
Some multiquark potentials, pseudopotentials, and AdS/QCD

Oleg Andreev*

Technische Universität München, Excellence Cluster, Boltzmannstrasse 2, 85748 Garching, Germany
(Received 7 May 2008; published 3 September 2008)

The static three-quark potential and pseudopotential of a pure SUð3Þ gauge theory are studied in a five-

dimensional framework known as AdS/QCD. The results support the Y-ansatz for the baryonic area law. A

comparison with the quark-antiquark calculations shows the universality of the string tension as well as

the spatial string tension. We also discuss extensions to SUðNÞ gauge theories.
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I. INTRODUCTION

Heavy-quark potentials are of primary importance in
studying the mass spectra of mesons and baryons. They
have been computed in lattice simulations, and the results
reveal a remarkable agreement with phenomenology.1

Until recently, the lattice formulation even struggling
with limitations and systematic errors was the main com-
putational tool to deal with strongly coupled gauge theo-
ries. The situation changed drastically with the invention of
the anti–de Sitter/conformal field theories (AdS/CFT) cor-
respondence that resumed interest in finding a string de-
scription of strong interactions.

In this paper we continue a series of studies [2–4]
devoted to the heavy-quark potentials and pseudopotentials
within a five-dimensional framework nowadays known as
AdS/QCD. In [2], the model was presented for computing
the quark-antiquark potential. The resulting potential is
Coulomb-like at short distances and linear at long range.
Subsequent work [5] has made it clear that the model
should be taken seriously, particularly in the context of
consistency with the available lattice data as well as phe-
nomenology. In [3,4], the models were presented for com-
puting the quark-antiquark pseudopotentials resulting from
the spatial Wilson loops. The results obtained for the
spatial string tensions are remarkably consistent with the
available lattice data for temperatures up to 3Tc.

The question naturally arises: What happens when these
models are used for computing multiquark potentials or
pseudopotentials? The multiquark potentials have recently
been the object of numerical studies.2 In the case of great
interest, three-quark states in a SUð3Þ gauge theory, the
potential is well described by a simple model [8]

V3q ¼ ��3q

X3
i<j

1

Lij

þ �3qLmin þ C: (1.1)

Here C is a constant. The quarks form a triangle with sides
of lengths Lij. Lmin is the minimal length of the string

network which has a junction at the Fermat point of the
triangle [9]. Thus, the potential is given by the sum of the
Coulomb terms and the linear term called the Y-law. A
remarkable fact is that �3q is equal to ��q found from the

quark-antiquark potential. This is obvious in the string
picture, where the string tension is universal, but it is far
from being so in the lattice formulation.
The purpose of the present paper is two-fold. First, we

examine the multiquark potentials that may also be thought
of as a further cross-check of the model [2]. Second, we
make a similar analysis of the multiquark pseudopoten-
tials. To our knowledge, there have been no studies (nu-
merical or analytical) of this problem in the literature.
The paper is organized as follows. In section II, we

discuss the multiquark potentials. We begin with the
three-quark potential. In this case, we demonstrate the Y-
law and the universality of the string tension. Finally, we
extend our analysis to the SUðNÞ case. We then go on in
Sec. III to discuss the multiquark pseudopotentials. Here
we also demonstrate the Y-law, the universality of the
spatial string tension, and possible generalizations to
SUðNÞ. We conclude in Sec. IV with a brief discussion
of possibilities for further study. Some technical details are
given in the appendix.

II. CALCULATING THE POTENTIALS

In this section, we will discuss static multiquark poten-
tials. We start with the three-quark potential in a SUð3Þ
gauge theory, where equations are most elementary. In
Sec. II D, similar issues are considered in the context of a
SUðNÞ gauge theory.

A. General formalism

As for the quark-antiquark potential, the static
three-quark potential can be determined from the
expectation value of a Wilson loop. The baryonic loop is

defined in a gauge-invariant manner as W3q ¼
1
3!"abc"a0b0c0U

aa0
1 Ubb0

2 Ucc0
3 , with the path-ordered exponents

Ui along the lines shown in Fig. 1.
In the limit T ! 1 the expectation value of the Wilson

loop is

*Also at Landau Institute for Theoretical Physics, Moscow.
1For a review, see [1].
2For reviews, see [6,7] and references therein.
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hW3qi � e�TV3q ; (2.1)

where V3q is the three-quark potential.

In discussing baryonic Wilson loops, we adapt a formal-
ism proposed within the AdS/CFT correspondence [10,11]
to AdS/QCD.3 So, we place heavy quarks at the boundary
points of the five-dimensional space and consider a con-
figuration in which each of the quarks is the endpoint of a
fundamental string, with all the strings oriented in the same
way. The strings join at a baryon vertex in the interior as
shown in Fig. 2.4 We also assume that the quarks form a
triangle Q1Q2Q3 such that all the internal angles are
smaller than 2�

3 .

Before proceeding to the detailed analysis, let us set the
five-dimensional geometry. We consider the following de-
formation of the Euclidean AdS5 [2,14]:

ds2 ¼ R2wðdt2 þ d~x2 þ dr2Þ; wðrÞ ¼ esr
2

r2
; (2.2)

where d~x2 ¼ dx2 þ dy2 þ dz2 and s is a free parameter.5

We also take a constant dilaton and discard other back-
ground fields.

The action of the system has in addition to the standard
Nambu-Goto actions of the fundamental strings also a
contribution arising from the baryon vertex. It is thus

S ¼ X3
i¼1

Si þ Svert; (2.3)

where Si denotes the action of the string connecting the
i-quark with the vertex.
Like in the case of the quark-antiquark potential, a

natural proposal for the expectation value of the Wilson
loop is

hW3qi � e�Smin ; (2.4)

where Smin is the minimal action of the system.
Since we are interested in a static configuration, we take

tið�iÞ ¼ �i; yið�iÞ ¼ ai�i þ bi: (2.5)

Here ð�i; �iÞ are worldsheet coordinates. The action of the
i-string is then

Si ¼ Tg
Z 1

0
d�iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ x02i þ r02i

q
; (2.6)

where g ¼ R2

2��0 . A prime denotes a derivative with respect

to �i.
The action for the baryon vertex is taken to be of the

form

Svert ¼ TV ðr0Þ; (2.7)

whereV can be considered as an effective potential of the
vertex. Unfortunately, the explicit form of V is not deter-
mined only from the five-dimensional metric (2.2). It re-
quires the knowledge of the string theory dual to QCD. We
will return to this issue in the next section.

r

x

y

Y
0

D(x ,y ,r )

Q (x ,y ,0)

Q (x ,y ,0)

Q (x ,y ,0)

11

3

2

0 0

1

22

3 3

0

FIG. 2 (color online). A configuration used to calculate the
expectation value of W3q. The quarks are set on the x-y plane.

The baryon vertex is placed at D. Its projection on the x-y plane
is Y.
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FIG. 1 (color online). A baryonic Wilson loop W3q. A three-
quark state is generated at t ¼ 0 and is annihilated at t ¼ T. The
quarks are spatially fixed in R3 at points Q1, Q2, and Q3.

3For subsequent developments of the formalism, see [12,13].
4From the point of view of ten-dimensional string theory, the

baryon vertex is a wrapped five-brane whose world volume is
R�X, with X a five-dimensional compact space and R a
timelike curve in AdS5 or its deformed version, [10,11]. In
AdS/QCD, it is reduced to a zero-brane (point).

5The value of s can be fixed, for example, from the quark-
antiquark potential.
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The boundary conditions on the fields are given by

xið0Þ ¼ xi; yið0Þ ¼ yi; rið0Þ ¼ 0;

xið1Þ ¼ x0; yið1Þ ¼ y0; rið1Þ ¼ r0:
(2.8)

These determine the coefficients ai and bi in (2.5). Thus,
we have

ai ¼ y0 � yi; bi ¼ yi: (2.9)

Next, we extremize the total action S with respect to the
worldsheet fields xið�iÞ and rið�iÞ describing the strings as
well as with respect to x0, y0, and r0 describing the location
of the baryon vertex, with the following identifications:
�xið1Þ ¼ �x0 and �rið1Þ ¼ �r0. In doing so, we use the
fact that there are two symmetries which simplify the
further analysis.

Since the integrand in (2.6) does not depend explicitly on
�i, we get the first integral of Euler-Lagrange equations

Ii ¼ wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ x02i þ r02i

q : (2.10)

In addition, because of translational invariance along the
x-direction, there is another first integral. Combining it
with (2.10) gives

Pi ¼ x0i: (2.11)

Together with the boundary conditions these equations
determine xi

xið�iÞ ¼ ðx0 � xiÞ�i þ xi: (2.12)

Now, we extremize the action with respect to the loca-
tion of the baryon vertex. After using (2.9) and (2.12), we
get

X3
i¼1

x0 � xi
li

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

p ¼ 0;
X3
i¼1

y0 � yi
li

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

p ¼ 0;

X3
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�1

i

q þ 1

g

V 0

w
ðr0Þ ¼ 0:

(2.13)

Here ki ¼ ðr0ið0Þli
Þ2 and li ¼ jYQij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx0 � xiÞ2 þ ðy0 � yiÞ2

p
.

If we define the first integrals Ii at �i ¼ 1 such that Ii ¼
!ðr0Þ=li

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

p
, and then integrate over [0, 1] of d�i, then

by virtue of (2.10) we get

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

sð1þ kiÞ

s Z 1

0
dviv

2
i e

�ð1�v2
i Þ

�
�
1� 1

1þ ki
v4
i e

2�ð1�v2
i Þ
��1=2

; (2.14)

where vi ¼ ri=r0 and � ¼ sr20.
Now, we will compute the energy of the configuration.

First, we reduce the integrals over �i in Eq. (2.6) to that

over ri. This is easily done by using the first integral (2.10).
Since the integral is divergent at ri ¼ 0, we regularize it by
imposing a cutoff �. Then we replace ri with vi as in (2.14).
Finally, the regularized expression takes the form

ER ¼ V ð�Þ þ g

ffiffiffiffi
s

�

s X3
i¼1

Z 1 ffiffiffiffiffiffiffiffiffi
ð�=sÞ

p
�

dvi

v2
i

e�v
2
i

�
�
1� 1

1þ ki
v4
i e

2�ð1�v2
i Þ
��1=2

: (2.15)

Its �-expansion is

ER ¼ 3g

�
þOð1Þ:

Subtracting the 1
� term (quark masses) and letting � ¼ 0, we

find a finite result

E ¼ V ð�Þ þ g

ffiffiffiffi
s

�

s X3
i¼1

Z 1

0

dvi

v2
i

�
�
e�v

2
i

�
1� 1

1þ ki
v4
i e

2�ð1�v2
i Þ
��1=2 � 1� v2

i

�
þ C; (2.16)

where C stands for a normalization constant.
In contrast to the quark-antiquark case, the potential in

question is more involved. It is given by a set of equations.
Formally, one can eliminate parameters and find E as a
function of the li’s or the Lij’s. Unfortunately, in practice it

is extremely difficult.

B. A concrete example

We will next describe a concrete example in which one
can develop a level of understanding that is somewhat
similar to that of the quark-antiquark case [2]. We consider
the most symmetric configuration of the quarks, in which
the triangle Q1Q2Q3 is equilateral, and specify the action
Svert as that of a particle in a curved space. The latter
implies that

V ðr0Þ ¼ mR
ffiffiffiffiffiffiffiffiffiffiffiffi
!ðr0Þ

q
; (2.17)

wherem is a parameter, which can be interpreted as a mass
of a ‘‘particle.’’
A consequence of the symmetry is that Y, which is the

projection of D on the x-y plane, is nothing but the cir-
cumcenter of the triangle Q1Q2Q3. The first two equations
of (2.13) are now identically satisfied, while the last takes
the form6

6This equation determines the location of the vertex in the
r-direction, because the symmetry argument alone is not enough
to do so.
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�1

p ¼ �ð1� �Þe�ð1=2Þ�; (2.18)

where k ¼ ki and � ¼ 1
3
mR
g
.

With the form (2.18), k can be explicitly computed as a
function of �. Inserted in (2.14) and (2.16), this gives

l ¼
ffiffiffiffiffiffiffiffi
�

s
	

s Z 1

0
dvv2e�ð1�v2Þ

�
1� 	v4e2�ð1�v2Þ

��1=2

(2.19)

and

E ¼ 3g

ffiffiffiffi
s

�

s �
�eð1=2Þ�

þ
Z 1

0

dv

v2

�
e�v

2ð1� 	v4e2�ð1�v2ÞÞ�1=2 � 1� v2

��
þ C; (2.20)

where 	ð�Þ ¼ 1� �2ð1� �Þ2e��.
The potential in question is written in parametric form

given by Eqs. (2.19) and (2.20).7 It is unclear to us how to
eliminate the parameter � and find E as a function of l. We
can, however, gain some important insights into the prob-
lem from two limiting cases as well as numerical
calculations.

We start by noting that Eq. (2.18) makes sense only if
� < 1. This means that r0 must obey

r0 �
ffiffiffi
1

s

s
: (2.21)

So in other words, the baryon vertex is prevented from
getting deeper into the r-direction. This gives a kind of
wall which is a generic feature of confining theories. It is
worth mentioning that the same upper bound was found in
the quark-antiquark case [2] by inspecting the integral
(2.19) at 	 ¼ 1. The point is that the integral is real for � <
1. It develops a logarithmic singularity at � ¼ 1 and be-
comes complex for larger �. A similar analysis shows that
if � � 1 this holds for smaller 	 too. For � > 1 things are
more subtle because of a lower bound

r� � r0: (2.22)

Here r� is a root of 	ðsr2Þ ¼ 0. The physical reason for this
is a big mass of the particle that strengthens a gravitational
force pushing the baryon vertex deeper into the interior. As
a result, for small l the configuration looks like a spike of
height r�.

The fact that both the Eqs. (2.18) and (2.19) lead to the
same upper bound suggests that neither strings nor baryon
vertices are allowed to get deeper into the r-direction than

1=
ffiffiffi
s

p
. This seems natural enough from the point of view of

consistency.
To complete the picture, let us present the results of

numerical calculations. The parametric Eq. (2.19) predicts
a characteristic form of l, as shown in Fig. 3. We see that
the curves behave similarly in the vicinity of � ¼ 1 but
rather differently for smaller �. This has an interesting
effect on the form of the interquark potential, as we will
see in a moment.
Having understood the correspondence between � and l,

we can investigate the properties of the interquark interac-
tion at long and short distances.8

At long distances the interquark interaction being inde-
pendent of � is given by

E ¼ �3qLmin þOð1Þ (2.23)

that is nothing but the desired Y-law. Here Lmin ¼ 3l and
�3q ¼ egs.

Some comments about formula (2.23) are in order. First,
the form of the potential is in agreement with both the old
flux-tube picture of hadrons and more recent calculations
in lattice QCD [6,7]. However, the key difference is that in
our model the interaction takes place in the interior of five-
dimensional space, whereas in those it happens on its
boundary. Next, the tension �3q is the same as that found

from the quark-antiquark potential [2]. Thus, the model
also supports the universality of the string tension. Finally,
to leading order the energy is the sum of the string con-
tributions. A contribution from the baryon vertex appears
at next-to-leading order.
At short distances the form of the interquark interaction

depends on the value of �. We have the Coulomb terms

E ¼ �3
�3q

L
þOð1Þ; (2.24)

FIG. 3 (color online). Plots of lð�; �Þ for fixed �. Here s ¼
0:45 GeV2.

7Note that these equations are reduced to those of [2] at � ¼ 0
and 	 ¼ 1. 8More details are presented in the appendix.
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with L a distance between the quarks, if and only if � < 1.
In other cases, the energy behaves as E� const.

Just as in the examples discussed in the AdS/CFT for-
mulation [10,12], in (2.24) the contribution of the baryon
vertex is compatible to that of the strings. The reason for
this is obvious: in the region of small r the metric (2.2)
behaves asymptotically as Euclidean AdS5.

As an illustration, Fig. 4 shows the results of numerical
calculations. We see that the value of � does matter at short
distances, while it becomes irrelevant at large distances.

We conclude this section by making a few estimates,
which might be of interest for phenomenology.

As already noted, in AdS/CFT the baryon vertex is the
wrapped five-brane. For definiteness, consider type IIB
string theory on AdS5 � S5. The D5 brane world volume
is then S5 � R, with R a timelike curve in AdS5. Now,
suppose that the action of the brane is simply the Nambu-
Goto term �5

R
d6


ffiffiffi
g

p
, with �5 the tension.9 In the static

case this leads to the same form as (2.17). Moreover, we
learn that � ¼ 1

4 .

At first sight, it seems reasonable to fix the value of � by
equating �3q and 1

2�q�q.
10 A little experimentation with

MATHEMATICA shows, however, that this results in a nega-

tive value. If we assume that �3q ¼ ��q�q, then there are

positive �’s for �’s relatively close to 0.5, as given in
Table I. Note that � ¼ 1

4 corresponds to � ¼ 0:27 versus

� � 0:5 in lattice QCD. It is possible to partially fix this
discrepancy by choosing smaller �. Then the value one
needs are bounded from above by a number of order 0.02.

The problem is, of course, that the action for the baryon
vertex we used in (2.17) is oversimplified. There are extra
background scalars as well as �0 corrections.11 However,
there is also a possibility that the string formulation being
reliable at large distances provides only a qualitative de-
scription of the physics at short distances.

C. Y-law and string tension

Apparently, one of the requirements for the multiquark
model should be consistency with the quark-antiquark
case: as long as the fundamental strings are prevented
from getting deeper into the r-direction, the baryon vertex,
as a string endpoint, should also be prevented from doing
so. Our next goal will be to understand the large distance
behavior of the multiquark potential from this point of
view.
To implement this approach, we assume that (1) the

baryon potential V ðr0Þ is a positive and regular function

of r0 such that it reaches the minimum exactly at r0 ¼
1=

ffiffiffi
s

p
; (2) V ! þ1 as r0 tends to zero or infinity. The

latter means that the vertex cannot come very close to the
boundary as well as go far away from it.
These conditions allow us to conclude that the last

equation of (2.13) makes sense only if r0 is subject to the
constraint (2.22). We also learn that ki ! 0 as � ! 1.
If we look at Eq. (2.14), then a short inspection shows

that li takes large values only in the corner of the parameter
space ðki; �Þ located at (0, 1). In this region li behaves as

li ¼ � 1

2

ffiffiffi
1

s

s
lnð ffiffiffiffi

ki
p þ 1� �Þ þOð1Þ: (2.25)

Note that in the symmetric case ki � ð1� �Þ2. Hence, the
equation reduces to (A1).
A precisely analogous computation for E gives

E ¼ � 1

2
eg

ffiffiffi
s

p X3
i¼1

lnð ffiffiffiffi
ki

p þ 1� �Þ þOð1Þ: (2.26)

A contribution from the baryon vertex is of order 1, be-
cause the function V is finite at � ¼ 1. Combining this
with (2.25), we find the energy configuration as a function
of the lengths li

FIG. 4 (color online). Plots of Eðl; �Þ for fixed �. We set g ¼
0:15, s ¼ 0:45 GeV2, C ¼ 0.

TABLE I. Estimates of the parameter �.

� 0.50 0.45 0.42 0.38 0.27

� �0:11 �0:03 0.02 0.07 0.25

9The general form of the action is given by the DBI and WZ
terms plus �0 corrections. See, e.g., [15].
10With accuracy better than a few percent, such a relation is
valid in lattice QCD [8].

11In contrast to AdS/CFT, where �0
R2 � 1ffiffiffi

�
p becomes small for

large ’t Hooft coupling, the phenomenological estimate of [2]
gives �0

R2 � 1. The latter suggests that �0 corrections are relevant
for the real world and a departure from the supergravity ap-
proximation is needed.
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E ¼ �3q

X3
i¼1

li þOð1Þ: (2.27)

Here �3q is equal to �q�q of [2], as expected from the

universality of the string picture.
However, this is not the whole story. We still need to

show that Y is the Fermat point of the triangle formed by
the quarks. The simplest way to see this is to take the limit
ki ! 0 in the first two equations of (2.13) which determine
the location of the vertex on the x-y plane. We have thus

X3
i¼1

1

li
ðx0 � xiÞ ¼ 0;

X3
i¼1

1

li
ðy0 � yiÞ ¼ 0: (2.28)

Obviously, these equations are a result of differentiating
the sum

P
3
i¼1 li with respect to x0 and y0. Because a

solution

x0 ¼ 1

N

X3
i¼1

xi
li
; y0 ¼ 1

N

X3
i¼1

yi
li
; N ¼ X3

i¼1

1

li

(2.29)

determines the Fermat point, in this limit Y tends to the
Fermat point of the triangle. This completes our derivation
of the Y-law.

D. The case SUðNÞ
Now we consider the case SUðNÞ. The analysis is a little

bit more complicated but the results are very similar.
By analogy with Sec. II A, we place N heavy quarks on

the boundary of the five-dimensional space. Because in a
generic case the quarks are not on the same plane, we need
to involve the third spatial coordinate z. So, the quarks are
fixed in R3 at points Qi with coordinates xi, yi, zi. The
configuration of interest is constructed as the N quarks
joined together by the N fundamental strings ending at
the baryon vertex in the interior of the five-dimensional
space whose metric takes the form (2.2).

The total action of the system is given by (2.3), where
the sum now runs from 1 to N. After choosing the gauge
(2.5), the action of the i-string takes the form

Si ¼ Tg
Z 1

0
d�iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ x02i þ z02i þ r02i

q
: (2.30)

The boundary conditions are given by Eq. (2.8) together
with

zið0Þ ¼ zi; zið1Þ ¼ z0: (2.31)

In addition to the first integrals of Sec. II A, which
correspond to Euler-Lagrange equations for the fields
xið�iÞ and rið�iÞ, there is one more integral due to trans-
lational invariance in the z-direction. Combining it with
(2.10) results in

�P i ¼ z0i: (2.32)

These equations yield solutions

zið�iÞ ¼ ðz0 � ziÞ�i þ zi (2.33)

which coincide at the endpoints with the boundary values
defined in (2.31).
Extremizing the action with respect to the location of the

vertex, we get (2.13), with the upper bound of summation
given by N, and

XN
i¼1

z0 � zi
li

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

p ¼ 0 (2.34)

that determines the location of the baryon vertex

along the z-direction. Note that now li ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx0 � xiÞ2 þ ðy0 � yiÞ2 þ ðz0 � ziÞ2
p

.
Like in the case N ¼ 3, we can compute the expressions

for the lengths li. After doing so, we find that they take the
forms as in (2.14) and (2.16), with the only difference: E
now includes the contributions from the N fundamental
strings.
It is also straightforward to extend the analysis of

Sec. II C to the case of interest. Assuming the same form
of V , we quickly come to similar conclusions about the
bound (2.21) and large values of li. Continuing along those
lines leads to the asymptotic behaviors as (2.25) and (2.26).
Finally, we get

E ¼ �Nq

XN
i¼1

li þOð1Þ: (2.35)

As before the string tension �Nq is equal to that of the

quark-antiquark case.
To complete the picture, we should check that E given

by the above formula is minimum. The essential point is to
take the limit ki ! 0 in the equations determining the
vertex location. Then, from Eqs. (2.28) and

XN
i¼1

1

li
ðz0 � ziÞ ¼ 0; (2.36)

we learn that Y is nothing but the geometric median of the
set of the points Qi.

12 This is the desired result which
reflects the fact that E is minimum.

III. CALCULATING THE PSEUDOPOTENTIALS

In this section we will investigate the temperature de-
pendence of the spatial string tension. The model of inter-
est is developed for the quark-antiquark case in [3,4], to
which the reader is referred for more details. The philoso-
phy is that the spatial string tension is determined from
temperature dependent pseudopotentials extracted from
the spatial Wilson loops.13

12It is also known as the Fermat-Weber point. See, e.g., [16].
13These are Wilson loops in hyperplanes orthogonal to the
temporal direction.
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A. General formalism

As before, we begin with the case SUð3Þ. Let ~W3q be a

spatial Wilson loop in R3, at a fixed value of t, with the
path-ordered exponents Ui along the lines shown in Fig. 5.

In the limit Z ! 1 the expectation value of the loop is
given by

h ~W3qi � e�Z ~V3q ; (3.1)

where ~V3q is a pseudopotential.

Following [3,4], we take the following ansatz for the
five-dimensional geometry which turned out to be quite
successful in the quark-antiquark case

ds2 ¼ R2wðfdt2 þ d~x2 þ f�1dr2Þ; f ¼ 1� r4

r4T
;

(3.2)

where rT ¼ 1=�T. Note that it is nothing but a deforma-
tion of the black hole in AdS5.

To compute the spatial loop in question, we study a
configuration similar to that shown in Fig. 2: three funda-
mental strings, with the same orientation, such that the
i-string begins at Qi and ends on the baryon vertex in the
interior. The total action of the system is then given by the
sum of the string actions and the action for the vertex.
Because we are interested in the configuration independent
of z, for the worldsheet coordinates we can choose

zið�iÞ ¼ �i; yið�iÞ ¼ ai�i þ bi: (3.3)

With such a choice, the action of the i-string is then

Si ¼ Zg
Z 1

0
d�iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ x02i þ f�1r02i

q
: (3.4)

As before, for the baryon vertex we take the action of the
form

Svert ¼ ZV ðr0Þ: (3.5)

The boundary conditions on the fields are given by (2.8).
These determine the coefficients ai and bi in (3.3).
To find the configuration, we must extremize the total

action with respect to the worldsheet fields xið�iÞ and
rið�iÞ as well as with respect to the coordinates of the
vertex x0, y0, r0. The underlying symmetries of the model
provide a couple of first integrals that simplify the analysis.
Since the integrand in (3.4) does not depend explicitly on
�i, we have an integral

Ji ¼ wiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ x02i þ f�1r02i

q : (3.6)

Like in Sec. II A, translational invariance along the
x-direction yields another integral. Combining it with
(3.6) results in (2.11). Once this integral has been found,
the xi’s can be determined. As a result, we obtain (2.12).
Now, we extremize the action with respect to the loca-

tion of the baryon vertex. At finite temperature, Eqs. (2.13)
are changed as follows. There is a factor f�1 in front of ki.
Explicitly,

X3
i¼1

x0 � xi

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�1

0 ki

q ¼ 0;
X3
i¼1

y0 � yi

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�1

0 ki

q ¼ 0;

X3
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�1
0 þ k�1

i

q þ 1

g

f0
w
V 0ðr0Þ ¼ 0;

(3.7)

where f0 ¼ 1� r4
0

r4T
. By virtue of (3.6), the integral over

[0, 1] of �i is equal to

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

sð1þ f�1
0 kiÞ

s Z 1

0
dviv

2
i e

�ð1�v2
i Þ
�
1�

�
�

sr2T

�
2
v4
i

��1=2

�
�
1� 1

1þ f�1
0 ki

v4
i e

2�ð1�v2
i Þ
��1=2

: (3.8)

Here we have expressed the integration constant via the
values of the fields at �i ¼ 1.
Now we will present an expression for the energy

(pseudopotential) of the configuration. The computation
is just as above.14 At the end of the day, we have

~E ¼ V ð�Þ þ g

ffiffiffiffi
s

�

s X3
i¼1

Z 1

0

dvi

v2
i

�
e�v

2
i

�
1�

�
�

sr2T

�
2
v4
i

��1=2

�
�
1� 1

1þ f�1
0 ki

v4
i e

2�ð1�v2
i Þ
��1=2 � 1� v2

i

�
þ C;

(3.9)

0Q

Q

Q
1

2

3

z

Z

FIG. 5 (color online). A baryonic spatial Wilson loopW3q. The
points Qi are on the x-y plane.

14Indeed, our previous discussion in Sec. II A corresponds to
the case f ¼ 1.
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where C is a normalization constant. As a result, the
pseudopotential is given in parametric form by Eqs. (3.7),
(3.8), and (3.9).

B. Y-law and spatial string tension

Now we consider the analog of the Y-law for the pseu-
dopotentials. For this, we continue to assume thatV ðr0Þ is
a positive and regular function with a minimum at r0 ¼
1=

ffiffiffi
s

p
and singularities at the endpoints.

For this choice of V , we can now determine the
allowed values of r0. A simple analysis shows that

Eqs. (3.7) are consistent if r0 <minð1= ffiffiffi
s

p
; rTÞ or r0 >

maxð1= ffiffiffi
s

p
; rT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ki

4
p Þ. Since the latter yields complex

values of li, it must be omitted. We have thus

r0 � minð1= ffiffiffi
s

p
; rTÞ: (3.10)

What we have found is nothing but the bound of [3,4]. In
addition to (2.22), it now states that neither strings nor
baryon vertices may go behind the horizon (r ¼ rT). From
the point of view from [3], the bound gives rise to the two

walls: (1) If 1=
ffiffiffi
s

p
< rT, then the first wall, r0 ¼ 1=

ffiffiffi
s

p
,

dominates. This is interpreted as the low temperature

phase. (2) If rT < 1=
ffiffiffi
s

p
, then the second wall, r0 ¼ rT,

dominates. This is the high temperature phase. The phase

transition point is at rT ¼ 1=
ffiffiffi
s

p
. In terms of a critical

temperature and the parameter s, it is written as

Tc ¼ 1

�

ffiffiffi
s

p
: (3.11)

Having determined the allowed region for the parameter
r0, we are now ready to study li as a function of two
variables. To this end, we look for level curves in the
allowed region.15 A summary of our numerical results is
shown in Fig. 6. The first observation is that li takes large
values only in the vicinity of the lower right corner which
lies on the � axis at � ¼ 1 if T < Tc and at � ¼ sr2T if T >
Tc. Another important point is that at nonzero ki the length
li vanishes at f ¼ 0. This fact implies that in the high
temperature phase we should keep ki=f0 ! 0 to get large
lengths.

According to the numerical analysis, li may become
large only if ki is small and r0 saturates the bound (3.10).
It follows from (3.8) and (3.9), that in this limit the length
and the energy behave as

li ¼ � 1

2

ffiffiffiffi
�

s

s
lnð� ffiffiffiffi

ki
p þ kif

�1
0 ð1� f0Þ þ f0ð1� �ÞÞ1=�

þOð1Þ; (3.12)

~E ¼ � 1

2
ge�

ffiffiffiffi
s

�

s X3
i¼1

lnð� ffiffiffiffi
ki

p þ kif
�1
0 ð1� f0Þ

þ f0ð1� �ÞÞ1=� þOð1Þ; (3.13)

where �2 ¼ 4� 3
2 kif

�1
0 þ 3

2 ki � 11
2 f0 þ 1

2�ð17f0 � 8Þ �
2�2f0. From these formulas, it is evident that at large
distances the pseudopotential is given by

~E ¼ ~�3q

X3
i¼1

li þOð1Þ; (3.14)

with the spatial tension

~� 3q ¼
��3q if T � Tc;

�3qð TTc
Þ2 expfðTc

T Þ2 � 1g if T � Tc:
(3.15)

Here, �3q is the physical tension at zero temperature. The

temperature dependence of ~�3q is the same as that of [3,4]

found in the quark-antiquark case. This suggests that the
spatial string tension is also universal.
Finally, taking the limit ki ! 0 in the first two equations

of (3.7), we learn that Y is the Fermat point of the triangle
Q1Q2Q3. Thus, we have derived, in the case of the pseudo-
potential, the Y-law analogous to that of the quark
potentials.

C. Further remarks

We have here considered the five-dimensional frame-
work for studying the spatial string tension. However, if
one can describe the string theory construction, this gives
the baryon vertex as a wrapped five-brane. In this case, the
brane world volume isR�X, withR a spacelike curve in
the deformed AdS5.
It is worth noting that the temperature dependence of the

spatial tension is in good agreement with the lattice data for
T � 3Tc [3,4]. Note that at higher temperatures it is de-
termined by the �-function of a pure SUð3Þ gauge theory
[17]. Clearly, our model cannot reproduce logarithms as-

λ

kiki

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

λ

kiki

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

FIG. 6 (color online). Level curves for li ¼ rð�; kiÞ: in the low
temperature phase (left) at T ¼ Tc=

ffiffiffi
2

p
and in the high tempera-

ture phase (right) at T ¼ ffiffiffi
2

p
Tc. Larger values are shown lighter.

Here s ¼ 0:45 GeV2.

15As an illustration, we take ki � 2. We do not elaborate on
upper bounds for the ki’s, because it is irrelevant for our
purposes.
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sociated with the running coupling. Instead, it provides a
complementary description in the strong coupling regime.

The above analysis can be easily generalized to the case
SUðNÞ. Compared to the discussion of Sec. II D, the points
Qi are now on the x-y plane. Hence, we need not involve
any additional coordinate. The formal modification to be
made is to extend the upper bound of summation to N.
Thus, the temperature dependence of the spatial string
tension is given by (3.15) that is the desired result [4].

IV. CONCLUDING COMMENTS

We have so far discussed the configurations including a
single baryon vertex. In general, it is possible to consider
configurations with an arbitrary number of vertices: string
networks.

To give an idea of how this works, let us consider,
though only schematically, the tetraquark case that is the
four-quark potential V4q. We place quarks and antiquarks

at boundary points Qi and �Qi, respectively. These points
are endpoints of fundamental strings. There are two basic
configurations, as sketched in Fig. 7. The connected con-
figuration includes five strings beginning at the boundary
points and ending on the baryon and antibaryon vertices in
the interior of the five-dimensional space. The discon-
nected configuration, a ‘‘two-meson’’ state, includes two
strings stretched between the quarks and antiquarks.

For the tetraquark potential, there is a well-known ‘‘flip-
flop’’[18]. When the quarks and antiquarks are well sepa-
rated, the potential is given by Coulomb terms plus a term
which indicates the formation of the two-Y flux. On the
other hand, when the quarks and antiquarks are close, the
potential becomes a sum of two quark-antiquark potentials.
Clearly, these two possibilities correspond to our con-
nected and disconnected configurations.

From the point of view of ten-dimensional string theory,
it is very easy to understand why the disconnected con-
figuration dominates at small separations. The connected
configuration includes the baryon and antibaryon vertices
that is nothing but a brane-antibrane system in ten dimen-
sions. There is a critical separation for such a system. For
smaller separations, the open string spectrum consists of a

tachyon mode. The instability associated with the tachyon
represents a flow toward annihilation of the brane-
antibrane system.
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APPENDIX

The purpose of this appendix is to consider the two
limiting cases of Eqs. (2.19) and (2.20): short and long
distances.
We begin with the case of long distances. As in Fig. 3,

large l’s correspond to values of � near 1. For � ! 1, the
integrals in (2.19) and (2.20) can be evaluated to give16

l ¼ � 1

2

ffiffiffi
1

s

s
lnð1� �Þ þOð1Þ;

E ¼ � 3

2
eg

ffiffiffi
s

p
lnð1� �Þ þOð1Þ:

(A1)

Now, the parameter � is easily eliminated, and one gets

E ¼ �3qLmin þOð1Þ; (A2)

where Lmin ¼ 3l and �3q ¼ egs.

In a similar spirit, we can explore the short distance
behavior of E. For � � 1, this is simple because we need to
take the limit � ! 0 (see Fig. 3). Expanding the right-hand
sides of (2.19) and (2.20) in powers of �, at leading order
we obtain

l ¼ �1=2ðl0 þOð�ÞÞ; E ¼ ���1=2ðE0 þOð�1=2ÞÞ;

where l0 ¼
ffiffiffiffiffiffiffiffiffi
1��2

9s

q
F1½12 ; 34 ; 74 ; 1� �2�2 and E0 ¼

3g
ffiffiffi
s

p ð2F1½� 1
4 ;

1
2 ;

3
4 ; 1� �2� � �Þ. Combining these for-

mulas, we find

E ¼ �3
�3q

L
þOð1Þ; (A3)

where �3q ¼ l0E0=
ffiffiffi
3

p
.

The case � ¼ 1 can be treated similarly. Our previous
formulas for l and E become

l ¼ l1�þOð�2Þ; E ¼ Cþ E1�
1=2 þOð�3=2Þ;

where l1 ¼ 1=
ffiffiffiffiffiffi
3s

p
and E1 ¼ 6g

ffiffiffi
s

p
. This implies that

x

Q 

0

Q 

y

r

D

2

2

D

y

0 r

x

Q 

Q 

Q 

Q 

Q 
1

1

1

1

2

Q 
2

FIG. 7 (color online). Configurations used to calculate the
tetraquark potential.

16The integrals are dominated by v� 1, where they take the

form
R
dv=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bð1� vÞ þ cð1� vÞ2p

. The remaining integral
may be found in [19].
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E ¼ Cþ �L1=2 þOðLÞ; (A4)

where � ¼ E1=
ffiffiffiffiffiffiffi
3l21

4

q
.

For larger values of �, the analysis is a bit more involved
because of the lower bound (2.22). In this case we need to
take the limit � ! �� (see Fig. 3). Note that 	ð��Þ ¼ 0. A
simple but somewhat tedious calculation shows that in the
neighborhood of � ¼ �� the length l and the energy behave
as

l ¼ ð�� ��Þ1=2ðl�0 þOð�� ��ÞÞ;
E ¼ E�

0 þ E�
1ð�� ��Þ þOðð�� ��Þ2Þ;

with

l�0 ¼
1

4

ffiffiffiffiffiffiffiffi
	0

s��

s � ffiffiffiffiffiffi
�

��

s
erfð ffiffiffiffiffiffi

��
p Þ � 2

�
; E�

0 ¼ Eð��Þ;

E�
1 ¼

3

8
g	0e2��

ffiffiffiffiffiffi
s

�3�

s � ffiffiffiffiffiffi
�

��

s
erfð ffiffiffiffiffiffi

��
p Þ � 2e���

�
:

Here 	0 denotes the derivative of 	 at � ¼ ��. This implies
that at short distances the potential is given by

E ¼ E�
0 þ �L2 þOðL3Þ; (A5)

where � ¼ E�
1=3ðl�0Þ2.
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