self-duality or
generalized self-dual Yang-Mills equations. Already more
than 20 years ago such equations were proposed [1,2], and
some of their solutions were found in [3–13]. In the low-
energy effective theory, the BPS states were described by
various classical solitonic solutions of various superstring
theories [14–23]. More recently, various BPS solutions to
the noncommutative Yang-Mills equations in higher di-
mensions have been investigated in [24–33].

The main purpose of this paper is to systematically
classify possible BPS equations in Euclidean dimension
d � 8. In particular, we consider the super Yang-Mills
theories on Euclidean space, which may be obtained by a
dimensional reduction of the D ¼ 10 N ¼ 1 super Yang-
Mills theory. In Euclidean dimensions, these theories are
realized as the field theoretic description of d branes. Note
that d branes in a background of the Kalb-Ramond field
(NS-NS B field) have been attracting much interest in the
development of string theory. The constant magnetic B
field on the d brane, in particular, gives a string theoretical
realization of the noncommutative geometry [34–36] and
the world-volume effective theory on it is described by the
noncommutative Yang-Mills theory. Note also that the
d-brane bound states with the B field are very interesting
in the context of both brane dynamics and brane world-
volume theory. In the past few years, their systems have
been discussed from various points of view in [37–51].

This paper is organized as follows. In Sec II, we list the
properties of some mathematical structures relevant to our
work. In Sec. III, we formulate the classified theorem and
prove it in the case of even dimensions. In Secs. IV and V,

we prove the theorem for odd dimensions. In the next
section, we present a general method allowing to obtain
any systems of BPS equations and then construct these
systems in dimension d � 8. The final section is devoted to
discussions and comments.

II. PRELIMINARIES

In this section, we collect the properties of spinors in
various dimensions and over R for spaces of various sig-
natures. We also give a brief summary of octonion algebra,
Clifford algebra, and symmetric spaces. We list the fea-
tures of the mathematical structure as far as they are of
relevance to our work.

A. Spinors

There are essentially two frameworks for viewing the
notion of a spinor. One representation is theoretic. In this
point of view, one knows a priori that there are some
representations of the Lie algebra of the orthogonal group
that cannot be formed by the usual tensor constructions.
These missing representations are then labeled the spin
representations, and their constituents spinors. In this
view, a spinor must belong to a representation of the double
cover of the rotation group SOðdÞ, or more generally of the
generalized special orthogonal group SOðp; qÞ on spaces
with metric signature ðp; qÞ. These double covers are Lie
groups, called the spin groups Spinðp; qÞ. All the properties
of spinors, and their applications and derived objects, are
manifested first in the spin group. The other point of view
is geometrical. One can explicitly construct the spinors,
and then examine how they behave under the action of the
relevant Lie groups. This latter approach has the advantage
of being able to say precisely what a spinor is, without
invoking some nonconstructive theorem from representa-
tion theory. Representation theory must eventually supple-
ment the geometrical machinery once the latter becomes
too unwieldy. Therefore, we will use the representation
theoretic frameworks for viewing the notion of a spinor.*ek.loginov@mail.ru
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Let Rp;q be a finite real space with the nondegenerate
metric � of signature ðp; qÞ. We choose the orthogonal
basis �1; . . . ;�p;�pþ1; . . . ;�pþq in Rp;q, so as the qua-

dratic form � has the standard diagonal form

� ¼ diagð1; . . . ; 1;�1; . . . ;�1Þ: (1.1)

Clifford algebra Clp;qðRÞ is a real associative algebra gen-
erated by elements of Rp;q and defined by the relations

�a�b þ �b�a ¼ 2�ab: (1.2)

It follows from (1.2) that the matrices �a are unitary if we
impose the conditions

�y
a ¼ �a: (1.3)

The algebra Clp;qðRÞ has dimension 2pþq, and its element

is a linear combination of the monomials

�a1a2...ak ¼ �a1�a2 . . . �ak ; (1.4)

where 1 � a1 < a2 < . . .< ak � pþ q. It is obvious that
the set of all monomials (1.4) with the identity of Clp;qðRÞ
form its basis. This basis is called canonical.

The subalgebra of Clp;qðRÞ generated by all monomials

�ab is called even and denoted by the symbol Cl0p;qðRÞ.
Since

½�ab;�cd� ¼ �ad�bc þ �bc�ad � �ac�bd � �bd�ac;

(1.5)

its commutator algebra contains the Lie algebra soðp; qÞ.
The follows isomorphisms are true:

Cl 0p;qðRÞ ’ Clp;q�1ðRÞ; q > 0; (1.6)

Cl 0p;qðRÞ ’ Clq;p�1ðRÞ; p > 0: (1.7)

Complexifying the vector space Clp;qðRÞ, we get the com-

plex Clifford algebra CldðCÞ, where d ¼ pþ q. This alge-
bra is isomorphic to the algebra Cð2nÞ of all complex
2n � 2n matrices, if d ¼ 2n, or the direct sum of such
algebras, if d ¼ 2nþ 1, i.e.

Cl 2nðCÞ ’ Cð2nÞ; (1.8)

Cl 2nþ1ðCÞ ’ Cð2nÞ � Cð2nÞ: (1.9)

It therefore has a unique irreducible representation of
dimension 2k. Any such irreducible representation is, by
definition, a space of spinors called a spin representation.
The Pin group Pinðp; qÞ is the subgroup of the multi-

plicative group of elements of norm 1 in Clp;qðRÞ, and
similarly the Spin group Spinðp; qÞ is the subgroup of even
elements in Pinðp; qÞ. It is obvious that any representation
of Clp;qðCÞ induces a complex representation of Spinðp; qÞ.
One is called the Dirac representation. In odd dimensions,
this representation is irreducible. In even dimensions, it is
reducible when taken as a representation of Spinðp; qÞ and
may be decomposed into two: the left-handed and right-
handed Weyl spinor representations. In addition, some-
times the noncomplexified version of Clp;qðRÞ has a

smaller real representation, the Majorana spinor represen-
tation. If this happens in an even dimension, the Majorana
spinor representation will sometimes decompose into two
Majorana-Weyl spinor representations. Of all these, only
the Dirac representation exists in all dimensions. Dirac and
Weyl spinors are complex representations, while Majorana
spinors are real representations.
The irreducible representations of Spinðp; qÞ for pþ

q < 8 can be obtained from Table I , (in the table, pþ
qruns vertically, p� q runs horizontally, and A2 � A �
A), if we make use of the isomorphisms (1.6) and (1.7).
Table I continues with a periodicity of eight, that is,

Clpþ8;q ’ Clp;qþ8 ’ Clp;qð16Þ, which is the 16� 16matrix

algebra with entries in the Clifford algebra Clp;qðRÞ.
Therefore, in fact, we have spinor representations of
Spinðp; qÞ any p and q. For example, the Dirac represen-
tation of Spinð2nþ 1Þ is real, if n � 0, 3 mod 4, and
pseudoreal, if n � 1, 2 mod 4. The Weyl representations
of Spinð2nÞ are complex conjugates of one another as n �
1 mod 2, real as n � 0 mod 4, and pseudoreal as n � 2
mod 4. These two representations are dual of one another,
if n is odd, and self-dual, if n is even.

B. Octonions

We recall that the algebra of octonionsO is a real linear
algebra with the canonical basis 1; e1; . . . ; e7 such that

TABLE I. Representations of the Clifford algebra Clp;qðRÞ.
�7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7

0 R
1 C R2

2 H Rð2Þ Rð2Þ
3 H2 Cð2Þ R2ð2Þ Cð2Þ
4 Hð2Þ Hð2Þ Rð4Þ Rð4Þ Hð2Þ
5 Cð4Þ H2ð2Þ Cð4Þ R2ð4Þ Cð4Þ H2ð2Þ
6 Rð8Þ Hð4Þ Hð4Þ Rð8Þ Rð8Þ Hð4Þ Hð4Þ
7 R2ð8Þ Cð8Þ H2ð4Þ Cð8Þ R2ð8Þ Cð8Þ H2ð4Þ Cð8Þ
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eiej ¼ ��ij þ cijkek; (1.10)

where the structure constants cijk are completely antisym-

metric and nonzero and equal to unity for the seven combi-
nations (or cycles)

ðijkÞ ¼ ð123Þ; ð145Þ; ð167Þ; ð246Þ; ð275Þ; ð374Þ; ð365Þ:
The algebra of octonions is not associative but alternative,
i.e. the associator

ðx; y; zÞ ¼ ðxyÞz� xðyzÞ (1.11)

is totally antisymmetric in x, y, z. Consequently, any two
elements of O generate an associative subalgebra. The
algebra of octonions satisfies the identity

ððzxÞyÞx ¼ zðxyxÞ; (1.12)

which is called the right Moufang identity. The algebra O
permits the involution (anti-automorphism of period two)
x! �x such that the elements

tðxÞ ¼ xþ �x; nðxÞ ¼ �xx (1.13)

are inR. In the canonical basis, this involution is defined by
�ei ¼ �ei. It follows that the bilinear form

ðx; yÞ ¼ 1
2ð �xyþ �yxÞ (1.14)

is positive definite and defines an inner product on O. It is
easy to prove that the quadratic form nðxÞ permits the
composition

nðxyÞ ¼ nðxÞnðyÞ: (1.15)

Since the quadratic form nðxÞ is positive definite, it follows
thatO is a division algebra. Linearization of (1.15) to x and
y gives

nðxÞðy; zÞ ¼ ðxy; xzÞ ¼ ðyx; zxÞ; (1.16)

2ðx; yÞðz; tÞ ¼ ðxz; ytÞ þ ðxt; yzÞ: (1.17)

Finally, notice that the algebra of octonions is unique, to
within isomorphism, alternative nonassociative simple real
division algebra.

Now let �1; . . . ;�7 be generators of the Clifford algebra
Cl0;7ðRÞ satisfying the relations (1.2). Further, let x 2 O.

Denote by Rx the operator of right multiplication in O

yRx ¼ yx; y 2 O: (1.18)

Using the multiplication law (1.10) and antisymmetry of
the associator (1.11), we prove the equalities

ReiRej þ RejRei ¼ �2�ijE; (1.19)

where E is the identity 8� 8 matrix. Comparing (1.19)
with (1.2), we see that the correspondence �i ! Rei can be

extended to the homomorphism

Cl 0;7ðRÞ ! EndO: (1.20)

Using Table I, we prove that the mapping (1.20) is surjec-

tive and EndO ’ Rð8Þ. Since
Cl 0;7ðRÞ ’ Cl08;0ðRÞ; (1.21)

it follows that the homomorphism (1.20) induces the ho-
momorphism Spinð8Þ ! SOð8Þ. We define the sets

S 7 ¼ fa 2 O j nðaÞ ¼ 1g; (1.22)

S 6 ¼ fa 2 O j nðaÞ ¼ 1g; (1.23)

where a is a vector part of the octonion a ¼ a0 þ a. It
follows from (1.16), (1.20), and (1.21) that the sets

X ¼ fRa j a 2 S7g; (1.24)

Y ¼ fRaRb j a; b 2 S6g (1.25)

generate the groups SOð8Þ and Spinð7Þ, respectively. Note
also that the product

Re1Re2 . . .Re7 ¼ E: (1.26)

The equality (1.26) follows from the simplicity ofRð8Þ and
the fact that the element �1�2 . . . �7 lies in the center of
Cl0;7ðRÞ. It follows from (1.26) that restriction of the

homomorphism (1.20) on Spinð7Þ is injection.

C. Symmetric spaces

We list the properties of symmetric spaces relevant to
our work. Let G be a connected Lie group, � an involutive
automorphism of G, and G� a set of all fixed point of G
under �. Further, let H be a closed subgroup in G� con-
taining the identity component of G�. The quotient space
G=H is called a symmetric homogeneous space. If the
subgroup H is compact, then the space G=H admits an
G-invariant Riemannian metric. The symmetric space
G=H equipped with such metric is called a globally sym-
metric Riemannian space.
Automorphism � induces an involutive automorphism

of the Lie algebra A of the group G. With respect to this
automorphism the algebra A can be decomposable into the
direct sum

A ¼ Aþ � A� (1.27)

of proper subspaces corresponding to the eigenvalues �1.
We have obviously

½Aþ;Aþ� � Aþ; ½Aþ; A�� � A�; ½A�; A�� � Aþ:
(1.28)

The space Aþ coincides with the Lie algebra of the group
H, and the space A� is closed under the composition
½x; y; z� ¼ ½½x; y�; z�. The vector space A� equipped with
this trilinear composition is called a triple Lie system.
A globally symmetric Riemannian space G=H is said to

be irreducible if the algebra A is semisimple, the subalge-
bra Aþ is a maximal proper subalgebra in A, and Aþ
contains no nonzero ideals of A. In particular, irreducible
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global symmetric Riemannian spaces are the spaces

Mpq ¼ SOðpþ qÞ=SOðpÞ � SOðqÞ; (1.29)

Npq ¼ SUðpþ qÞ=SðUðpÞ �UðqÞÞ: (1.30)

Note that Mpq and Npq are compact simple connected

spaces of dimension pq and 2pq, respectively.

III. THE MAIN THEOREM

BPS states refer to field configurations that are invariant
under some supersymmetries. In super Yang-Mills theories
on the Euclidean space Rd, a bosonic configuration is BPS
if there exist a nonzero constant spinor " in an unitary

space V of dimension 2½d=2�, where ½d=2� is an integral part
of d=2, such that the infinitesimal supersymmetric trans-
formation of the fermion field vanishes

�� ¼ Fab�ab" ¼ 0: (2.1)

Such zero eigenspinors of the matrix Fab�ab form the
subspace W � V. The BPS field strength should satisfy
certain conditions in order to have a given number of
unbroken supersymmetries. These conditions can be writ-
ten as a system of linear equations (BPS equations) con-
necting components of Fab. We say that two systems of
BPS equations are equivalent if either they are incompat-
ible or they have the same solutions up to a nondegenerate
transformation of Rd. Otherwise, they are called nonequi-
valent. Since we consider a global supersymmetry, the
conditions imposed on Fab do not depend on a choice of
basis in Rd. Hence, we must find nonequivalent systems of
BPS equations.

In order that to find such systems, we define the projec-
tion operator � mapping V onto W, as has been done
previously in [24]. With a suitable orthonormal basis for

V, this operator appears as 2½d=2� � 2½d=2� matrix

~� ¼ Er 0
0 0

� �
; (2.2)

where Er is the identity r� r matrix, and r ¼ dimW.
Obviously, the projection operator is diagonalizable in an
orthonormal basis, and it has a real spectrum (its eigenval-
ues are 0 or 1). Therefore, it is Hermitian. Thus,

�2 ¼ �; (2.3)

�y ¼ �: (2.4)

Now we can rewrite the Eq. (2.1) in the following equiva-
lent form

Fab�ab� ¼ 0: (2.5)

In order to get the system of BPS equations from (2.5), we
must represent the projector � as a linear combination of
the identity matrix and the monomials (1.4), and further
use the identities (1.2). Note also that the constant �,

defined by

tr� ¼ �� 2½d=2�; (2.6)

gives the fraction of the unbroken supersymmetry, so 0 �
� � 1. The � ¼ 0 or 1 cases are trivial, either meaning the
non-BPS state or the vacuum, Fab ¼ 0. The following
theorem contains the main result of the paper:
Theorem 1. Suppose the constant spinor " satisfying

(2.1) is Weyl as even d, Majorana as d ¼ 7, and
Majorana-Weyl as d ¼ 8. Then there exists to within
equivalence a unique system of BPS equations for every
pair of values d � 8 and � ¼ �ðdÞ.
Proof. Let feag and fe0ag be two orthonormal bases in Rd.

Then there exists an orthogonal transformation of Rd such
that e0a ¼ Abaeb. In this case, the components of Fab are
transformed by the rule

Fkab ! FkcdA
c
aA

d
b: (2.7)

Denote by the symbol Fk a real skew-symmetric d� d
matrix with the elements Fkab. Then the transformation

(2.7) can be rewritten in the matrix form

Fk ! AFkA�1; (2.8)

where A is an orthogonal matrix with the elements Aab ¼
Aba such that detA ¼ 1. Obviously, the matrices A and Fk

are elements of the group SOðdÞ and the algebra soðdÞ,
respectively. Since Fk is arbitrary real skew-symmetric
matrix, it follows that the transformation (2.8) defines an
inner automorphism of soðdÞ.
On the other hand, the antisymmetry matrices �ab sat-

isfy the commutation relations (1.5). Therefore, they gen-
erate a Lie algebra ~soðdÞ that is isomorphic to soðdÞ.
Denote by ~Fk an image of Fk with respect to the isomor-
phism soðdÞ ! ~soðdÞ. Then we have the following dia-
gram,

(2.9)

where the matrix B 2 SpinðdÞ. It is obvious that this
diagram is commutative. In particular, any inner automor-
phism of ~soðdÞ defined by the mapping

~F k ! B ~FkB�1 (2.10)

induces the transformation (2.7).
Further, the matrices �ab make up a basis of ~soðdÞ.

Therefore, any of its element ~Fk can be represented in
the form

~F k ¼ ~Fkab�ab: (2.11)

Denote by ~Fab an antisymmetry tensor with the compo-
nents ~Fkab, and consider the equation
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~F ab�abðB�1�BÞ ¼ 0: (2.12)

It follows from commutativity of the diagram that the
Eqs. (2.5) and (2.12) are equivalent. Thus, if we prove
that by the transformation

� ! ~� ¼ B�1�B; (2.13)

where B 2 SpinðdÞ, the matrix � can be reduced to the
form (2.2), then we prove the theorem.

We consider even dimension d ¼ 2n. Without loss of
generality, we can suppose that " is a right-handed (chiral)
spinor, i.e.

�	" ¼ "; �	 ¼ ð�iÞn�1 . . . �2n: (2.14)

We will seek representations of gamma matrices such that

�a ¼ 0 �a

�y
a 0

� �
; �	 ¼ E 0

0 �E
� �

; (2.15)

where E is the identity matrix. It is obvious that in this
representation, the Hermitian projection operator � and
the element B of SpinðnÞ take the form

� ¼ �þ 0
0 0

� �
; B ¼ Bþ 0

0 B�

� �
; (2.16)

where� and B� are n� n matrices. Now we consider the
concrete values of n.

(1) In two Euclidean dimensions, the Weyl spinor is one-
component and complex representation. Therefore, we
choose the representation in terms of Pauli matrices

�1 ¼ �1; �2 ¼ �2: (2.17)

It follows from (2.3) that �þ ¼ 0 or 1.
(2) In four Euclidean dimensions, there are two inequi-

valent pseudoreal two-component Weyl spinor, and each of
them transform under SUð2Þ. We choose the gamma ma-
trices in the form

�k ¼ �1 
 �k; �4 ¼ �2 
 �0; (2.18)

where �0 is the identity 2� 2 matrix. In this representa-
tion, the generators of Spinð4Þ have the block diagonal
form

�ij ¼ i"ijkð�0 
 �kÞ; �k4 ¼ ið�3 
 �kÞ: (2.19)

The matrices �k form a basis of suð2Þ. Therefore, Bþ is
arbitrary unitary 2� 2 matrix. Since the matrix � is
Hermitian, if follows that it can be reduced to the form
(2.2) by the transformation (2.13).

(3) In six Euclidean dimensions, the isomorphism
Spinð6Þ ’ SUð4Þ guarantees that there are two four-
dimensional complex Weil representations that are com-
plex conjugates of one another. We choose the gamma
matrices in the form

�k ¼ �1 
 �k 
 �0; �kþ3 ¼ �2 
 �0 
 �k; (2.20)

where k ¼ 1, 2, 3. In this representation, the generators of

Spinð6Þ have the following form

�ij ¼ i"ijkð�0 
 �k 
 �0Þ;
�iðjþ3Þ ¼ ið�3 
 �i 
 �jÞ;

�ðiþ3Þðjþ3Þ ¼ i"ijkð�0 
 �0 
 �kÞ:
(2.21)

Noting that the matrices �k 
 �0, �i 
 �j, and �0 
 �k
form a basis of suð4Þ, we prove that Bþ is arbitrary unitary
4� 4 matrix. Hence the Hermitian matrix � can be re-
duced to the form (2.2) by (2.13).
(4) In eight Euclidean dimensions, the Weyl-Majorana

representation is eight dimensional and real. We choose the
� matrices in the form

�8 ¼ 0 E
E 0

� �
; �k ¼ 0 Rk

�Rk 0

� �
; (2.22)

where the real 8� 8 matrices Rk (k ¼ 1; . . . ; 7) are anti-
symmetric and satisfy

RiRj þ RjRi ¼ �2�ijE: (2.23)

Obviously, we can choose this matrices in the form of
operators (1.18) of right multiplication on the basic ele-
ments ei of O, i.e. we suppose Ri ¼ Rei . Since by (1.26)

the product

R1R2 . . .R7 ¼ E; (2.24)

the matrix �	 has the form (2.15). It follows from (2.22)
that the generators of Spinð8Þ are

�i8 ¼ Ri 0
0 �Ri

� �
; �ij ¼ ½Rj; Ri� 0

0 ½Rj; Ri�
� �

:

(2.25)

The elements Ri and ½Rj; Ri� make up a basis of soð8Þ.
Therefore, Bþ is an arbitrary orthogonal 8� 8 matrix.
Since � is a real symmetric matrix, it can be reduced to
the form (2.2) by the transformation (2.13).

IV. SEVEN DIMENSIONS

In seven Euclidean dimensions, the single spinor repre-
sentation is eight dimensional and real. Therefore, the
projection operator � is represented as an 8� 8 real
symmetric matrix. We must prove that

B�1�B ¼ ~� ¼ diagf1; . . . ; 1; 0; . . . ; 0g (3.1)

for some B 2 Spinð7Þ. In the first place, we note that there
exists an element U 2 SOð8Þ such that

~� ¼ U�U�1: (3.2)

Then it follows from (3.1) and (3.2) that

~� ~B ¼ ~B ~�; (3.3)

where the matrix ~B ¼ UB. Further, the general solution of
the Eq. (3.3) has the form
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~B ¼ ~B1 0
0 ~B2

� �
; (3.4)

where ~B1 and ~B2 are orthogonal matrices such that det ~Bi ¼
1. Therefore,

~B 2 Hk ’ SOðkÞ � SOð8� kÞ; 1 � k � 4: (3.5)

On the other hand, U ¼ ~BB�1. Hence, the equality (3.1) is
true if the group

SOð8Þ ¼ HkSpinð7Þ; (3.6)

i.e. if any element g 2 SOð8Þ can be represented as the
product g ¼ hf, where h 2 Hk and f 2 Spinð7Þ. We will
prove the equality (3.6).

A. The case k ¼ 1

As stated above, the groups SOð8Þ and Spinð7Þ are
generated by the sets (1.24) and (1.25), respectively. We
choose a basis in the algebra octonions O such that the
subgroup H1 2 SOð8Þ is a stabilizer of the identity ele-
ment ofO. It follows from the Moufang identity (1.12) that

RabR
�1
b R�1

a 2 H1 (3.7)

for any a; b 2 S7. We consider a right cosetH1g of SOð8Þ.
Since the set X in (1.24) generates SOð8Þ, the element

g ¼ Ra1 . . .Rak: (3.8)

Multiplying (3.8) by suitable elements of the form (3.7), we
get the element Rc as a representative of H1g.

On the other hand, it follows from (1.10) and (1.14) that
the product

ab ¼ �ða; bÞ þ a� b; (3.9)

where a� b ¼ 1
2 ½a;b�. Using properties of the algebraO,

we prove the equalities

� ðb; bÞa ¼ ðabÞb
¼ �ða; bÞb� ða� b; bÞ þ ða� bÞ � b:

(3.10)

It follows from (3.10) that

ða� bÞ � b ¼ ða; bÞb� ðb; bÞa; (3.11)

ða� b; bÞ ¼ 0: (3.12)

Using (3.11), we find a solution b of the system

a � b ¼ c; �ða; bÞ ¼ c0; (3.13)

where the vectors a and c satisfy the equalities ða;aÞ ¼ 1
and ða; cÞ ¼ 0. This solution is

b ¼ �c0aþ c� a: (3.14)

Linearizing the identity (3.12), we find the scalar square

ðb;bÞ ¼ c20 þ ðc; cÞ: (3.15)

Comparing (3.13) with (3.9) and taking into account (3.15),
we see that any element c 2 S7 can be represented as

c ¼ ab: (3.16)

As proven above, the coset H1g ¼ H1Rc for some c 2
S7. We multiply Rc by the element

RaRbR
�1
ab 2 H1: (3.17)

Then, by (3.16) we get the element RaRb as a representa-
tive of H1g. Since this element lies in Spinð7Þ, it follows
that the equality (3.6) is proved for k ¼ 1.

B. The case k � 1.

We use below an explicit form of the operators Rei in the

canonical basis of O. Using the multiplication law (1.10),
we can easily find the required expressions. We have

Rei ¼ ei0 þ 1
2cijkejk; (3.18)

where emn are skew-symmetric 8� 8 matrices with the
elements

ðemnÞ�� ¼ �m��
�
n � �n��

�
m: (3.19)

Since the matrices Rei and ½Rei ; Rej� are linearly indepen-

dent over R, they form a basis of a Lie algebra A that is
isomorphic to soð8Þ. Suppose

I ¼ E 0
0 �E

� �
; J ¼ 0 E

�E 0

� �
; (3.20)

where E is the identity 4� 4 matrix. It is obvious that the
transformation

Rei ! IReiI (3.21)

may be extended to an involutive automorphism of A. With
respect to this automorphism the algebra A is decomposed
into the direct sum (1.27) of proper subspaces Aþ and A�.
Using the representation (3.18), we prove that

IReiI ¼ Rei for i ¼ 1; 2; 3;

IReiI ¼ �Rei for i ¼ 4; 5; 6; 7:
(3.22)

A simple calculation shows that dimAþ ¼ 12 and
dimA� ¼ 16. Therefore, the corresponding symmetric
space is isomorphic to SOð8Þ=H4.
Now we consider the transformation

Rei ! JReiJ
�1: (3.23)

Once again using (3.18), we prove that

JReiJ
�1 ¼ Rei for i ¼ 1; 2; 4; 5; 6;

JReiJ
�1 ¼ �Rei for i ¼ 3; 7:

(3.24)

Extending (3.23) to an involutive automorphism of A, we
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get that dimAþ ¼ 16 and dimA� ¼ 12. Hence, the corre-
sponding symmetric space is isomorphic to SOð8Þ=H2.

Finally, we consider the transformation

Rei ! JReiJ: (3.25)

Since the transformation (3.25) is a composition of (3.23)
and the transformation Rei ! �Rei , we have the equalities

JReiJ ¼ Rei for i ¼ 3; 7;

JReiJ ¼ �Rei for i ¼ 1; 2; 4; 5; 6:
(3.26)

Using (3.23), we easily prove that the transformation (3.25)
may be extended to an involutive automorphism of A. It is
obvious that dimAþ ¼ 13 and dimA� ¼ 15. Therefore, the
corresponding symmetric space is isomorphic to
SOð8Þ=H3.

We extend the involutive automorphism of A defined by
(3.22), (3.24), and (3.26) to an automorphism � of the
corresponding simply connected Lie group Spinð8Þ. It
follows from (1.21) that this group can be embedded into
the Clifford algebra Cl0;7ðRÞ. Suppose �i is a prototype of
Rei relative to the homomorphism (1.20). It is obvious that

�i 2 Spinð8Þ. On the other hand, it follows from (1.19) that
the matrices �i generate Cl0;7ðRÞ. Hence, �i =2 Spinð7Þ.
Now, let ~Hk be a subgroup of Spinð8Þ that is invariant
under �. Then it follows from (3.22), (3.24), and (3.26)
that �i 2 ~Hk for some value of i.

Further, let the matrix �i 2 ~Hk, and let ~Hkg be a coset of
Spinð8Þ. Since Spinð7Þ is a maximal subgroup in Spinð8Þ,
the element g can be represented by a product of �i and
elements of Spinð8Þ. Now, note that the algebra EndO
satisfies the identity

RxRyRx ¼ Rxyx; (3.27)

which is a direct corollary of (1.12). Since ReiR �ei ¼ 1, it

follows that

ReiRaRb ¼ Reia �eiReib �eiRei ; (3.28)

where we do not sum on the recurring indexes. Obviously,
the products eia �ei and eib �ei are vector octonions. Since a
restriction of the homomorphism (1.20) to Spinð7Þ is in-
jection, it follows from (1.25) and (3.28) that

�if�
�1
i 2 Spinð7Þ (3.29)

for any f 2 Spinð7Þ. Hence, the element g can be represent
in the form g ¼ �pi f. Since �i 2 ~Hk, it follows that the
element g 2 Spinð7Þ. Mapping Spinð8Þ onto SOð8Þ, we
prove the equality (3.6) for k � 1.

V. THREE AND FIVE DIMENSIONS

In three Euclidean dimensions, the single spinor repre-
sentation is two dimensional and pseudoreal. Therefore,
the projection operator � may be represented as a 2� 2
Hermitian matrix. Since the group Spinð3Þ ’ SUð2Þ, it

follows that the matrix � can be reduced to the form
(2.2) by the transformation (2.13).
Now, we consider five Euclidean dimensions. In these

dimensions, the relevant isomorphism is Spinð5Þ ’ Spð2Þ,
which implies that the single spinor representation is four
dimensional and pseudoreal. Hence, we must prove that

B�1�B ¼ ~� ¼ diagf1; . . . ; 1; 0; . . . ; 0g (4.1)

for some B 2 Spð2Þ. Since the space of spinor representa-
tion of Spinð5Þ is a four-dimensional unitary space, the
Hermitian matrix� can be reduced to the form (2.2) by the
transformation

~� ¼ U�U�1; (4.2)

where U 2 SUð4Þ. As above, it follows from (4.1) and
(4.2) that

~� ~B ¼ ~B ~�; (4.3)

where the matrix ~B ¼ UB. The general solution of the
Eq. (4.3) has the form

~B ¼ ~B1 0
0 ~B2

� �
; (4.4)

where ~B1 and ~B2 are unitary matrices such that det ~B ¼ 1. It
is obvious that

~B 2 Hk ’ SðUðkÞ �Uð4� kÞÞ; 1 � k � 2: (4.5)

Since U ¼ ~BB�1, the equality (4.1) is true if the group

SUð4Þ ¼ HkSpð2Þ; (4.6)

i.e. if any element SUð4Þ can be represented as the product
g ¼ hf, where h 2 Hk and f 2 Spð2Þ. We will prove the
equality (4.6).

A. The case k ¼ 1

As before, we will use properties of the algebra O. We
fix first the field C in O by the condition e1 2 C. Further,
any two elements ofO generate an associative subalgebra.
Therefore,

xðyzÞ ¼ ðxyÞz (4.7)

for any x, y 2 C, and z 2 O. It follows that we may
consider O as a (left) vector space over C relative to the
multiplication xz, where x 2 C and z 2 O. Obviously, O
is four dimensional over C. For x, y 2 O we define

hx; yi ¼ ðx; yÞ � e1ðe1x; yÞ: (4.8)

Then hx; yi 2 C. Using the identities (1.16) and (1.17), we
prove the equalities

he1x; yi ¼ e1hx; yi ¼ �hx; e1yi: (4.9)

Hence, hx; yi is a Hermitian form inO overC. If hx; yi ¼ 0,
then ðx; yÞ ¼ 0, since 1 and e1 are independent over R.
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Since the form (1.14) is positive definite, it follows that the
Hermitian form (5.9) is nondegenerate.

Further, let V be a linear span of the elements 1, e1, e2.
Denote by C? and V? the orthogonal complements to C
and V in O and define the sets

S 5 ¼ fa 2 C? j nðaÞ ¼ 1g; (4.10)

S 4 ¼ fa 2 V? j nðaÞ ¼ 1g: (4.11)

Now, note that the elements �2;�3; . . . ;�7 of the Clifford
algebra Cl0;7ðRÞ generate the subalgebra Cl0;6ðRÞ. It fol-
lows from Table I that Cl0;6ðRÞ is isomorphic to the simple

matrix algebra Rð8Þ. Therefore, the restriction of the ho-
momorphism (1.20) to Cl0;6ðRÞ is injection. It is obvious
that the restriction of this homomorphism to the algebra
Cl0;5ðRÞ with the generators �3; . . . ;�7 is also injection.

Hence, the sets

Z1 ¼ fRaRb j a; b 2 S5g; (4.12)

Z2 ¼ fRaRb j a; b 2 S4g (4.13)

generate the groups G1 and G2, which are isomorphic to
Spinð6Þ and Spinð5Þ, respectively. Further, if follows from
(1.10) that the elements 1, e2, e4, e6 form a basis ofO over
C. We will prove that in this basis the groups G1 and G2

coincide with SUð4Þ and Spð2Þ. Indeed, for all x 2 O and
a; b 2 S5 the equality

ðxRaRbÞe1 ¼ ðxe1ÞRaRb (4.14)

is true. This equality can easily obtain with the help of the
multiplication law (1.10). Using (4.14) and (4.9), we prove
that the form (4.8) is invariant under elements of (4.12).
Therefore, elements of G1 may be represented as 4� 4
unitary matrices. Our assertion follows then from the iso-
morphisms Spinð6Þ ’ SUð4Þ and Spinð5Þ ’ Spð2Þ. In addi-
tion, we note that

H ¼ fg 2 G1 j 1g ¼ 1g (4.15)

is a group that isomorphic to SUð3Þ.
Now, suppose Hg is the right coset of G1, where H is

defined by (4.15). Obviously, the element

g1 ¼ Re2Re4 (4.16)

belong to G1 but do not belong to G2. On the other hand,
the groups SUð4Þ and Spð2Þ are the double cover of SOð6Þ
and SOð5Þ, respectively. Therefore, G2 is a maximal sub-
group of G1. Hence, g can represent a product of elements
of G2 [ fg1g. Using (1.10) and (3.27), we prove that

Re2Ra ¼ R �aRe2 (4.17)

for all a 2 S4. Since G2 is generated by (4.13) and a 2
S4, it follows that

g ¼ ðRe2RbÞ�f; � 2 f0; 1g; (4.18)

where b 2 S4 and f 2 G2. If � ¼ 0, then we can choose
an element of G2 as a representative of Hg.
Let � ¼ 1. Since the product R �e4Rb 2 G2, it follows

that

g ¼ g1f
0; (4.19)

where f0 2 G2. Suppose

h ¼ Re5Re3Re4Re2 : (4.20)

It follows from (1.10) that 1h ¼ 1. Hence, h belongs to the
subgroup (4.15). Therefore,

Hg ¼ Hhg1f
0 ¼ Hf00; (4.21)

where again f00 2 G2. Thus, we can choose a representa-
tive of Hg in the subgroup G2. The equality (4.6) is proven
for k ¼ 1.

B. The case k ¼ 2

Obviously, the matrices Rij ¼ 1
2 ½Rei ; Rej� are indepen-

dent over R. In addition, it follows from (1.19) that they
satisfy the following commutation relations:

½Rij; Rkl� ¼ �ikRjl þ �jlRik � �ilRjk � �jkRil: (4.22)

Hence, the matrices Rij form a basis of the algebra A ’
soð7Þ. We consider the transformation

Rei ! JðKReiKÞJ; (4.23)

where the matrix J is defined in (3.20) and the matrix

K ¼ diagð1;�1;�1; 1;�1; 1; 1;�1Þ: (4.24)

Using the explicit form (3.18) of Rei , we prove that

JðKReiKÞJ ¼ Rei for i ¼ 1; 2; 3; 4;

JðKReiKÞJ ¼ �Rei for i ¼ 5; 6; 7:
(4.25)

Obviously, the transformation (4.23) can be extend to an
involutive automorphism of A. We consider the subalgebra
A1 � A generated by the elements Rij, where i; j ¼
2; . . . ; 7. It is obvious that A1 ’ soð6Þ. With respect to
this automorphism the algebra A1 can be decomposable
into the direct sum (1.27) of the proper subspaces Aþ

1 and
A�
1 . It follows from (4.25) that Aþ

1 ’ soð3Þ � soð3Þ. Since
soð6Þ ’ suð4Þ and soð3Þ ’ suð2Þ, it follows that the corre-
sponding symmetric space is isomorphic to SUð4Þ=H2.
We extend the involutive automorphism of A defined by

(4.23) to an automorphism ~� of the corresponding simply
connected Lie group Spinð7Þ. We suppose that this group is
embedded into the Clifford algebra Cl0;7ðRÞ. Since the

restriction of the homomorphism (1.20) to Spinð7Þ is in-
jection, ~� induces an involutive automorphism � of G 2
AutO. It is obvious that G ’ Spinð7Þ. On the other hand,
for all a; b 2 S6 the product

RaRb ¼ �Rða;bÞ þ 1

2
½Ra; Rb�: (4.26)
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Using (1.25), we prove that the automorphism � of G is
defined by (4.25). Obviously, the restrictions of � to G1

and G2 can be also defined by (4.25).
Now, suppose H is a subgroup of G1 invariant under the

automorphism �, and Hg is a right coset of G1. As in the
arguments above, we represent g in the form (4.18). If � ¼
0, then we can choose an element of G2 as a representative
of Hg. If � ¼ 1, then g has the form (4.19). But it follows
from (4.25) that the element (4.16) is invariant under the
automorphism �. Therefore, it belongs to H. Hence, we
can choose a representative of Hg in the subgroup G2.
Since the groups H and H2 are isomorphic, it follows that
the equality (4.6) is proved for k ¼ 2. This completes the
proof of theorem 1.

VI. CLASSIFICATION OF BPS EQUATIONS

We have proven that to within equivalence there exists a
unique system of BPS equations for every pair of values
d � 8 and � ¼ �ðdÞ. In this section, we find all such
systems of equations. However, we present first a general
method allowing to obtain the systems of BPS equations.

Let V be a space of irreducible spinor representation of
SpinðdÞ and �1; . . . ;�2s : V ! V be a finite set of linear
operators satisfying the conditions

X2s
�¼1

�� ¼ 1; ���� ¼ �����: (5.1)

We say that the operators �1; . . . ;�2s make up a total
orthogonal system of idempotent operators and the corre-
sponding matrices make up a total orthogonal system of
idempotent matrices. Obviously, every such operator is a
projector onto a subspace in V. Moreover, with respect to
this system of projectors the space V decomposes into the
direct sum

V ¼ V1 � . . . � V2s (5.2)

of the subspaces V� ¼ Im��. The idempotent �� is
called primitive if it is not a sum of two nonzero mutually
orthogonal idempotents. It is obvious that any projector is a
sum of mutually orthogonal idempotents. Finally, if every
idempotent in (5.1) is primitive, then we have a total
orthogonal system of primitive idempotents.

Since irreducible spinor representations of SpinðdÞ are
realized in the algebra Cl0;d�1ðRÞ, we will find a total

orthogonal system of primitive idempotents in this algebra.
To this end, we choose a subset of monomials E1; . . . ; Es in
(1.4) such that

E2
i ¼ 1; ½Ei; Ej� ¼ 0: (5.3)

Further, we impose the condition (1.3) on the gamma
matrices and define the 2s matrices

�½�1; . . . ; �s� ¼ 1

2s
Ys
i¼1

ð1þ �iEiÞ; (5.4)

where �i ¼ �1. It is easily shown that these matrices are
Hermitian and satisfy the equalities (5.1). Since such nota-
tions of matrices are few inconveniently, we introduce new
notations. To this end, we denote the matrices (5.4) by

�1 ¼ �½1; . . . ; 1�;
�2 ¼ �½1; . . . ;�1�; . . . ;

�2s ¼ �½�1; . . . ;�1�:
(5.5)

Notice that this way of ranking is used in the binary
number system. Besides, we suppose that

��1...�r ¼
Xr
i¼1

��i : (5.6)

Further, with respect to the system of orthogonal idem-
potents (5.4) the algebra Cl0;d�1ðRÞ decomposes into the

direct sum

Cl 0;d�1ðRÞ ¼ I1 þ . . .þ I2s (5.7)

of left ideals I� ¼ Cl0;d�1ðRÞ��. And also, the idempotent

�� is primitive if and only if the left ideal I� is minimal. It
follows from Table I that all minimal left ideals of
Cl0;d�1ðRÞ are isomorphic. Obviously, dimensions of mini-

mal left ideals in Cl0;d�1ðRÞ and irreducible spinor repre-

sentations of SpinðdÞ coincide. Let this dimension over R
be 2p. Then the quantity of mutually orthogonal primitive
idempotents is 2d�p. Hence, Cl0;d�1ðRÞ contains always

s ¼ d� p monomials E1; . . . ; Es satisfying the conditions
(5.3).
After we find the primitive idempotent (5.4) [or mono-

mials Ei] in Cl0;d�1ðRÞ, we must find its isomorphic images

in Cld;0ðRÞ. We can easily do it if we write the isomorphism

Cl 0;d�1ðRÞ ! Cl0d;0ðRÞ (5.8)

in the explicit form

�a1...ak !
� ð�a1...akÞy for even k;
ð�a1...ak�dÞy for odd k:

(5.9)

Having the total orthogonal system of primitive idempo-
tents in Cl0d;0ðRÞ, we easy find the BPS equations from

(2.5). Note that the fraction � of the unbroken supersym-
metry can be found as

� ¼ dimI

dimCl0;d�1ðRÞ ; (5.10)

where I is a left ideal of Cl0;d�1ðRÞ corresponding to the

idempotent�. The dimension of I can be found in Table I.
Now, we will construct BPS equations in the concrete
dimensions.

A. The dimension d � 3

In these dimensions, the algebra Cl0;d�1ðRÞ is a division
algebra. Therefore, any its left ideal is either trivial or

CLASSIFICATION OF BPS EQUATIONS IN HIGHER . . . PHYSICAL REVIEW D 78, 065010 (2008)

065010-9



coinciding with Cl0;d�1ðRÞ. It follows that the idempotent

� ¼ 0 or 1. Thus, any system of BPS equations has only
the trivial solution Fab ¼ 0.

B. Four dimensions

The algebra Cl0;3ðRÞ decomposes into the direct sum of

two minimal left ideals. Using the decomposition (5.7), we
find s ¼ 1. Further, we choose the monomial E1 ¼ �123 in
Cl0;3ðRÞ. Obviously, the square E2

1 ¼ 1. Using the mapping

(5.9), we find the image of E1 inCl
0
4;0ðRÞ and next construct

the total orthogonal system of primitive idempotents

�� ¼ 1
2ð1� �1234Þ; (5.11)

where � ¼ 1, 2. Substituting �1 in Eq. (2.5), we get the
BPS equations

Fab ¼ 1
2"abcdFcd; (5.12)

where "abcd is the completely antisymmetric identity four
tensor. Using (5.10), we find � ¼ 1=2. Note that we con-
sider the chiral representation.

C. Five dimensions

The algebra Cl0;4ðRÞ also decomposes into the direct

sum of two minimal left ideals. Hence, s ¼ 1. We choose
the monomial E1 ¼ �1234 in Cl0;5ðRÞ, find its image in

Cl05;0ðRÞ, and construct the total orthogonal system of

primitive idempotents. Obviously, this system coincides
with (5.11). Substituting �1 in (2.5), we get the BPS
equations

Fab ¼ 1
2"abcdFcd; Fa5 ¼ 0: (5.13)

It is obvious that the fraction of the unbroken supersym-
metry � ¼ 1=2.

D. Six dimensions

The algebra Cl0;5ðRÞ decomposes into the direct sum of

four minimal left ideals. In this case, � ¼ 1=4 and s ¼ 2.
We choose the monomials E1 ¼ �125 and E2 ¼ �345 in this
algebra. Obviously, they satisfy the conditions (5.3). Using
(5.9), we find images of these monomials in Cl06;0ðRÞ and
construct the total orthogonal system of primitive idempo-
tents

�� ¼ 1
4ð1� �1234Þð1� �1256Þ: (5.14)

Substituting �1 in Eq. (2.5), we get the following BPS
equations:

F12 þ F43 þ F65 ¼ 0; F13 þ F24 ¼ 0;

F16 þ F52 ¼ 0; F14 þ F32 ¼ 0; F35 þ F64 ¼ 0;

F15 þ F26 ¼ 0; F36 þ F45 ¼ 0: (5.15)

Now, we consider the sum �12 of two primitive idempo-
tents �1 and �2

�12 ¼ 1
2ð1þ �1234Þ: (5.16)

Obviously, the prototype of �12 in Cl0;5ðRÞ is the identity
of a left ideal I. Since dimI ¼ 16, it follows that � ¼ 2=4.
Substituting (5.16) in (2.5), we find the BPS equations

Fab ¼ 1
2"abcdFcd; Fa5 ¼ Fa6 ¼ 0: (5.17)

If we calculate the sum�123 of three primitive idempotents
of the form (5.14) and substitute it to (2.5), then we get the
system of BPS equations having only trivial solution. The
alternative way to get this system is the following. We find
systems of the form (5.15) for every�� (� ¼ 1, 2, 3). Such
systems are called primitive. Then the system correspond-
ing to�123 is a system joining the systems for every��. It
can be easily be checked that this joined system has only
trivial solution.

E. Seven dimensions

The algebra Cl0;6ðRÞ decomposes into the direct sum of

eight minimal left ideals. In this case, � ¼ 1=8 and s ¼ 3.
We choose the monomials E1 ¼ �1234, E2 ¼ �1256, and
E3 ¼ �164 in Cl0;6ðRÞ. Using (5.9), we find images of the

monomials in Cl07;0ðRÞ and construct the total orthogonal

system of primitive idempotents

�� ¼ 1
8ð1� �1234Þð1� �1256Þð1� �1476Þ: (5.18)

Substituting �1 in (2.5), we get the following BPS equa-
tions

F12 þ F43 þ F65 ¼ 0; F13 þ F24 þ F75 ¼ 0;

F16 þ F52 þ F74 ¼ 0; F14 þ F32 þ F67 ¼ 0;

F17 þ F53 þ F46 ¼ 0; F15 þ F26 þ F37 ¼ 0;

F27 þ F54 þ F63 ¼ 0:

(5.19)

Further, we consider the sum �12 of two primitive idem-
potents �1 and �2

�12 ¼ 1
4ð1þ �1234Þð1þ �1256Þ: (5.20)

The dimension of left ideal corresponding to �12 is 16.
Therefore, � ¼ 2=8. The corresponding system of BPS
equations has the form

F12 þ F43 þ F65 ¼ 0; Fa7 ¼ 0; F13 þ F24 ¼ 0;

F16 þ F52 ¼ 0; F14 þ F32 ¼ 0; F35 þ F64 ¼ 0;

F15 þ F26 ¼ 0; F36 þ F45 ¼ 0: (5.21)

Now, we find the BPS equations corresponding to�123. To
this end, we write BPS equations for

�3 ¼ 1
8ð1þ �1234Þð1� �1256Þð1þ �1476Þ (5.22)

and join them with the system (5.21). As result, we get the
following BPS equations:

Fab ¼ 1
2"abcdFcd; Fa5 ¼ Fa6 ¼ Fa7 ¼ 0: (5.23)
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Since the dimension of the corresponding left ideal is 24, it
follows that � ¼ 3=8. It can be easily be checked that the
system of BPS equations constructed by means of four
primitive idempotents has only trivial solution.

F. Eight dimensions

The algebra Cl0;7ðRÞ decomposes into the direct sum of

16 minimal left ideals. Hence, s ¼ 4. We choose in
Cl0;6ðRÞ the monomials E1 ¼ �1234, E2 ¼ �1256, E3 ¼
�1476, and the monomial E4 ¼ �	 defined in (2.14). We
find its images in Cl08;0ðRÞ and construct the total orthogo-

nal system of primitive idempotents

�� ¼ 1
16ð1� �	Þð1� �1234Þð1� �1256Þð1� �1476Þ:

(5.24)

Obviously, we can find the BPS systems by the method that
was used above. However, all these systems had been
found in [24]. Therefore, we simply list them.

(1) � ¼ 1=16, � ¼ �1

F12 þ F43 þ F65 þ F78 ¼ 0;

F13 þ F24 þ F75 þ F86 ¼ 0;

F14 þ F32 þ F67 þ F85 ¼ 0;

F15 þ F26 þ F37 þ F48 ¼ 0;

F16 þ F52 þ F74 þ F38 ¼ 0;

F17 þ F53 þ F46 þ F82 ¼ 0;

F18 þ F27 þ F54 þ F63 ¼ 0:

(5.25)

(2) � ¼ 2=16, � ¼ �12

F12 þ F43 þ F65 þ F78 ¼ 0;

F13 þ F24 ¼ 0; F17 þ F82 ¼ 0;

F37 þ F48 ¼ 0; F14 þ F32 ¼ 0;

F18 þ F27 ¼ 0; F38 þ F74 ¼ 0;

F15 þ F26 ¼ 0; F75 þ F86 ¼ 0;

F46 þ F53 ¼ 0; F16 þ F52 ¼ 0;

F67 þ F85 ¼ 0; F54 þ F63 ¼ 0:

(5.26)

(3) � ¼ 3=16, � ¼ �123

F12 þ F43 ¼ 0; F13 þ F24 ¼ 0;

F14 þ F32 ¼ 0; F56 þ F87 ¼ 0;

F57 þ F68 ¼ 0; F58 þ F76 ¼ 0;

F15 ¼ F37 ¼ F62 ¼ F84;

F16 ¼ F25 ¼ F38 ¼ F47;

F17 ¼ F28 ¼ F53 ¼ F64;

F18 ¼ F45 ¼ F63 ¼ F72:

(5.27)

(4) � ¼ 4=16, � ¼ �1234

F12 þ F43 ¼ 0; F13 þ F24 ¼ 0;

F14 þ F32 ¼ 0; F56 þ F87 ¼ 0;

F57 þ F68 ¼ 0; F58 þ F76 ¼ 0;

Fab ¼ 0

a 2 f1; 2; 3; 4g; b 2 f5; 6; 7; 8g:

(5.28)

(5) � ¼ 5=16, � ¼ �12 345

F12 ¼ F34 ¼ F56 ¼ F78;

F13 ¼ F42 ¼ F68 ¼ F75;

F14 ¼ F23 ¼ F76 ¼ F85; Fab ¼ 0

a 2 f1; 2; 3; 4g; b 2 f5; 6; 7; 8g:

(5.29)

(6) � ¼ 6=16, � ¼ �123 456

F12 ¼ F34 ¼ F56 ¼ F78; (5.30)

and other components are zero. The system of BPS equa-
tions constructed by means of seven primitive idempotents
of the form (5.24) has only trivial solution.

VII. DISCUSSIONS AND COMMENTS

In this paper, we systematically classified all possible
BPS equations in Euclidean dimension d � 8 and pre-
sented a general method allowing to obtain the BPS equa-
tions in any dimension. In this section, we discuss
symmetries of BPS equations and their connection with
the self-dual Yang-Mills equations. Further, we find all
BPS equations in the Minkowski space of dimension d �
6. In addition, we apply the obtained results to the super-
symmetric Yang-Mills theories and to the low-energy ef-
fective theory of the heterotic string.
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A. Symmetries of BPS equations

First, we consider a connection between BPS states and
instantons in the Euclidean Yang-Mills theory. We note
that the primitive system (5.25) can be rewritten in the form

Fab ¼ 1
2fabcdFcd; (6.1)

where fabcd is a completely antisymmetric tensor with the
following nonzero components:

f1234 ¼ f1256 ¼ f1357 ¼ f1476 ¼ f2367

¼ f2457 ¼ f3465 ¼ 1;

f5678 ¼ f3476 ¼ f2468 ¼ f3258 ¼ f1458

¼ f1368 ¼ f1728 ¼ 1: (6.2)

Let d < 8. Suppose that the components (6.2) with the
indices i > d equal to zero. Then we get the primitive
system of BPS equations in dimension d. Obviously, this
system has the form (6.1). Since any system of BPS equa-
tions is a system joining primitive systems, it also has the
form (6.1). Thus, any BPS equation in Euclidean space of
dimension d � 8 is equivalent to a self-dual Yang-Mills
equation. It follows that any solution of BPS equations in
the Euclidean super Yang-Mills theory in this dimension is
an instanton solution.

We consider symmetries of the BPS equations. In
Euclidean dimension d � 8, the group G of symmetries
of BPS equations is a subgroup of SOð8Þ. On the other
hand, the corresponding projection operator � is invariant
under this subgroup. Using the canonical form of �, we
easily find the group G. We list all such groups in Table II.

Note that these groups were first interpreted as groups of
symmetries of the self-dual Yang-Mills equations in [1,2].
In the same place, an example of self-dual equations that
differ from the BPS equations was found. These equations
can be obtained if we deduce the equality of each term in
each row of (5.25), i.e. F12 ¼ F43 ¼ F65 ¼ F78, etc., a set
of 21 equations. It follows that a solution of the self-dual
Yang-Mills equations is not necessarily a solution of BPS
equations in the Euclidean super Yang-Mills theory.

Let us discuss a possibility of generalization of theo-
rem 1. First note that we can consider arbitrary spinor
representations of SpinðdÞ. Then new systems of BPS
equations appear in eight dimensions. We can easily con-
struct such a system using the sum �þ þ�� of the
idempotents

�� ¼ 1
16ð1� �	Þð1þ �1234Þð1þ �1256Þð1þ �1476Þ:

(6.3)

Obviously, it is a system joining the system (5.19) with the
conditions Fa8 ¼ 0. Conversely, new BPS equations do not
appear in dimension d < 8. This assertion is obvious for
odd d, because any spinor representation of SpinðdÞ is
irreducible in such a dimension. In order to prove this
assertion for even d < 8, we use [24]. In this work, all

BPS equations in even dimension d � 8 were found. And
also in Euclidean dimension d < 8, arbitrary spinor repre-
sentations of SpinðdÞ were considered. It was proven that
only trivial BPS equations are in two dimensions. In four
dimensions, the chiral BPS Eq. (5.12) and its antichiral
analog were found. In six dimension, it was proven that
BPS equations either have the form

F12 þ �2F34 þ �1F56 ¼ 0; F13 þ �2F42 ¼ 0;

F14 þ �2F23 ¼ 0; F15 þ �1F62 ¼ 0;

F16 þ �1F25 ¼ 0; F35 þ �1�2F64 ¼ 0;

F36 þ �1�2F45 ¼ 0; (6.4)

where �1, �2 are two independent signs �1, or are a
corollary of (6.4). The problem of equivalence is not being
considered in this work. Nevertheless, we can prove that
the four systems (6.4) defined by the choice of values of �1

and �2 are equivalent. Indeed, the permutation ð13Þ�
ð24Þ; ð15Þð26Þ; ð35Þð46Þ of indices of Fab leave invariant
two systems and transpose the other two with each other.
In turn, such transformations of BPS equations can be
obtained by the transformations (2.8). Since the considered
supersymmetry is global, it follows that these four systems
of BPS equations are equivalent. It is obvious also that they
are equivalent to the system (5.15). It is sufficient to put
�1 ¼ �2 ¼ 1 in (6.4) and then use the permutation ð34Þ�
ð56Þ of indices of Fab. Thus, theorem 1 is true for any
spinor representations of SpinðdÞ in dimension d � 6.
Also, we prove that to within equivalence all BPS equa-
tions found in [24] are self-dual Yang-Mills equations.

B. BPS equations in the Minkowski spaces

The second possibility of generalization of theorem 1 is
connected with an investigation of BPS equations in the
Minkowski space. These equations also may be obtained
by a dimensional reduction of the D ¼ 10 N ¼ 1 super
Yang-Mills theory. Note that the method used above may
be applied in this case. In particular, all constructions of
Sec. III are remain true if we are restricted to the dimension
d < 8. It is clear that we must correctly place the tensor
indices in the text and also use the groups Spinðd� 1; 1Þ,
SOðd� 1; 1Þ, and the anti-Hermitian matrices i�d instead
of the groups SpinðdÞ, SOðdÞ, and the Hermitian matrices
�d. The following weakened analog of theorem 1 is true.
Theorem 2. In the Minkowski space of dimension d � 6,

there exists unique to within equivalence nontrivial system
of BPS equations connected with constant chiral spinor.
Indeed, the matrix �þ ¼ 0 or 1 in dimension d ¼ 1þ

1. We consider dimension d ¼ 3þ 1. Since the group
Spinð3; 1Þ is isomorphic to Slð2;CÞ, �þ is an Hermitian
2� 2 matrix. It is obvious that this matrix can be reduced
to the canonic form by conjugations of Slð2;CÞ. Now, we
consider dimension d ¼ 5þ 1. The group Spinð5; 1Þ is
isomorphic to SU	ð4Þ. Hence, �þ is an Hermitian 4� 4
matrix. On the other hand, it was shown in Sec. V that this
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matrix can be reduced to the canonic form by conjugations
of Spð2Þ. Since Spð2Þ � SU	ð4Þ, it follows that this reduc-
tion is possible in the considered case. Thus, there exists
unique to within equivalence nontrivial system of BPS
equations for any pair of values d � 6 and � ¼ �ðdÞ.

Now, we will construct these systems. It is obvious that
in dimension d ¼ 1þ 1, we have only the vacuum Fab ¼
0. We consider dimension d ¼ 3þ 1. If follows from (1.6)
and Table I that

Cl 03;1ðRÞ ’ Cl3;0ðRÞ ’ Cð2Þ: (6.5)

Therefore, the subalgebra Cl03;1ðRÞ decomposes into the

direct sum of two minimal left ideals. We construct the
total orthogonal system of primitive idempotents

�� ¼ 1
2ð1� �14Þ: (6.6)

It follows easily that the corresponding system of BPS
equations has only the trivial solution Fab ¼ 0. We con-
sider dimension d ¼ 5þ 1. Since

Cl 05;1ðRÞ ’ Cl5;0ðRÞ ’ Hð2Þ �Hð2Þ; (6.7)

it follows that the subalgebra Cl05;1ðRÞ decomposes into the

direct sum of four minimal left ideals. We construct the
total orthogonal system of primitive idempotents

�� ¼ 1
4ð1� �123456Þð1� �1234Þ: (6.8)

Substituting �1 in the Eq. (2.5), we get the BPS equations

Fab ¼ 1
2"abcdFcd; Fa5 ¼ �Fa6: (6.9)

Conversely, the system of BPS equations constructed with
the help of the idempotent

�12 ¼ 1
2ð1þ �123456Þ (6.10)

has only trivial solution. Hence, any nontrivial system of
BPS equations in dimension d ¼ 5þ 1 defined by the
chiral representation of Spinð5; 1Þ is equivalent to the
system (6.9). The theorem is proved.

C. BPS states in the supersymmetric Yang-Mills
theories

Now we apply the obtained above results to the super-
symmetric Yang-Mills theories. First, we note that for each

choice of the infinitesimal supersymmetry parameter ",
there is a corresponding conserved supercharge Q. Out of
this infinity of conserved supercharges, we wish to identify
those that generate unbroken supersymmetries. An unbro-
ken supersymmetry Q is simply a conserved supercharge
that annihilates the vacuum state j�i. Saying that Q anni-
hilates j�i is equivalent to saying that for all operators U,
h�jfQ;Ugj�i ¼ 0. This will be so U is a bosonic operator,
since then fQ;Ug is fermionic, so the real issue is whether
h�jfQ;Ugj�i vanishes when U is a fermionic operator.
Now, when U is fermionic fQ;Ug is simply �U, the
variation of U under the supersymmetry transformation
generated by Q. Also, in the classical limit, �U and
h�j�Uj�i coincide. So finding an unbroken supersymme-
try at tree level means finding a supersymmetry transfor-
mation such that �U ¼ 0 for every fermionic fieldU. Also,
in the classical limit, it is enough to check this for elemen-
tary fermion fields.
Further, the open superstring theory can be approxi-

mated at low energy by a supersymmetric Yang-Mills
theory. Such theories are described by an action of the form

S ¼
Z
dDx

�
� 1

4
F2 þ i

2
� � �D 

�
: (6.11)

The supersymmetry transformations that leave (6.11) in-
variant are

�A� ¼ i

2
�"�� ; (6.12)

� ¼ �1
4F���

��"; (6.13)

where " is a constant anticommuting spinor. It is well
known that the supersymmetric Yang-Mills theory exists
only in theD ¼ 3, 4, 6, and 10. Using theorem 2, we prove
that the condition � ¼ 0 in D � 6 is true only if either
F�� is a solution of (6.9) or F�� ¼ 0.

We consider the dimension D ¼ 10. The Majorana-
Weyl spinor  inD ¼ 10 has 16 real components. On shell
these components must still satisfy the Dirac equation that
relates eight of them to the other eight. Therefore, if the
values of F�� are arbitrary, then it follows from (6.13) that

only eight components of " are independent. We choose an
orthonormal basis in KerðF�����Þ � V and extend it to

the spinor space V so that only eight components of " are

TABLE II. Groups of symmetries of BPS equations.

d ¼ 4, 5 � ¼ 1=2
SOð4Þ

d ¼ 6 � ¼ 1=4 2=4
SUð3Þ �Uð1Þ=Z3 SOð4Þ � SOð2Þ

d ¼ 7 � ¼ 1=8 2=8 3=8
G2 SUð3Þ �Uð1Þ=Z3 SOð4Þ � SOð3Þ

d ¼ 8 � ¼ 1=16 2=16, 6=16 3=16, 5=16 4=16
Spinð7Þ SUð4Þ �Uð1Þ=Z4 Spð2Þ � SUð2Þ=Z2 SOð4Þ � SOð4Þ
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not zero. Then the condition � ¼ 0 requires that the
projector � in (2.5) have the block diagonal form (2.16).
It is obvious that it can be reduced to the canonic form by
transformations from SOð8Þ � SOð9; 1Þ. Hence, for every
value of �, there exists unique to within equivalence non-
trivial system of BPS equations. In order to find these
systems we construct the total orthogonal system of primi-
tive idempotents

�� ¼ 1
32ð1� �	Þð1� �12 345 678Þð1� �1234Þ
� ð1� �1256Þð1� �1476Þ (6.14)

of the Clifford algebra Cl09;1ðRÞ. Substituting �1 in

Eq. (2.5), we get the following BPS equations

Fab ¼ 1
2fabcdFcd; Fa9 þ Fa10 ¼ F910 ¼ 0; (6.15)

where fabcd is a completely antisymmetric tensor with the
components (6.2). Obviously, � ¼ 2=32. The systems of
BPS equations for other values of � can be obtained by the
method in Sec. VI. Thus, nontrivial state of unbroken
supersymmetry in the supersymmetric Yang-Mills theory
exist only for D ¼ 6 and 10. Also, in dimension D ¼ 6,
such state is an instanton solutions of (6.9). In dimension
d ¼ 10, such states are either solutions of the system (6.15)
or solutions of the BPS equations in eight dimensions
adding the conditions Fa9 ¼ Fa10 ¼ F910 ¼ 0.

D. Heterotic string solitons

In conclusion, we discuss the possibility of using the
results obtained above to construct soliton solutions of the
low-energy effective theory of the heterotic string. For the
heterotic string, the low-energy effective action is identical
to the D ¼ 10, N ¼ 1 supergravity and super Yang-Mills
action. The bosonic part of this action reads

S ¼ 1

2k2

Z
d10x

ffiffiffiffiffiffiffi�gp
e�2	

�
�
Rþ 4ðr	Þ2 � 1

3
H2 � �0

30
TrF2

�
: (6.16)

We are interested in solutions that preserve at least one
supersymmetry. This requires that in 10 dimensions there
exist at least one Majorana-Weyl spinor " such that the
supersymmetry variations of the fermionic fields vanish for
such solutions

�� ¼ FMN�
MN"; (6.17)

�
 ¼
�
�M@M	� 1

6
HMNP�

MNP

�
"; (6.18)

� M ¼
�
@M þ 1

4
�AB
M �AB

�
": (6.19)

Here, 	 is the dilaton field, FMN is the Yang-Mil1s field
strength, and H is the gauge-invariant field strength of the
antisymmetric tensor field BMN . While we can arbitrarily
specify the space-time metric and the dilaton field 	 in
trying to obey

�� ¼ �
 ¼ � M ¼ 0; (6.20)

we cannot arbitrarily specify F or H; they must obey
certain Bianchi identities. In the string theory these iden-
tities have the form

dH ¼ �0ðtrR ^ R� 1
30 TrF ^ FÞ: (6.21)

Note that the connection �M in (6.19) is a non-
Riemannian. It is related to the usual spin connection ! by

�AB
M ¼ !AB

M �HAB
M : (6.22)

The analysis of (6.17), (6.18), and (6.19) is rather com-
plicated in general, and so we simplify the discussion by
assuming at the outset that the Majorana-Weyl spinor " is
constant. Further, we suppose that a subgroup G of
SOð9; 1Þ is a group of symmetries of BPS equations, and
we choose " to be aG singlet of the Majorana-Weyl spinor.
Then, for suitable G, there exists a completely antisym-
metric tensor fabcd such that the ansatz

gab ¼ e	�ab; Habc ¼ 
fabcd@
d	; (6.23)

solves the supersymmetry equations with zero background
fermi fields provided the Yang-Mills gauge fields satisfies
the BPS equations. Such solutions were found in the works
[14–23]. The obtained above classification of BPS equa-
tions in the Euclidean and Minkowski spaces permits to
describe all such solutions at least with ansatz (6.23). It is
interesting that at present, states of unbroken supersymme-
try are very nearly the only examples known of compacti-
fied solutions of the equations; the other known examples
are related in comparatively simple ways to states of un-
broken supersymmetry.
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