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We consider QCD-like theories with one massless fermion in various representations of the gauge group

SUðNÞ. The theories are formulated on R3 � S1. In the decompactification limit of large rðS1Þ all these
theories are characterized by confinement, mass gap, and spontaneous breaking of a (discrete) chiral

symmetry (�SB). At small rðS1Þ, in order to stabilize the vacua of these theories at a center-symmetric

point, we suggest to perform a double-trace deformation. With this deformation, the theories at hand are at

weak coupling at small rðS1Þ and yet exhibit basic features of the large rðS1Þ limit: confinement and �SB.

We calculate the string tension, mass gap, bifermion condensates, and � dependence. The double-trace

deformation becomes dynamically irrelevant at large rðS1Þ. Despite the fact that at small rðS1Þ confine-
ment is Abelian, while it is expected to be non-Abelian at large rðS1Þ, we argue that small and large rðS1Þ
physics are continuously connected. If so, one can use small rðS1Þ laboratory to extract lessons about QCD
and QCD-like theories on R4.
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I. INTRODUCTION

Analyzing QCD and QCD-like theories on R3 � S1
provides new insights in gauge dynamics at strong cou-
pling and offers a new framework for discussing various
ideas on confinement. The radius of the compact dimen-
sion rðS1Þ plays a role of an adjustable parameter, an
obvious bonus and a welcome addition to a rather scarce
theoretical toolkit available in strongly coupled gauge
theories. As the circumference L of the circle S1 varies,
so does the dynamical pattern of the theory. For instance, at
L� ��1 in some instances the theory becomes weakly
coupled. On the other hand, in the decompactification limit
L� ��1, we recover conventional four-dimensional
QCD, with its most salient feature, non-Abelian
confinement.

A qualitative picture of confinement in terms of the
Polyakov line was suggested by Polyakov and Susskind
long ago [1,2]. Assume that the compactified dimension is
z. The Polyakov line (sometimes called the Polyakov loop)
is defined as a path-ordered holonomy of the Wilson line in
the compactified dimension

U ¼ P exp

�
i
Z L

0
azdz

�
� VUVy; (1)

where L is the size of the compact dimension while V is a
matrix diagonalizing U,

U ¼ diagfv1; v2; . . . ; vNg: (2)

According to Polyakov, non-Abelian confinement implies
that the eigenvalues vi are randomized: the phases of vi
wildly fluctuate over the entire interval ½0; 2�� so that

hTrUi ¼ 0: (3)

The exact vanishing of hTrUi in pure Yang-Mills is the
consequence of the unbroken ZN center symmetry in the
non-Abelian confinement regime. Introduction of dynami-
cal fermions (quarks) generally speaking breaks the ZN
center symmetry at the Lagrangian level.1 However, the
picture of wild fluctuations of the phases of vi’s remains
intact. Therefore, it is generally expected that h1N TrUi is
strongly suppressed even with the dynamical fermion fields
that respect no center symmetry, h1N TrUi � 0. This expec-

tation is supported by lattice simulations at finite tempera-
tures [5] demonstrating that hTrUi is very close to zero at
large L (low temperatures).
On the other hand, in QCD and QCD-like theories2 at

small L (high temperatures) the center-symmetric field
configuration is dynamically disfavored. In many instances
the vacuum is attained at h1N TrUi ¼ 1. In this case, the

effective low-energy theory is at strong coupling, and it is
as hard to deal with it as with QCD on R4. Typically, the
small- and large-L domains are separated by a phase
transition (or phase transitions). For instance, for S/AS
with evenN this is a Z2 phase transition. Numerical studies
show that for N � 3 there is a thermal phase transition
between confinement and deconfinement phases. Similar

1It is still an emergent dynamical symmetry in the multicolor
limit [3,4]; however, we limit ourselves to small N. In this paper
parametrically N is of order one.

2By QCD-like theories we mean non-Abelian gauge theories
without elementary scalars, e.g., Yang-Mills with fermions in the
two-index symmetric or antisymmetric representation, to be
referred to as S/AS; see below.
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numerical studies detect a temperature T� at which the

broken chiral symmetry of T ¼ 0 QCD gives place to
restored chiral symmetry of high-T QCD. The phase tran-
sition at T� is that of the chiral symmetry restoration (the

lower plot in Fig. 1).
In this case small-L physics says little, if anything, about

large-L physics, our desired goal. Wewould like to create a
different situation. We would like to design a theory which
(i) in the decompactification large-L limit, tends to con-
ventional QCD and its QCD-like sisters; (ii) at small L is
analytically tractable and has both confinement and chiral
symmetry breaking; and (iii) has as smooth transition
between the small- and large-L domains as possible (the
upper plot in Fig. 1). If this endeavor—rendering small-
and large-L physics continuously connected—is success-
ful, we could try to use small-L laboratory to extract
lessons about QCD and QCD-like theories on R4.

We will argue below that the goal can be achieved by
performing a so-called double-trace deformation of QCD
and QCD-like theories.3 To this end we add a nonlocal
operator

P½UðxÞ� ¼ 2

�2L4

X½N=2�
n¼1

dnjTrUnðxÞj2 for SUðNÞ (4)

to the QCD action

�S ¼
Z
R3

d3xLP½UðxÞ�; (5)

where dn are numerical parameters to be judiciously
chosen. The theories obtained in this way will be labeled
by asterisk. In minimizing Sþ �S the effect due to defor-
mation (4) is two-fold. First, it tends to minimize jTrUðxÞj.
Second it tends to maximize the distance between the
eigenvalues of U. It is necessary to have a polynomial of
order ½N=2� to force the eigenvalues of the Polyakov line to
be maximally apart from one another, i.e. to push the
theory towards the center-symmetric point depicted in

Fig. 2. Here ½x� stands for the integer part of x. To stabilize
the vacuum sufficiently close to the center-symmetric con-
figuration the coefficients dn must be large enough, pre-
sumably, dn � 1. Some technical details are discussed in
the Appendix.
At large L, the deformation switches off and has no

impact on the theory, i.e. QCD	 
 QCD. However, at
small L the impact is drastic. Given an appropriate choice
of dn ’s the deformation (5) forces the theory to pick up the
following set4 of the vacuum expectation values (VEVs):

vk ¼ e2�ik=N; k ¼ 1; . . . ; N; (6)

(or permutations); see Fig. 2.
If we define

eiaL � U; (7)

a ¼ X
Cartan gen

acT
c � diagfa1; a2; . . . ; aNg;

XN
k¼1

ak ¼ 0;

(8)

it is obvious that Eq. (6) implies

fLaig ¼ f�iL lnviðmod 2�Þg

¼
�
� 2�½N=2�

N
;� 2�ð½N=2� � 1Þ

N
; . . . ;

2�½N=2�
N

�
:

(9)

This means, in turn, that the theory is maximally Higgsed,

SU ðNÞ ! Uð1ÞN�1 (10)

and weakly coupled at L� ��1. The gauge bosons from
the Cartan subalgebra (to be referred to as photons) remain

FIG. 1 (color online). Quantum chromodynamics as a function
of compactified direction circumference before and after surgery
(QCD and QCD	, respectively). Lc is the point of a phase
transition.

FIG. 2. ZN symmetric vacuum fields vk.

3The double-trace deformations were previously discussed in
the context of gauge/string theory dualities in [6–9], as well as in
field theory [10–12]. 4More exactly, the set of VEVs will be very close to (6).
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classically massless, while the off-diagonal gauge bosons
(to be referred to as W-bosons) acquire large masses. The
effective low-energy dynamics is that of compact QED.
(See footnote 12, though.) It is not trivial. Dual photons
acquire exponentially small masses nonperturbatively
through the instanton-monopole mechanism [13,14]. The
mass gap generation in the dual description amounts to
linear Abelian confinement (at exponentially large dis-
tances). Chiral bifermion condensates are generated too
[15,16]. Thus, the dynamical patterns in the small- and
large-L domains do not seem to be that different from each
other. Details are different (e.g. Abelian vs non-Abelian
confinement), but gross features appear to be similar. It is
not unreasonable to expect that there is no phase transition
in L.

What is meant when we speak of Abelian/non-Abelian
confinement [4,17]? In the former case the gauge group
acting in the infrared (IR) and responsible for the flux tube
formation is Abelian (i.e. Uð1Þ � Uð1Þ . . . ). In the latter
case we deal with a non-Abelian group in the infrared.

The best-known example exhibiting both regimes is the
Seiberg-Witten solution [18] of a deformedN ¼ 2 super-
Yang-Mills theory. If the deformation parameter � is
small,

j�j � �;

the SUðNÞ gauge group is spontaneously broken down to
Uð1ÞN�1, and the confining string is a generalization of the
Abrikosov vortex [19]. In the opposite limit

j�j � �;

the breaking of SUðNÞ down to Uð1ÞN�1 does not occur.
The infrared dynamics is determined by SUðNÞ; the corre-
sponding flux tubes should be non-Abelian. Since the
theory is holomorphic in �, the Abelian and non-Abelian
confinement regimes are expected to be smoothly
connected.

Another example which should be mentioned (and
which is close in formulation to what will be presented
below) where it is believed that no phase transition in L
takes place is N ¼ 1 supersymmetric Yang-Mills (SYM)
theory on R3 � S1 [15,16,20–22].

We expect that QCD	 and QCD	-like theories are of this
type—there is no phase transition between the Abelian
confinement small-L and non-Abelian confinement
large-L domains.

Conjecture: The deformed one-flavor QCD-like theories
interpolate from small rðS1Þ to large rðS1Þ without phase
transitions.

Since the theories under consideration are nonsupersym-
metric we cannot back up this statement by holomorphy.
Thus, the smoothness conjecture is on a somewhat weaker
basis than in the Seiberg-Witten problem. However, argu-
ments to be presented below can be viewed as at least some

evidence in favor of the absence of the phase transition in
L. More evidence can (and should) be provided by lattice
studies.
In QCD-like theories with more than one flavor, chiral

symmetry breaking (�SB) occurring on R4 at strong cou-
pling produces N2

f � 1 Goldstone mesons. Needless to say,

it is impossible to get such Goldstones at weak coupling at
small L. However, if one considers theories with one
fermion flavor in the center-symmetric regime, there are
no obvious reasons for a chiral phase transition. The chiral
symmetry in such theories is discrete, and its spontaneous
breaking results in domain walls rather than Goldstones.
This phenomenon can show up both at strong and weak
couplings. In this paper we will limit ourselves to QCD-
like theories with a single flavor.
To be more exact, we will discuss in some detail SUðNÞ

Yang-Mills theory with one fermion in the fundamental
and two-index AS representations. Analysis of the two-
index S fermion essentially runs parallel to that of the AS
case. We will also dwell on SUðNÞ � SUðNÞ Yang-Mills
with the bifundamental fermion. The number of colorsN is
not assumed to be large. The large-N limit and the case of
fermions in the adjoint representation were treated else-
where [4,14].
Among other results, we will, in particular, argue that

many dynamical features of SUðNÞ � SUðNÞ orbifold
QCD are remarkably close to those of SYM theory. The
pattern of the chiral symmetry breaking, the mass gap, the
nonperturbative spectrum, the k-string tensions—all of the
above are demonstrated to coincide in these two theories.
The paper is organized as follows. In Sec. II we outline

our formulation of the problem and briefly review general
aspects of one-flavor QCD-like theories on R4 and R3 �
S1. We also review dual description of three-dimensional
Yang-Mills (the Georgi-Glashow model), and Polyakov’s
confinement. In Sec. III we consider the case of one
fermion in the fundamental representation and solve the
theory at small rðS1Þ. In Sec. IV we carry out the same
analysis in the SUðNÞ � SUðNÞ theory with one bifunda-
mental fermion (orbifold theory). In Sec. V we consider
Yang-Mills theory with one fermion in the two-index anti-
symmetric representation of SUðNÞ. Section VI is devoted
to � dependence. In Sec. VII we discuss how our results are
related to planar equivalence. Finally, Sec. VIII summa-
rizes our results and outlines some problems for future
investigation.

II. QCD AND QCD-LIKE THEORIES ON R4 AND
R3 � S1: GENERAL ASPECTS

We will consider one-flavor QCD-like theories with the
SUðNÞ gauge group and fermions in the following repre-
sentations:

R ¼ fF;AS; S;Adj;BFg; (11)
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where F stands for fundamental, AS and S are two-index
antisymmetric and symmetric representations, Adj stands
for adjoint, while BF for bifundamental. In all cases except
Adj we deal with the Dirac fermion field, while in the
adjoint case with the Majorana (Weyl) spinor. This is
nothing but supersymmetric Yang-Mills (SYM) theory. In
the BF case the gauge group is SUðNÞ � SUðNÞ, with the
fermion field being fundamental with respect to the first
SUðNÞ and antifundamental with respect to the second
SUðNÞ. For the adjoint fermions we will use the following
nomenclature. The theory with one Majorana flavor will be
referred to as SYM, while in the case of two or more flavors
we will speak of QCD(Adj).

The boundary conditions for fermions can be either
periodic ðSþÞ or antiperiodic ðS�Þ in the compactified
dimension. Yang-Mills theories with two-index fermions
received much attention lately in connection with planar
equivalence between such theories and SYM theory (see
[23] and references therein). At N ¼ 3 the AS theory is
equivalent to F.

Theoretically the most informative is N ¼ 1 SYM
theory. For periodic spin connection Sþ this theory has
unbroken center symmetry and broken discrete chiral sym-
metry for any rðS1Þ. In fact, the chiral condensate hTr��i
was exactly calculated long ago [15,24], both on R4 and
R3 � S1, and was shown to be totally independent of the
value of rðS1Þ. More recently, this theory was demonstrated
[16] to possess Abelian confinement at small L. Therefore,
there is no obvious obstruction for the L evolution to be
smooth. We know that at L larger than the strong scale
��1, the neutral sector observables inN ¼ 1 SYM theory
and QCD(AS/S/BF) are remarkably close and only differ
by mild Oð1=NÞ effects. However, the complex represen-
tation fermions break center symmetry at small rðS1Þ im-
plying that these theories become drastically different from
N ¼ 1 SYM theory. The double-trace deformation (5) is
designed to maintain this similarity at small rðS1Þ too. One
of the most intriguing findings of this paper is that the
analytical tractability of N ¼ 1 SYM theory in the
small-rðS1Þ limit is not necessarily a consequence of su-
persymmetry. The unbroken center symmetry is equally
important.

Briefly summarizing our knowledge of other one-flavor
QCD-like theories5 on R4 we can say the following. All
these theories are expected to exhibit:

(i) Mass gap: there are no massless particles in the
physical spectrum;

(ii) Non-Abelian confinement: the gauge group is not
Higgsed, chromoelectric flux tubes are formed be-
tween quarks and antiquarks, these flux tubes are
not stable, generally speaking, since the dynamical
quark pair production can break them. No color-

charged objects are present in the physical
spectrum;

(iii) Discrete chiral symmetry breaking6 for R ¼
fAS; S;BF;Adjg: The one-flavor QCD-like theories
on R4 possess an axial U(1) symmetry at the clas-
sical level. Only a discrete subgroup of it, Z2h, is
the symmetry of the quantum theory,

Z2h ¼ fZ2; Z2N�4; Z2Nþ4; Z2N; Z2Ng
for R ¼ fF;AS; S;BF;Adjg; (12)

respectively. Here 2h is the number of the fermion
zero modes in the instanton background. In all
cases but F the axial Z2h is spontaneously broken
down to Z2. Discrete symmetry breaking, unlike
that of the continuous symmetries, does not lead to
Goldstone bosons. Instead, the theory must possess
h isolated vacua.

The above picture follows from multiple lattice calcu-
lations, and supersymmetry-based and large-N methods.
In this work the double-trace deformation of QCDðRÞ

on S1 � R3 with small rðS1Þ is used to stabilize the theories
under consideration at (or, more exactly, very close to) a
center-symmetric point. At small rðS1Þ the non-Abelian
gauge group is Higgsed down to the maximal Abelian
subgroup, but neither confinement nor the above chiral
properties are lost. We will explicitly demonstrate confine-
ment, the discrete chiral symmetry breaking, and mass gap
generation.
On S1 � R3 the Yang-Mills Lagrangian with one fer-

mion flavor in the representation R takes the form

S ¼
Z
R3�S1

1

g2

�
1

2
TrF2

MNðxÞ þ i �� 6D�
�
; (13)

where � is the four-dimensional Dirac spinor in the rep-
resentation R ¼ fF;AS;Sg of the gauge group SUðNÞ,
FMN is the non-Abelian gauge field strength,7 and 6D ¼
�MDM ¼ �Mð@M þ iAMÞ is the covariant derivative acting
on representation R. For QCD(BF), the gauge group is
SUðNÞ � SUðNÞ and gauge field part of the action must be
replaced by

F2
MNðxÞ ! F2

1;MNðxÞ þ F2
2;MNðxÞ:

In this theory the fermion is in the bifundamental repre-
sentation. In terms of its Weyl components, the Dirac
fermions are decomposed as

5A part of this knowledge is folklore.

6For F representation, the anomaly-free Z2 is the fermion
number and cannot be spontaneously broken. The theory has a
unique vacuum.

7Throughout the paper we use the following notation:M, N ¼
1; . . . ; 4 are four-dimensional Lorentz indices while and �, � ¼
1; 2; 3 are three-dimensional indices. We normalize the Lie
algebra generators as TrtAtB ¼ 1

2�
AB.
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� ¼
�
�
� 

�
; (14)

where �,  are two-component (complex) Weyl spinors. In
three dimensions �,  represent two Dirac spinors.

We must use the Kaluza-Klein (KK) mode decomposi-
tion for all fields in the Lagrangian. If we discard all modes
other than zero we will arrive at a three-dimensional theory
with a gauge field, a scalar field in the adjoint, and two
three-dimensional spinors. The S1 � R3 reduction of R4

Yang-Mills does not quite lead to three-dimensional Yang-
Mills, but at first, we will ignore this nuance, to be dis-
cussed in detail later, and will briefly review the phe-
nomena that occur in three-dimensional Yang-Mills with
a scalar field in the adjoint (discarding fermions for the
time being).

Long ago Polyakov considered three-dimensional SU(2)
Georgi-Glashow model (a Yang-Millsþ adjoint Higgs
system) in the Higgs regime [13]. In this regime SU(2) is
broken down to U(1), so that at low energies the theory
reduces to compact electrodynamics. The dual photon is a
scalar field 	 of the phase type (i.e. it is defined on the
interval ½0; 2��)

F�� ¼ g23
4�

"��
ð@
	Þ; (15)

where g23 is the three-dimensional gauge coupling with

mass dimension ½g23� ¼ þ1. In perturbation theory the

dual photon 	 is massless. However, it acquires a mass
due to instantons (technically, the latter are identical to the
’t Hooft-Polyakov monopoles, after the substitution of one
spatial dimension by imaginary time; that’s why below we
will refer to them as to the instanton-monopoles). In the
vacuum of the theory, one deals with a gas of instantons
interacting according to the Coulomb law. The dual photon
mass is due to the Debye screening. In fact, the dual photon
mass is determined by the one-instanton vertex

m	 �m5=2
W g�33 e�S0=2; (16)

where S0 is the one-instanton action,

S0 ¼ 4�
mW

g23
; (17)

mW is the lightest W-boson mass; see below. In terms of
four-dimensional quantities S0 ¼ 8�2=ðNg2Þ. As a result,
the low-energy theory is described by a three-dimensional
sine-Gordon model,

L 	 ¼ g23
32�2

ð@�	Þ2 þ c1m
5
Wg
�4
3 e�S0 cos	; (18)

where c1 is an undetermined prefactor. The coefficient in
front of e�S0 cos	,

� � c1m
5
Wg
�4
3 ;

has mass dimension ½�� ¼ þ3. The combination �e�S0 is
the monopole fugacity.
This model supports a domain line8 (with 	 field vorti-

ces at the endpoints) which in 1þ 2 dimensions must be
interpreted as a string. Since the 	 field dualizes three-
dimensional photon, the 	 field vortices in fact represent
electric probe charges in the original formulation, con-
nected by the electric flux tubes which look like domain
lines in the dual formulation.
Now, if we switch on massless adjoint fermions, as in

[25], the mass gap generation does not occur in the
Polyakov model per se. This is due to the fact that the
instanton-monopoles acquire fermion zero modes which
preclude the potential term as in Eq. (18). Correspondingly,
the dual photons remain massless and the model no longer
supports domain lines. The linear confinement is gone.
This situation changes, however, if three-dimensional

Yang-Mills theory is obtained as a low-energy reduction
of a four-dimensional gauge theory on S1 � R3 with small
rðS1Þ. When the adjoint Higgs field is compact, as in Fig. 2,
in addition to N � 1 ’t Hooft-Polyakov monopole-
instantons there is one extra monopole [whose existence
is tied up to �1ðS1Þ � 0]. It can be referred to as the
Kaluza-Klein (KK) monopole-instanton.9 Each of these
monopoles carries fermion zero modes, hence they cannot
contribute to the bosonic potential at the level e�S0 . They
can and do contribute at the level e�2S0 .
Indeed, the bound state of the ’t Hooft-Polyakov

monopole-instanton with magnetic charge �i and antimo-
nopole with charge ��iþ1 has no fermion zero modes: its
topological charge coincides with that of the perturbative
vacuum. Hence, such a bound state can contribute to the
bosonic potential. Let

�0
aff ¼ f�1;�2; . . . ;�Ng (19)

denote the extended (affine) root system of SUðNÞ Lie
algebra. If we normalize the magnetic and topological
charges of the monopoles as

8Similar to the axion domain wall.
9The eigenvalues shown in Fig. 2 may be viewed as Euclidean

D2-branes. N split branes support a spontaneously broken Uð1ÞN
gauge theory, whose U(1) center of mass decouples, and the
resulting theory is Uð1ÞN�1. The N � 1 ’t Hooft-Polyakov
monopoles may be viewed as Euclidean D0 branes connecting
the eigenvalues ða1 ! a2Þ, ða2 ! a3Þ; . . . ; ðaN�1 ! aNÞ.
Clearly, we can also have a monopole which connects ðaN !
a1Þ which owes its existence to the periodicity of the adjoint
Higgs field, or equivalently, to the fact that the underlying theory
is on S1 � R3. Usually it is called the KK monopole. The
Euclidean D0 branes with the opposite orientation, connecting
ðaj  ajþ1Þ, j ¼ 1; . . . ; N, are the antimonopoles. This view-
point makes manifest the fact that the KK and ’t Hooft-Polyakov
monopoles are all on the same footing. The magnetic and
topological charges of the monopoles connecting ðaj $ ajþ1Þ
is �ðð4�=gÞ�j;

1
NÞ where the direction of the arrow is correlated

with the sign of the charges.

QCD-LIKE THEORIES ON R3 � S1: A SMOOTH . . . PHYSICAL REVIEW D 78, 065004 (2008)

065004-5



�Z
S2
F;

Z g2

32�2
FaMN ~FMN;a

�
¼

�
� 4�

g
�i;� 1

N

�
;

for �i 2 ��0
aff ;

(20)

where �i stands for the simple roots of the affine Lie
algebra then the following bound states are relevant:

�
4�

g
�i;

1

N

�
þ

�
� 4�

g
�iþ1;� 1

N

�

¼
�
4�

g
ð�i � �iþ1Þ; 0

�
: (21)

This pair is stable, as was shown in Ref. [14], where it is
referred to as a magnetic bion. Thus, we can borrow
Polyakov’s discussion of magnetic monopoles and apply
directly to these objects. The magnetic bions will induce a
mass term for the dual photons via the Debye screening,
the essence of Polyakov’s mechanism.

The vacuum field (9) of the deformed SUðNÞ theory
respects the (approximate) center symmetry ZN . This field
configuration breaks the gauge symmetry as indicated in
(10). Because of the gauge symmetry breaking, electrically
charged particles acquire masses. (By electric charges we
mean charges with regards to N � 1 ‘‘photons’’ of the low-
energy theory.) The set of N � 1 electric charges and
masses of N lightest W-bosons are

qW�
¼ g�; mW�

¼ 2�

NL
; (22)

where �i (i ¼ 1; . . . ; N) are the simple and affine roots of
the SUðNÞ Lie algebra [see Eq. (27)]. Note that N lightest
W-bosons are degenerate in the center-symmetric vacuum.
The remaining N2 � N charged W-bosons can be viewed
as composites of the above.

The stabilizing double-trace term (4) contributes to the
self-interaction of the physical (neutral) Higgs fields.
Assuming that all coefficients d are of order one, the
masses of these fields are Oðg=LÞ. For instance, for SU
(2) and SU(3) the physical Higgs masses are ðg ffiffiffiffiffi

d1
p Þ=L.

These masses are much lighter than those of theW-bosons
but much heavier than those of the fields in the effective
low-energy Lagrangian [dual photons; see Eq. (24) below].
The stabilizing double-trace term (4) also contributes to
corrections to theW-boson masses. They are expandable in
g2, i.e.

mW�
¼ 2�

NL
ð1þOðg2ÞÞ:

In the SUðNÞ gauge theory with an adjoint fermion on
R3 � S1, which is Higgsed according to (10), the bosonic
part of the effective low-energy Lagrangian is generated by
the pairs (21), and hence the potential is proportional to
e�2S0 , rather than e�S0 of the Polyakov problem. If we
introduce an ðN � 1Þ-component vector �,

� � ð	1; . . . :; 	N�1Þ; (23)

representingN � 1 dual photons of theUð1ÞN�1 theory, the
bosonic part of the effective Lagrangian can be written as

Lð	1; . . . :; 	N�1Þ ¼ g23
32�2

ð@��Þ2 þ cm6
Wg
�6
3 e�2S0

�XN
i¼1

cosð�i � �iþ1Þ�; (24)

where c is an undetermined coefficient and g3 is the three-
dimensional coupling constant

g23 ¼ g2L�1: (25)

In terms of four-dimensional variables, the magnetic bion
fugacity is

m6
Wg
�6
3 e�2S0 �m3

Wg
�6e�2S0 : (26)

We remind that �i (i ¼ 1; . . . ; N � 1) represent the mag-
netic charges of ðN � 1Þ types of the ’t Hooft-Polyakov
monopoles while the affine root

� N ¼ �
XN�1
i¼1

�i (27)

is the magnetic charge of the KK monopole. Note that the
bion configurations that contribute to the effective
Lagrangian have magnetic charges �i � �iþ1 and vertices
eið�i��iþ1Þ� , corresponding to a product of a monopole
vertex ei�i� with charge �i, and antimonopole vertex
e�i�iþ1� with charge ��iþ1 (without the zero mode in-
sertions). With the ZN-symmetric vacuum field (9) all
fugacities are equal.
Equation (24) implies that nonvanishing masses propor-

tional to e�S0 are generated for all 	’s. They are much
smaller than the masses in the Polyakov model in which

they are �e�S0=2.
There areN � 1 types of Abelian strings (domain lines).

Their tensions are equal to each other and proportional to
e�S0 . Linear confinement develops at distances larger than
eS0 .
Needless to say, the physical spectrum in the Higgs/

Abelian confinement regime is richer than that in the
non-Abelian confinement regime. If in the latter case
only color singlets act as asymptotic states, in the
Abelian confinement regime all systems that have vanish-
ing N � 1 electric charges have finite mass and represent
asymptotic states.
Note 1: For SU(2) and SU(3) Yang-Mills theories, the

double-trace deformation is a particularly simple mono-
mial
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P½UðxÞ� ¼ 2

�2L4
d1jTrUðxÞj2 for SUð2Þ; SUð3Þ: (28)

Note 2: One can be concerned that the deformation
potential is given in terms of multiwinding line operators,
and looks nonlocal. In the L�� 1 region where the
deformation is crucial, there is no harm in viewing the
deforming operator as ‘‘almost local’’ since we are con-
cerned with physics at scales much larger than the com-
pactification scale. In the decompactification limit where
the deformation is indeed nonlocal, it is not needed since
its dynamical role is negligible. If one wants to be abso-
lutely certain, one can insert a filter function as the coef-
ficient of the double-trace operator which shuts it off

exponentially �e�L2�2
at large L in order not to deal

with a nonlocal theory.

III. QCD WITH ONE FUNDAMENTAL FERMION

QCD(F) on R4 possesses a Uð1ÞV � Uð1ÞA symmetry, at
the classical level acting as

�! ei��; �! ei��5�:

Because of nonperturbative effects, only the anomaly-free
Z2 subgroup of the Uð1ÞA is the genuine axial symmetry of
the theory, the fermion number mod 2. This symmetry is
already a part of the vector Uð1ÞV symmetry and, hence,
cannot be spontaneously broken. However, a bifermion
condensate (which does not break any chiral symmetry)
is believed to exist on R4 as well as on S1 � R3 with
sufficiently large rðS1Þ.

The microscopic QCD Lagrangian also possesses the
discrete symmetries C, P, T, and continuous three-
dimensional Euclidean Lorentz symmetry SO(3). Thus,
the symmetries of the original theory are

U ð1ÞV � C� P� T: (29)

The double-trace deformation respects all these symme-
tries. (Otherwise this would explicitly contradict the claim
made in Sec. I.) Below, we will construct a low-energy
effective theory QCDðFÞ	 assuming that the double-trace
terms stabilize the theory in the center-symmetric vacuum.
As usual, the set of all possible operators that can appear in
the effective low-energy theory is restricted by the under-
lying symmetries (29).

Integrating out weakly coupled KK modes with non-
vanishing frequencies

j!nj � 2�n

L
; n � 0;

and adding the stabilizing deformation term (4) to the QCD
(F) Lagrangian, we obtain the QCDðFÞ	 theory. This is the
Yang-Millsþ compact adjoint Higgs system with funda-
mental fermions on R3.

The action is10

S ¼
Z
R3

L

g2

�
Tr

�
1

2
F2
�� þ ðD��Þ2 þ g2V½��

�

þ i ��ð	�ð@� þ iA�Þ þ i	4�Þ�
þ i � ð	�ð@� � iA�Þ � i	4�Þ 

�
; (30)

where  and � are the two-component three-dimensional
Dirac spinors which arise upon reduction of the four-
dimensional Dirac spinor �. Note that � and  have
opposite gauge charges, where � and � are fundamental
and �� and  are antifundamental. As usual, in Euclidean
space, there is no relation between barred and unbarred
variables, and they are not related to each other by
conjugations.
The potential V½�� which is the sum of the one-loop

potential and deformation potential has its minimum lo-
cated at (6) [or (9)]. The fermion contribution to the
effective one-loop potential involves terms such as TrUþ
TrU	. These terms explicitly break the ZN center symme-
try and slightly shift the position of the eigenvalues of hUi
from the minimum (6). However, this is a negligible
Oðg=dnÞ effect suppressed by a judicious choice of the
deformation parameters. Hence, we neglect this effect
below.11

There are N � 1 distinct U(1)’s in this model, corre-
sponding toN � 1 distinct electric charges. If we introduce
a quark� in the fundamental representation of SUðNÞ each
component�i (i ¼ 1; . . . ; N) will be characterized by a set
of N � 1 charges, which we will denote by q�i

,

q�i
¼ gHii; i ¼ 1; . . . ; N; (31)

where H is the set of N � 1 Cartan generators.
All fundamental fermions but two (one of each type  

and �) acquire masses due to gauge symmetry breaking.
These masses are of order of 2�=L and depend on whether
periodic or antiperiodic boundary conditions are imposed.
The fermions that remain massless in perturbation theory
are the ones corresponding to the vanishing (mod 2�)
eigenvalue of the algebra-valued compact Higgs field �;
see Eq. (9) [equivalently, v ¼ 1; see Eq. (6)].

10Our four-dimensional Dirac � matrix conventions are

�M ¼ f��; �4g; �� ¼ 	1 � 	�; �4 ¼ 	2 � I:
With this choice, the Dirac algebras in four and three dimensions
are f�M; �Ng ¼ 2�MN and f	�;	�g ¼ 2���. It will be conve-
nient to define �	M ¼ ð	�;�iIÞ � ð	�;	4Þ and 	M ¼ð	�; iIÞ � ð	�;�	4Þ.
11If the eigenvalues are separated not equidistantly, yet the
separations are nonvanishing for any pair, the gauge symmetry
breaking SUðNÞ ! Uð1ÞN�1 still takes place. In the nonpertur-
bative analysis below, this fact manifests itself as an unequal
action (or fugacity) for different types of monopoles. The
analysis in this latter case will not be qualitatively different.
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Thus, the low-energy effective Lagrangian includesN �
1 photons and two fermions. Their interactions (in particu-
lar, an induced mass gap) must arise due to nonperturbative
effects.12

A. Nonperturbative effects and the low-energy
Lagrangian

Nonperturbatively, there exist topologically stable,
semiclassical field configurations—instanton-monopoles.
If the adjoint Higgs field were noncompact, there would
be ðN � 1Þ types of fundamental monopoles. There is,
however, an extra KK monopole which arises due to the
fact that the underlying theory is formulated on a cylinder,
R3 � S1, or simply speaking, �ðxÞ is compact. The mag-
netic and topological charges of the (anti)monopoles asso-
ciated with root �i are given Eq. (20).

As follows from the explicit zero mode constructions of
Jackiw and Rebbi [26] and the Callias index theorem [27],
there are two fermion zero modes localized on one of theN
constituent monopoles. van Baal et al. demonstrated [28–
31] that as the boundary conditions of fermions vary in the
background with nontrivial holonomy, the zero modes hop
from a monopole to the next one. With fixed boundary
conditions, they are localized, generally speaking, on a
particular monopole.13

The above implies that one of the monopole-induced
vertices has two fermion insertions (the one on which the
fermion zero modes are localized) and other N � 1 ele-
mentary monopoles have no fermion insertions (at the level
e�S0). The set of the instanton-monopole-induced vertices
can be summarized as follows:

fe�S0ei�1�� ; e�S0ei�j� ; j ¼ 2; . . . ; Ng; (32)

plus complex conjugate for antimonopoles. Thus, the lead-
ing nonperturbatively induced interaction terms in the
effective Lagrangian are

SQCDðFÞ	 ¼
Z
R3

�
g23

32�2
ð@��Þ2 þ 1

g23
i ����ð@� þ iq�A�Þ

þ e�S0ð ~�ei�1�� 

þ�
X

�j2ð�0
aff
��1Þ

ei�j� þ H:c:

��
; (33)

where ~� is dimensionless constant. Note the noncanonical
normalization of the bosonic and fermionic terms. This
choice for fermions will ease the derivations of certain
physical quantities. It is clearly seen that in the infrared
description of QCDðFÞ	, we must deal not only with the
dual photons, but also with electrically charged fermions.
The three-dimensional effective Lagrangian respects the

symmetries (29) of the microscopic (four-dimensional)
theory. In particular, the fermion bilinears such as ���
(allowed by Uð1ÞV and the Lorentz symmetry of the
three-dimensional theory) are noninvariant under parity
(see appendix in Ref. [25]) and, hence, cannot be gener-
ated. On the other hand, h� i � 0 can and is generated.
One can check that, up to order e�2S0 , the Lagrangian (33)
includes all possible operators allowed by the symmetries
(29).
In the above Lagrangian, all operators are relevant in the

renormalization-group sense. The fugacity has mass di-
mension þ3. If the kinetic term for fermion is canonically
normalized, the covariant photon-fermion interaction and
instanton-monopole-induced term with the fermion inser-
tion has dimensionþ1. Which operators will dominate the
IR physics? The answer to this question requires a full
renormalization-group analysis of all couplings. A prelimi-
nary investigation (along the lines of Ref. [33]) shows that
quantum corrections in the running of the couplings are
tame and do not alter the fact that the instanton-monopole
vertex terms are the most relevant in the IR of QCDðFÞ	.
The N � 1 linearly independent instanton-monopole

vertices render all the N � 1 dual photons massive, with

masses proportional to e�S0=2. Thus, the dual scalars are
pinned at the bottom of the potential

�e�S0
XN
j¼2

cos�j�: (34)

As a result, the would-be massless fermions will also
acquire a mass term of the type

~�e�S0� : (35)

The fermion mass is proportional to e�S0 . Hence it is
exponentially smaller than the dual photon mass

�e�S0=2. Note that the fermion mass term is not associated
with the spontaneous breaking of chiral symmetry. This
circumstance, as well as the hierarchy of masses between
the photons and fermions, is specific to one fundamental
fermion and will change in the case of the two-index
fermions.

12It is important to distinguish this theory from the case of the
noncompact adjoint Higgs field, which is the Polyakov model
with massless (complex-representation) fermions. Both theories
have identical gauge symmetry breaking patterns: SUðNÞ !
Uð1ÞN�1. In perturbation theory, both theories reduce (by neces-
sity) to compact QED3 with fermions. However, it is possible to
prove that the latter theory lacks confinement since photons
remain massless nonperturbatively. This implies that if the
symmetries at the cutoff scale are not specified, the question
of confinement in compact QED3 with massless fermions is
ambiguous. The issue will be further discussed in a separate
publication.
13More precisely, the Callias index applies to R3. We need an
index theorem for the Dirac operators in the background of
monopoles on R3 � S1. Such a generalization of the Callias
index theorem was carried out in the work of Nye and Singer
[32]. For a clear-cut lattice realization of the fermion zero modes
explicitly showing on which monopole they are localized, see
Ref. [28].
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Since all N � 1 dual photons become massive, a probe
quark Qi of every type (i ¼ 1; . . . ; N) will be connected to
its antiquark by a domain line/string with the tension14

T � g3�1=2e�S0=2: (36)

The string between Q1 and �Q1 is easily breakable due to
pair production of �’s and  ’s. In other words, the external
chargeQ1 will be screened by the dynamical fermions with
charge q�1

. The strings between Qi and �Qi (with i ¼
2; . . . ; N) can break with an exponentially small probability
due to pair creation of the KK modes of�i. This amounts,
of course, to the conventional statement about largeWilson
loops C,

�
1

N
TrWðCÞ

	
� 1

N

XN
i¼1

�
ei
R
C
HiiA

	

¼ 1

N
e�PðCÞ þ

�
1� 1

N

�
e�TAreað�Þ; (37)

where  is the coefficient of the perimeter law, PðCÞ is the
perimeter of the loop C, the boundary of a surface �.

Remark: The product of the instanton-monopole-
induced vertices is proportional to the Belyavin-
Polyakov-Schwarz-Tyupkin (BPST) four-dimensional in-
stanton vertex [34],

ðe�S0ei�1�� ÞYN
j¼2
ðe�S0ei�j�Þ

� e�ð8�2=g2Þ ��ð1þ �5Þ�exp

�
i
XN
i¼1

�i�

�

¼ e�ð8�2=g2Þ ��ð1þ �5Þ�: (38)

This is consistent with the fact that the instanton-
monopoles can be viewed as the BPST instanton constitu-
ents. In Eq. (38) we used the fact that the sum of the N
constituent instanton-monopole actions is in fact the BPST
instanton action, and the sum of the magnetic and topo-
logical charges of the constituent monopoles gives the
correct quantum numbers of the BPST R4 instanton,

XN
i¼1

�Z
F;

Z g2

32�2
FaMN ~FMN;a

�
i
¼ ð0; 1Þ; (39)

see Eq. (20).

B. Bifermion condensate

As stated earlier, one-flavor QCD formulated on R4 has
no chiral symmetry whatsoever. The axial anomaly reduces
the classical Uð1ÞA symmetry to Z2. A bifermion conden-
sate exists and breaks no chiral symmetry. We can evaluate
the value of the chiral condensate in QCDðFÞ	 in the small
rðS1Þ regime. At large rðS1Þ (strong coupling) we know,

from volume independence, that the condensate must get a
value independent of the radius. Let b0 denote the leading
coefficient of the � function divided by N,

b0 ¼ 1

N

�
11N

3
� 2Nf

3

�







Nf¼1
¼ 11

3
� 2

3N
: (40)

At weak coupling, L�� 1, the bifermion condensate in
QCDðFÞ	 receives its dominant contribution from the
instanton-monopole with the fermion zero modes inser-
tion, the first term in the second line in Eq. (33). The
condensate is proportional to

h� i � e�S0 � e�ð8�2=g2NÞ: (41)

Above the scale L�� 1 we expect the bifermion conden-
sate to be L-independent and saturate its value on R4,

h ���i �
�
�3ð�LÞb0�3 ¼ �3ð�LÞð2=3Þð1�N�1Þ; L�� 1;
�3ð1þOð 1�LÞÞ; L� * 1:

(42)

The above formula is testable on lattices.
It is natural to believe the saturation scale is associated

with the transition from weak to strong coupling and
restoration of the spontaneously broken gauge symmetry
Uð1ÞN�1 ! SUðNÞ. This is the regime where the theory
passes from the Abelian to non-Abelian confinement. The
effective theory (33) which is only valid at L�� 1 loses
its validity when this parameter becomes of order one.
Nonetheless, we do not expect phase transitions (or rapid
crossovers) in the parameter L�. We expect physics of the
two regimes to be continuously connected.
It would be immensely useful to study this passage on

lattices. In the strong coupling regime, the volume depen-
dent factors enter in observables only via subleading
Oð1=ðL�ÞÞ terms.

IV. QCDWITH ONE BIFUNDAMENTAL FERMION

Consider orbifold QCD, a gauge theory with the
SUðNÞ1 � SUðNÞ2 gauge group, and one bifundamental
Dirac fermion, defined on R3 � S1,

SQCDðBFÞ ¼
Z
R3�S1

1

g2
Tr

�
1

2
F2
1;MNðxÞ þ

1

2
F2
2;MNðxÞ

þ i �� 6D�
�
; (43)

where

DM� ¼ @M�þ iA1;M�� i�A2;M:

The theory possesses a Uð1ÞV � ðZ2NÞA � ðZ2ÞI symmetry
which acts on the elementary fields as14This is also similar to the axion domain wall.
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Uð1ÞV : �! ei��;  ! e�i� ;

ðZ2NÞA: �! eið2�=2NÞ�;  ! eið2�=2NÞ ;

ðZ2ÞI: �$  ; A�;1 $ A�;2:

(44)

The ðZ2NÞA symmetry is the anomaly-free subgroup of the
axial Uð1ÞA. It is a folklore statement that with sufficiently
large rðS1Þ, the chiral symmetry is broken down to Z2 by
the formation of the bifermion condensate,

h ���i ¼ 4N�3 cos

�
2�k

N

�
; k ¼ 0; 1; . . . ; N � 1;

(45)

markingN isolated vacua in the same manner as inN ¼ 1
SYM theory.

QCD(BF) on R4 is believed to confine in the same way
as N ¼ 1 SYM theory, possesses a mass gap, and N
isolated vacua. We would like to shed some light on these
issues by studying QCDðBFÞ	 with small rðS1Þ.

A. Deformed orbifold QCD

On S1 � R3 we can deform original QCD(BF)

S ¼
Z
R3

L

g2
Tr

�
1

2
F2
1;�� þ

1

2
F2
2;�� þ ðD��1Þ2 þ ðD��2Þ2

þ g2V½�1;�2� þ i ��ð	�ð@��þ iA1;��� i�A2;�Þ
þ i	4ð�1�� ��2ÞÞ
þ i � ð	�ð@� � iA1;� þ i A2;�Þ
� i	4ð�1 �  �2ÞÞ

�
; (46)

by adding double-trace terms (4) in such a way that the
center symmetry is not broken in the vacuum. The center
symmetry stability at weak coupling implies that the vac-
uum of the theory is located at

Lh�1i ¼ Lh�2i ¼ diag

�
� 2�½N=2�

N
;� 2�ð½N=2� � 1Þ

N
; . . . ;

2�½N=2�
N

�
; ðmod 2�Þ; (47)

cf. Equation (9). Consequently, in the weak coupling re-
gime, the gauge symmetry is broken,

½SUðNÞ�1 � ½SUðNÞ�2 ! ½Uð1ÞN�1�1 � ½Uð1ÞN�1�2: (48)
In perturbation theory 2ðN � 1Þ photons remain mass-

less while all off-diagonal gauge fields acquire masses in
the range ½2�NL ; 2�L �. The three-dimensional mass terms of

the bifundamental fermions are determined by

XN
i;k¼1
ða1i � a2kÞ ��k

i �4�
k
i ;

where a1k, a
2
k are the eigenvalues of �1 and �2; see

Eq. (47). The diagonal components of the bifundamental
fermions

ð�ik;  ki Þi¼k
remain massless to all orders in perturbation theory; we
will refer to them as �i,  i (i ¼ 1; . . . ; N). Other compo-
nents get masses �2�ði� kÞ=L, and decouple in the low-
energy limit, and so do the W-bosons.

The bifundamental fermions are electrically charged
under the unbroken ½Uð1ÞN�1�1 � ½Uð1ÞN�1�2 in a corre-
lated fashion. If in Sec. III the electric charges of each
fermion were characterized by an ðN � 1Þ-dimensional
vector q�i

, now they are characterized by concatenation

of two such N � 1 dimensional electric charge vectors

q �i ¼ gðþHii;�HiiÞ; q i ¼ gð�Hii;þHiiÞ;
i ¼ 1; . . . ; N:

(49)

Thus, the low-energy effective Lagrangian in perturbation
theory is

Spert th ¼
Z
R3

1

g23

�XN�1
a¼1

�
1

4
Fa;21;�� þ

1

4
Fa;22;��

�

þXN
i¼1

i ��i��ð@� þ iHiiA
1
� � iHiiA

2
�Þ�i

�
: (50)

The mass gap must arise due to nonperturbative effects, as
in Sec. III. We will identify and classify nonperturbative
effects induced by topologically nontrivial field configura-
tions momentarily.

B. Nonperturbative low-energy effective Lagrangian

Nonperturbatively, the gauge symmetry breaking pattern
(47) implies the existence of N types of instanton-
monopoles associated with each gauge group. The mag-
netic and topological charges of these objects are

�Z
1
F;

Z
1

g2

32�2
Fa ~Fa;

Z
2
F;

Z
2

g2

32�2
Fa ~Fa

�

¼
� ð� 4�

g �i;� 1
N ; 0; 0Þ ;

ð0; 0;� 4�
g �i;� 1

NÞ :
(51)

Consequently, each monopole generates two fermion zero
modes, and the instanton-monopole vertices are
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M 1
i :

�
þ 4�

g
�i;þ 1

N
; 0; 0

�
: eþi�i�1ð�i i þ �iþ1 iþ1Þ;

�M1
i :

�
� 4�

g
�i;� 1

N
; 0; 0

�
: e�i�i�1ð ��i � i þ ��iþ1 � iþ1Þ;

M2
i :

�
0; 0;þ 4�

g
�i;þ 1

N

�
: eþi�i�2ð�i i þ �iþ1 iþ1Þ;

�M2
i :

�
0; 0;� 4�

g
�i;� 1

N

�
: e�i�i�2ð ��i � i þ ��iþ1 � iþ1Þ;

(52)

where �1 is the set of dual photons for ½Uð1ÞN�1�1 while
�2 is the set of dual photons for ½Uð1ÞN�1�2. In full analogy
with the SYM theory, the 2N fermion zero modes of the
BPST instanton split into N pairs: each instanton-
monopole supports two fermion zero modes. This is a
natural consequence of the Callias index theorem. (The
same conclusion was also reached by Tong [35]).

As a result, the instanton-monopole contributions give
rise to the following terms in the effective Lagrangian:

�LQCDðBFÞ	 ¼ const� g�6e�S0 X
�i2�0

aff

ððei�i�1 þ ei�i�2Þ

� ð�i i þ �iþ1 iþ1Þ þ H:c:Þ: (53)

At the level e�S0 the instanton-monopole effects in
QCDðBFÞ	 cannot provide mass terms for the dual photons.
This situation is completely analogous to that in
QCDðAdjÞ	 where all instanton-monopoles have fermion
zero modes and, hence, are unable to contribute to the
bosonic potential for the dual photons �1 and �2.

The situation drastically changes at order e�2S0 . There
are nontrivial effects which render the long-distance three-
dimensional fields massive, implying confinement. An
easy way to see that this is the case is to examine the
symmetries of the theory.

Since Uð1ÞV � ðZ2NÞA � ðZ2ÞI is the symmetry of the
microscopic theory, it must be manifest in the low-energy
effective theory in three dimensions. The invariance of the
instanton-monopole vertex under Uð1ÞV and ðZ2ÞI is mani-
fest. At the same time, the ðZ2NÞA invariance requires
combining the axial chiral symmetry with the discrete shift
symmetry of the dual photon

ðZ2NÞA: � ! eið2�=NÞ� ; �1;2 ! �1;2 � 2�

N
�;

(54)

where � is the Weyl vector defined by

� ¼ XN�1
j¼1

�k; (55)

and �k stand for the N � 1 fundamental weights of the
associated Lie algebra, defined through the reciprocity
relation

2�i�j

�2
i

¼ �i�j ¼ �ij: (56)

Using the identities

� N� ¼ �ðN � 1Þ; �i� ¼ 1; i ¼ 1; . . . ; N � 1;

(57)

the vertex operator

ei�i�1;2 ! ei�ið�1;2�ð2�=NÞ�Þ ¼ e�ið2�=NÞei�i�1;2 ;

i ¼ 1; . . . ; N;
(58)

rotates in the opposite direction compared with the fermion
bilinear, by the same amount. Hence, the instanton-mono-
pole-induced vertex

ðei�i� 1 þ ei�i�2Þð�i i þ �iþ1 iþ1Þ

is invariant under the discrete chiral symmetry.
The discrete shift symmetry (54), as opposed to the

continuous shift symmetry, cannot prohibit mass term for
the dual photons. At best, it can postpone its appearance in
the e�S0 expansion. Hence, such a mass term must be, and
is, generated.
As in SYM theory, at level e�2S0 there exist magneti-

cally charged bound monopole-antimonopole pairs with no
fermion zero modes. These stable pairs were referred to as
magnetic bions in [16]. In QCDðBFÞ	, the bions come in a
wider variety than in SYM theory. The analogs of the
magnetic bions that appear in SYM theory are the pairs

of the type M1
i and �M1

i�1 (and 1$ 2). Despite the
repulsive Coulomb interactions between these two mono-
poles they form bound states due to the fermion exchange
between them, with the combined effect

� 1

r
þ logr:

The corresponding bound state is stable.
Since the fermion zero modes in QCDðBFÞ	 communi-

cate with the monopoles in both gauge groups, the fermion
zero mode exchange also generates logarithmic attractive
interactions between the monopoles M1

i in the first gauge

group and the antimonopoles �M2
i�1 in the second. Note

that there is no Coulomb interaction between these two
since the first instanton-monopole is charged under the
½Uð1ÞN�1�1 gauge subgroup of ½Uð1ÞN�1�1 � ½Uð1ÞN�1�2
while the second is charged under ½Uð1ÞN�1�2. Thus, the
stable magnetic bions in QCDðBFÞ	, their magnetic and
topological charges, and the vertices they generate are
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B1
i :

�
4�

g
ð�i��i�1Þ;0;0;0Þ: c1e�2S0eið�i��i�1Þ�1

B2
i :

�
0;0;

4�

g
ð�i��i�1Þ;0

�
: c1e

�2S0eið�i��i�1Þ�2

B12
i;i :

�
4�

g
�i;

1

N
;�4�

g
�i;� 1

N

�
: c2e

�2S0eið�i�1��i�2Þ

B12
i;i�1:

�
4�

g
�i;

1

N
;�4�

g
�i�1;� 1

N

�
: c2e

�2S0eið�i�1��i�1�2Þ

B12
i;iþ1:

�
4�

g
�i;

1

N
;�4�

g
�iþ1;� 1

N

�
: c2e

�2S0eið�i�1��iþ1�2Þ:

(59)

The vertices for antibions (such as �B1
i ) are the complex

conjugates of the ones given above. The above bions are
stable due to the attractive fermion pair exchange between
their constituents. Note that the constituents of the bions
B1
i and B2

i , unlike the ones of B12
i;i , B

12
i;iþ1, B12

i;i�1 need to

compete with the Coulomb repulsion for stability. Thus, in
principle, there are no (symmetry or microscopic) reasons
for the prefactor of the first two to be the equal to the ones
of the latter. Therefore, we assume they are not.

As a result, we obtain the bion-induced bosonic potential
in QCDðBFÞ	 in the form

Vbionð�1;�2Þ ¼ m3
Wg
�6e�2S0

XN
i¼1
½c1ðeið�i��i�1Þ�1

þ eið�i��i�1Þ�2Þ þ c2ð2eið�i�1��i�2Þ

þ eið�i�1��i�1�2Þ þ eið�i�1��iþ1�2ÞÞ� þ H:c:

(60)

In full analogy with the superpotential in SYM	 theory, it is
convenient to define a prepotential in QCDðBFÞ	. To this
end we introduce the function

W ð�1;�2Þ ¼ mWg
�4e�S0

X
�i2�aff

0

ðei�i�1 þ ei�i�2Þ; (61)

to be referred to as prepotential. Note that the prepotential,
as well as its derivatives, transform homogeneously under
the Z2N shift symmetry (54),

Z2N: W ð�1;�2Þ ! e�ið2�=NÞW ð�1;�2Þ:
Now, it is easy to express the bion-induced potential in
terms of the prepotential in the form which is manifestly
invariant under the Z2N shift and ðZ2ÞI interchange sym-
metries,

Vð�1;�2Þ ¼ g23
XN�1
a¼1

�
cþ










@W
@	1;a

þ @W
@	2;a










2

þ c�









@W
@	1;a

� @W
@	2;a










2
�
: (62)

We are finally ready to present the low-energy effective

theory for QCDðBFÞ	,

LQCDðBFÞ	 ¼ g23
32�2

½ð@�1Þ2 þ ð@�2Þ2� þ Vbionð�1;�2Þ

þ 1

g23

XN
i¼1

i ��i��ð@� þ iHiiA
1
� � iHiiA

2
�Þ�i

þ cg�6e�S0
X

�i2�0
aff

ððeþi�i�1 þ eþi�i�2Þ

� ð�i i þ �iþ1 iþ1Þ þ H:c:Þ: (63)

Like in other QCD-like theories with complex-
representation fermions [such as QCDðF=AS=SÞ	], but
unlike the ones with real-representation fermions [such
as SYM theory or QCD(Adj)], we have both the electric
and magnetic couplings. The Lagrangian (63) includes all
relevant terms allowed by symmetries up to Oðe�3S0Þ.
The important question at this stage is which operators

in our effective Lagrangian (33) are most important at large
distances in the renormalization-group sense. Apparently,
the fugacity (the coefficient in front of the bion vertices)
has dimensionþ3 and is dominant in the IR. The quantum-
mechanical corrections are negligible. This suggests that in
the IR the effects produced by magnetically charged bions
are most relevant.

C. Vacuum structure and chiral symmetry realization

The low-energy effective theory respects all symmetries
of the underlying gauge theory Uð1ÞV � ðZ2NÞA � ðZ2ÞI
and C, P, T. These symmetries may be spontaneously
broken. By studying dynamics of the effective theory we
demonstrate that the breaking pattern is

U ð1ÞV � ðZ2NÞA � ðZ2ÞI ! Uð1ÞV � ðZ2ÞA � ðZ2ÞI;
(64)

leading to the occurrence of N isolated vacua.
In Eq. (63) the Z2N chiral symmetry is entangled with

the shift symmetry of the dual photon (54), just like in
SYM theory. There are N isolated vacua in the ðZ2ÞI
invariant subspace related to each other by the action of
the ZN shift symmetry. These vacua are located at

� 1 ¼ �2 ¼
�
0;
2�

N
;
4�

N
; . . . ;

2ðN � 1Þ�
N

�
� (65)

in the field space. The choice of a given vacuum sponta-
neously breaks the ZN shift symmetry and, hence, the
chiral symmetry.
Let j�ki denote one of the N vacuum states (k ¼

1; . . . ; N). Following the techniques of [15,22], we observe
that the chiral condensate is proportional to the monopole-
induced term e�S0 . The renormalization-group � function
of QCDðBFÞ	 is identical to that of SYM theory up to
Oð1=N2Þ corrections. The first coefficients are just identi-
cal. Thus,
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e�S0 � e�ð8�2=g2NÞ ¼ �3ð�LÞb0�3; (66)

where b0 denotes the leading coefficient of the � function
divided by N. At one-loop order in QCDðBFÞ	

b0 ¼ 3:

Thus, the chiral condensate in QCDðBFÞ	 is
h�kjTr ���j�ki ¼ 2N�3eið2�k=NÞ þ H:c: (67)

There is no L dependence in the condensate in QCDðBFÞ	
at one-loop level, just like in SYM theory.

D. Mass gap and confinement

The small fluctuation analysis around any of the N
minima is sufficient to see that there are no massless modes
in the infrared description of the QCDðBFÞ	. The choice of
the vacuum breaks the discrete chiral symmetry rendering
all fermions massive. The bion-induced potential makes all
2ðN � 1Þ photons massive. This shows that every particle-
like excitation must have a finite massm� e�S0 . There are
no physical states in the mass range ½0; mÞ in the physical
Hilbert space of the theory. Since the global ZN center
group symmetry and ðZ2ÞI interchange symmetry are un-
broken, the physical states can be expressed as the mutual
eigenstates of these symmetries. The Fourier transform

	�;k ¼ ð	1;k � 	2;kÞ � 1ffiffiffiffi
N
p XN

j¼1
eið2�jk=NÞHjjð�1 � �2Þ

(68)

diagonalizes the mass matrix. The masses of the dual
photons are proportional to expð�S0Þ. More exactly,15

m	�;k ¼
ffiffiffiffiffiffi
c�
p

�ð�LÞ2
�
2 sin

�k

N

�
2
; �L� 1: (69)

Any probe charge one might consider is coupled to a
number of 	 fields. The thickness of the domain line
(string) attached to the probe charge is determined by the
inverse mass of the lightest 	 field (k ¼ 1). It is worth
noting that the string has a substructure corresponding to
the contribution of the next-to-lightest, next-to-next-to-
lightest and so on 	’s. The fermion masses are of the
same order of magnitude in the same regime, as seen
from Eq. (53),

m�i
¼ c�ð�LÞ2: (70)

Now we are ready to discuss strings in QCDðBFÞ	 at

small L. Let us consider a heavy probe quarkQi1...im
j1...jn

and its

antiquark Qi1...im
j1...jn

in a color-singlet state at an exponentially

large distance from each other. Ifm � n the string (domain
line) forming between these probe objects is unbreakable.

Light dynamical fermions of the low-energy theory cannot
screen the electric charges of the probe quarks. However, if
m ¼ n some strings (i.e. those attached to the probes for
which every index i is equal to some j) will break through
pair creation of light dynamical fermions. Assume jn�
mj � k � 0. Then the tensions of these unbreakable k
strings can be found by calculating the tensions of the
domain lines supported by the theory (63). These tensions
are of the order of �2ð�LÞ in the �L� 1 Abelian con-
finement regime while at �L * 1, in the non-Abelian
confinement regime, they tend to �2 times a numerical
coefficient.
To the best of our knowledge, this is the first analytic

demonstration of �SB, mass gap generation, and linear
confinement in QCDðBFÞ	. This theory exhibits all ex-
pected nontrivial features of QCD(BF) on R4.

V. QCD WITH ONE AS FERMION

Nowwewill discuss QCDwith one antisymmetric Dirac
fermion16 on R3 � S1. The theory possesses a Uð1ÞV �
Z2N�4 symmetry, Z2N�4 being the anomaly-free subgroup
of the axial Uð1ÞA. The action of the symmetry on the
elementary fields is as follows:

Uð1ÞV : �! ei��;  ! e�i� ;

ðZ2N�4ÞA: �! eið2�=ð2N�4ÞÞ�;  ! eið2�=ð2N�4ÞÞ :
(71)

It is believed that for sufficiently large rðS1Þ, the chiral
symmetry is broken down to Z2 by the bifermion conden-
sate h �i � 0

h ���i � N�3eið2�k=ðN�2ÞÞ þ H:c:

resulting in N � 2 isolated vacua. The QCD(AS) theory on
R4 must confine the same way asN ¼ 1 SYM theory and
possess a mass gap. Since the discussion is quite similar to
the case of QCDðBFÞ	, we will be brief.

A. Deformed orientifold QCD

In the small rðS1Þ regime, the gauge symmetry is broken,
SUðNÞ ! Uð1ÞN�1. Without loss of generality we can take
N ¼ 2mþ 1. The case N ¼ 2m can be dealt with in a
similar manner.
In perturbation theory the massless fields are N � 1

diagonal photons and N � 2 charged fermions. The N2 �
N off-diagonal W-bosons and N2 � 2N þ 2 fermions ac-
quire masses in the range ½2�LN ; 2�L Þ and decouple from

infrared physics.
The AS fermions �ij acquire three-dimensional mass

terms given by

15Powers of g and numerical factors are omitted here and in
similar expressions below.

16Discussion of QCD with the symmetric representation fer-
mion is parallel.
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XN
i;j¼1
ðai þ ajÞ ��½ij��4�½ij�;

where ak’s are given in Eq. (9). Hence,

mij ¼ 2�

LN
ð½iþ j� mod NÞ:

Thus, the fermion components �i;N�i remain massless to

all orders in perturbation theory. Let us label

�i;N�i � �i; i ¼ 1; . . . ; N � 1:

The electric charges of these degrees of freedom under the
unbroken gauge group is

q�i
¼ gðHii þHN�i;N�iÞ; i ¼ 1; . . . ; N: (72)

Since the fermion is antisymmetric in its indices, we may
parametrize the set of the massless fermions as

� ¼ f�1; . . . ;�m�1;�m;�mþ1;�mþ2; . . . ;�2mg
¼ f�1; . . . ;�m�1;�m;��m;��m�1; . . . ;��1g:

(73)

The IR action in perturbation theory is

S ¼
Z
R3

1

g23

�
1

4

XN�1
a¼1
ðFa��Þ2

þ 2
Xm
i¼1

i ��i��ð@� þ iðHii þHN�i;N�iÞA�Þ�i

�
:

(74)

B. Nonperturbative effects

In QCDðASÞ	 on small S1 � R3 there are N types of
instanton-monopoles because of the pattern of the gauge
symmetry breaking SUðNÞ ! Uð1ÞN�1 via a compact ad-
joint Higgs field. The 2N � 4 fermion zero modes of the
BPST R4 instanton split into N � 2 pairs of the instanton-
monopole zero modes in a slightly different way than that
in SYM	 theory and QCDðBFÞ	. The N � 2 instanton-
monopoles have two fermion zero modes each, while the
remaining two monopoles have no zero modes. It is useful
to present the monopole-instanton vertices in QCDðASÞ	
due to a nontrivial structure of their zero modes,

M1 ¼ e�S0ei�1�ð�1 1 þ �2 2Þ;
M2 ¼ e�S0ei�2�ð�2 2 þ �3 3Þ; . . . ;

Mm�1 ¼ e�S0ei�m�1�ð�m�1 m�1 þ �m mÞ;
Mm ¼ e�S0ei�m�ð2�m mÞ;

Mmþ1 ¼ e�S0ei�mþ1�ð�m m þ �m�1 m�1Þ; . . . ;
M2m�2 ¼ e�S0ei�2m�2�ð�3 3 þ �2 2Þ;
M2m�1 ¼ e�S0ei� 2m�1�ð�2 2 þ �1 1Þ;
M2m ¼ e�S0ei�2m� ;

M2mþ1 ¼ e�S0ei�2mþ1� :

(75)

Consequently, the contribution to the QCDðASÞ	
Lagrangian induced by monopole-instantons takes the
form

�L� X2mþ1
i¼1
ðMi þ �MiÞ: (76)

Since the N � 2 monopoles carry compulsory fermionic
zero mode insertions, they cannot induce a mass term for
all the dual photons ifN � 4. As seen from Eq. (76), two of
the monopole-instantons do contribute to the bosonic po-
tential, but this is insufficient to render all photons massive
for N � 4. (At N ¼ 3, QCDðASÞ	 and QCDðFÞ	 are the
same theories.) Thus, in order to render all the photons
massive, we need to incorporate effects of order e�2S0 , and
introduce the magnetic bions. Before doing so let us show
that the underlying symmetries of QCDðASÞ	 allow mass
terms for all dual photons to be generated.
Since Uð1ÞV � ðZ2N�4ÞA is the symmetry of the micro-

scopic theory, it must be a symmetry of the long-distance
theory. The invariance under Uð1ÞV is manifest. The in-
variance under the ðZ2N�4ÞA necessitates intertwining the
axial chiral symmetry with a discrete shift symmetry of the
dual photon

ðZ2N�4ÞA: � ! eið2�=ðN�2ÞÞ� ;

� ! � � 2�

N � 2
�AS; (77)

where

� AS �
XN�2
j¼1

�k (78)

and �k are the N � 1 fundamental weights of the associ-
ated Lie algebra. Note that the parameter �AS is not exactly
the Weyl vector, which appears in SYM	 theory and
QCDðBFÞ	. Rather, it can be represented as

� AS ¼ ���N�1: (79)

Using the identities
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� N�1�AS ¼ 0; �N�AS ¼ �ðN � 2Þ
�i�AS ¼ 1; i ¼ 1; . . .N � 2

(80)

we observe that the vertex operators ei�i� transform under
the discrete shift symmetry

� ! � � 2�

N � 2
�AS

as

ZN�2: ei�2m� ! ei�2m� ; ei�2mþ1� ! ei�2mþ1� ;

ei�i� ! e�ið2�=ðN�2ÞÞei�i� ; i ¼ 1; . . . 2m� 1:
(81)

Hence, the monopole-induced interactions (76) are invari-
ant under ðZ2N�4ÞA given in (77). The discrete shift sym-
metry allows mass terms for all dual photons at order e�2S0 .

In QCDðASÞ	, there are novel topological excitations as
is the case in QCDðBFÞ	. The zero mode structure of
monopole-instantons suggests that other than the magnetic
bions common with SYM	 theory, there are magnetic bions
of a more exotic variety,

B1
i :

�
4�

g
ð�i ��i�1Þ; 0

�
: c1e

�2S0eið�i��i�1Þ� ;

B12
i;i :

�
4�

g
ð�i ��2m�iÞ; 0

�
: c2e

�2S0eið�i��2m�iÞ� ;

B12
i;i�1:

�
4�

g
ð�i ��2m�i�1Þ; 0

�
: c2e

�2S0eið�i��2m�iþ1Þ� ;

B12
i;iþ1:

�
4�

g
ð�i ��2m�i�1Þ; 0

�
: c2e

�2S0eið�i��2m�i�1Þ� :

(82)

Here in the first line summation runs over i ¼ 1; . . . ; 2m�
1 while in the second, third and fourth lines over i ¼
1; . . . ; m� 1. The pairing of the constituent monopoles
follows from the structure of the fermion zero modes.
The magnetic bionB1

i is held together due to the attractive
fermionic pair exchanges which overcomes the Coulomb
repulsion between its constituents. The constituents of the
latter bionsB12

i;i andB
12
i;i�1 do not interact via the Coulomb

law, rather they experience just the fermion pair exchange.
Consequently, the combined effect of the magnetic bions
(which is of order e�2S0)

Vbionð�Þ ¼ m3
Wg
�6
� X2m�1
i¼1

B1
i

þ Xm�1
i¼1
ðB12

i;i þB12
i;iþ1 þB12

i;i�1Þ
�
þ H:c: (83)

and two monopole-instantons M2m, M2mþ1 gives rise to
the bosonic potential which renders all N � 1 dual photons
massive which, in turn, leads to string (domain line) for-
mation. Assembling perturbative and nonperturbative ef-
fects we get

LQCDðASÞ	 ¼ g23
32�2

ð@�Þ2 þ Vbionð�Þ þ
X2mþ1
i¼2m
ðMi þ �MiÞ

þ 2

g23

Xm
i¼1

��i��ði@� þ ðHii

þHN�i;N�iÞA�Þ�i þ
X2m�1
i¼1
ðMi þ �MiÞ:

(84)

In QCDðF=BFÞ	 we had both electric couplings and
monopole and bion-induced magnetic interactions. By
the same token in QCDðASÞ	 interactions of the electric
and magnetic type are present. (This is unlike what we
have in SYM	 theory.) The monopole and bion-induced
effects are dominant.
In the effective low-energy theory (84), the ðZ2N�4ÞA

chiral symmetry is entangled with the shift symmetry of
the dual photon. Examination of the bosonic potential in
QCDðASÞ	 reveals N � 2 gauge inequivalent isolated va-
cua located at

� ¼
�
0;

2�

N � 2
;

4�

N � 2
; . . . ;

2ðN � 3Þ�
N � 2

�
�AS: (85)

As usual, we label these N � 2 vacuum states by j�ki,
(k ¼ 1; . . . ; N � 2). Choosing a vacuum we spontaneously
break the ZN�2 symmetry.
The chiral condensate in the vacuum j�ki can be calcu-

lated along the same lines as in QCDðBFÞ	,

h�kjTr ���j�ki ¼ 2ðN � 2Þ
�
�3ð�LÞ4=3N; �L� 1;

�3; �L * 1;

�

� cos

�
2�k

N � 2

�
; (86)

where there is a weak L dependence at small L. This
follows from the Oð1=NÞ difference in b0, the first
�-function coefficient of QCD(AS), and SYM theories
divided by N. In QCD(AS)

b0 ¼ 3þ 4

3N
:

Remark on the Callias and Atiyah-Singer index theo-
rems: On R4, the global aspect of the chiral anomaly is
expressed by the Atiyah-Singer index theorem. BPST in-
stanton is associated with 2h fermionic zero modes, where
2h ¼ f2; 2N; 2N; 2N � 4; 2N þ 4g for QCD(F/adj/BF/AS/
S), respectively. In QCDðRÞ	 at small rðS1Þ, due to the
gauge symmetry breaking, the four-dimensional instanton
splits into N monopoles. In the small-rðS1Þ (weak cou-
pling) regime, the instanton should be viewed as a com-
posite object, with the magnetic and topological charges as
in Eq. (39), built of N types of elementary monopoles with
charges 4�

g ð�1;�2; . . . ;�NÞ. The 2h fermion zero modes

split into groups which associate themselves with the
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above N monopoles as follows:

QCDðFÞ: 2! f2; 0; . . . ; 0; 0; 0g;
SYM: 2N ! f2; 2; . . . ; 2; 2; 2g;

QCDðBFÞ: 2N ! f2; 2; . . . ; 2; 2; 2g;
QCDðASÞ: 2N � 4! f2; 2; . . . ; 2; 0; 0g;
QCDðSÞ: 2N þ 4! f2; 2; . . . ; 2; 4; 4g:

(87)

The numbers on the right-hand side are the Callias indices
for the corresponding monopoles. Strictly speaking, the
Callias index theorem is formulated for the Yang-Millsþ
noncompact adjoint Higgs system on R3 [27]. Its general-
ization toR3 � S1 is carried out by Nye and Singer [32]. To
study the index theorems we need to find the kernels of the
Dirac operators 6D and 6Dy in the background of the appro-
priate topological excitation. The kernel is the set of zero
eigenstates of the Dirac operator. The difference of the
dimensions of the kernels gives the number of zero mode
attached to a given topological excitation. Thus, we ob-
serve the following relation between the Atiyah-Singer
index I inst and the Callias index I�i

,

I inst ¼
X

�i2�0
aff

I�i
; (88)

or

dim ker 6Dinst � dim ker 6Dyinst
¼ X

�i2�0
aff

ðdim ker 6D�i
� dim ker 6DyinstÞ: (89)

VI. � DEPENDENCE

There is one more interesting aspect of the theory which
has not yet been discussed, namely, � dependence. It is
well-known that in pure Yang-Mills theory on R4 physical
quantities, e.g. string tensions, do depend on �, and physi-
cal periodicity in � is 2�. Introduction of one massless
quark in representation R eliminates � dependence of
physical quantities since one can eliminate the � term
through an appropriate chiral rotation of the fermion field,
as a result of the chiral anomaly. This does not mean that
various order parameters, e.g. the bifermion condensate,
are � independent. If a small fermion mass term is added,
physical quantities acquire � dependence; all �-dependent
effects are proportional to the fermion mass m.

Let us ask ourselves what happens on R3 � S1, in de-
formed theories. At first, let us consider pure Yang-Mills,
assuming that � � 0. Then the instanton-monopole-
induced vertices at level e�S0 are

L ¼ e�S0
XN
j¼1

�je
i�j�þi�=N þ H:c: (90)

By globally shifting

� ! � � �

N
�; (91)

where � is the Weyl vector, and using the identities (57),
we can rewrite the instanton-monopole vertices in the form

L ¼ e�S0
XN�1
j¼1

�je
i�j� þ�Ne

�S0ei�N�þi� þ H:c:; (92)

where the 2� periodicity is more transparent. In both
Eqs. (90) and (92) the vacuum angle dependence is
explicit.
Introducing one fundamental fermion, and localizing the

fermionic zero mode on the monopole with charge �N
without loss of generality, we get, instead of (90) and (92)

L¼ ~�Ne
�S0ei�N�þi�=N� þ e�S0 XN�1

j¼1
�je

i�j�þi�=NþH:c:

¼ ~�Ne
�S0ei�N�þi�� þ e�S0 XN�1

j¼1
�je

i�j� þH:c:; (93)

where we used (91) in passing to the second step. It is clear
in the latter form that the � dependence can be completely
absorbed in the fermion fields,

f ; �g ! f e�i�=2; �e�i�=2g: (94)

If the fermion mass term m � is added, the � dependence
can no longer be absorbed in the definition of the fermion
field. Performing (94) we change the phase of the mass
parameter. Correspondingly, one can expect physical �
dependent effects proportional to m, such as the vacuum
energy density

E ð�Þ �mh ���i cos�; (95)

in parallel with the behavior of the undeformed theory on
R4.
Analysis of the � dependence in QCDðBFÞ	 is even

easier technically. The magnetic bion vertices have no �
dependence because each of them represents the product of
a monopole and antimonopole vertex in which the � de-
pendence cancels. Moreover, the monopole-induced verti-
ces are

�LQCDðBFÞ	 ¼ e�S0
X

�i2�0
aff

ððei�i�1þi�=N þ ei�i�2þi�=NÞ

� ð�i i þ �iþ1 iþ1Þ þ H:c:Þ: (96)

The � dependence can be readily absorbed in the fermion
fields with the following redefinition:

f i; �ig ! e�i�=ð2NÞf i; �ig: (97)

If we introduce very small mass terms for the fermion
fields, m� �ð�LÞ, then it is obvious that the � depen-
dence reappears in the vacuum energy density,
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Eð�Þ ¼ min
k
Ekð�Þ � min

k

�
m�3 cos

�
�

N
þ 2�k

N

��
;

k ¼ 1; . . . ; N: (98)

Turning on a nonvanishing mass term lifts the N-fold
degeneracy of the vacua j�ki. The vacuum labeled by
the integer k turns into a state with energy Ekð�Þ. Each
one of the N branches is 2�N periodic in �. Consequently,
the vacuum energy density is physically 2� periodic,

E vacð�þ 2�Þ ¼ Evacð�Þ:
This is precisely the expected behavior of undeformed
QCD(BF) on R4.

In the case of QCDðASÞ	 the overall picture emerging
from our analysis is quite similar (albeit there are some
minor differences subleading in 1=N) and also matches the
known � dependence of QCD(AS) on R4.

VII. REMARKS ON PLANAR EQUIVALENCE

Similarity of the dynamical aspects ofQCDðBF=AS=SÞ	
(with fermions in the two-index representation) and N ¼
1 SYM	 theory is evident. Given that they are quantum
theories with distinct matter content and distinct micro-
scopic symmetries, this similarity is remarkable. We ex-
plicitly showed that in the small-rðS1Þ regime,
QCDðBF=AS=SÞ	 confine through the magnetic bion
mechanism in the same way as N ¼ 1 SYM	 theory.
Moreover, spontaneous breaking of the discrete chiral
symmetries is similar in these two cases too. The bifermion
condensate is saturated by a monopole-instanton with ap-
propriate fermion zero mode structure. The calculated
mass gaps are quite alike in both cases. Clearly, our analy-
sis makes it manifest that solvability of N ¼ 1 SYM	
theory at weak coupling is due to the unbroken center
symmetry. Supersymmetry is secondary in this regime.

In fact, an intimate relation between SYM theory and its
orientifold-orbifold daughters exists not only at small rðS1Þ
but also in the decompactification limit of large rðS1Þ. If the
number of colors N ! 1, there is a well-defined equiva-
lence between N ¼ 1 SYM and QCD(BF/AS/S) which
goes under the name of planar equivalence [36–40]. The
necessary conditions for planar equivalence to be valid
nonperturbatively are (i) interchange ðZ2ÞI symmetry is
unbroken in QCD(BF), (ii) C conjugation symmetry is
unbroken in QCD(AS/S). It is generally believed that these
conditions are met [3].

The large N equivalence is a useful tool to translate
nonperturbative data of SYM theory to its daughters (and
vice versa) on R4. Planar equivalence is valid also on R3 �
S1. The equivalence establishes an isomorphism on a sub-
space of the Hilbert space of these theories. Let us grade
the Hilbert space of SYM theory with respect to ð�1ÞF
where F is the fermion number, as

H SYM ¼H SYMþ H SYM�: (99)

Similarly, the Hilbert spaces of QCD(BF) and QCD(AS/S)
can be graded respect to the 1$ 2 interchange symmetry
in the first case and charge conjugation in the second.
Planar equivalence is an isomorphism between the even
subspaces of the Hilbert spaces

H SYMþ �H QCDðBFÞþ �H QCDðASÞþ: (100)

(The full Hilbert spaces are by no means isomorphic.)
If one performs periodic compactifications17 of QCD

(BF/AS/S) on R3 � S1, with small rðS1Þ, the 1$ 2 inter-
change symmetry of QCDðBFÞ	 and C invariance of
QCDðAS=SÞ	 do break spontaneously, along with the spa-
tial center symmetry [35,41]. (For related lattice studies
showing the breaking and restoration of C, see [42,43].)
Certain order parameters which probe the interchange

symmetry and C invariance are topologically nontrivial
[44], e.g.

TrðUk
1Þ � TrðUk

2Þ; QCDðBFÞ	
and TrðUkÞ � TrðU	kÞ QCDðASÞ	: (101)

These operators are charged under the center symmetry
and odd under ðZ2ÞI and C. In QCDðBF=AS=SÞ	 stabiliza-
tion of the center symmetry automatically implies vanish-
ing of the expectation values of the order parameters (101).
There are also order parameters which are neutral under

the center symmetry, yet charged under ðZ2ÞI and C. For
example, the odd combination of the Wilson loops
W1ðCÞ �W2ðCÞ or TrF2

1 � TrF2
2 in QCDðBFÞ	 and

WðCÞ �W	ðCÞ in QCDðASÞ	 are of this type. The unbro-
ken center symmetry does not restrict the expectation value
of such operators. Our dynamical analysis in Secs. IV and
V shows that spontaneous breaking of ðZ2ÞI and C sym-
metry definitely does not take place at small rðS1Þ.
Arguments why this must be the case also on R4 are
summarized in Ref. [3].

VIII. CONCLUSIONS AND PROSPECTS: ABELIAN
VS NON-ABELIAN CONFINEMENT

The aspects of QCD	 theories that we studied are valid
in the limit L�� 1, where the weak coupling regime sets
in. We presented arguments that one-flavor QCDðRÞ	
theories are continuously connected to one-flavor
QCDðRÞ on R4. We demonstrated, through an explicit
calculation at small rðS1Þ, existence of the mass gap, linear
confinement, and discrete �SB. These are indeed the most
salient features of QCD-like theories on R4.
In the small-rðS1Þ domain, the QCD	 theories are char-

acterized by the fact that the gauge symmetry is Higgsed

17In thermal compactification, only the center symmetry breaks
spontaneously; the interchange symmetry and C invariance
remain unbroken [41]. Thus, planar equivalence for orbifold
and orientifold daughters remains valid in the high temperature
deconfined phase.
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down to a maximal Abelian subgroup Uð1ÞN�1. Thus, at
small rðS1Þ we deal with Abelian confinement, while it is
expected to give place to non-Abelian confinement in the
decompactification limit.

What happens as we increase L� gradually, all the way
to L! 1? At a scale of the order L�� 1, we lose the
separation of scales between the W-bosons and the non-
perturbatively gapped photons. Thus, our effective low-
energy description (which includes only light bosonic
and fermionic degrees of freedom) ceases to be valid. At
and above �� 1=L the theory is strongly coupled in the
IR, and the full non-Abelian gauge group is operative.
Thus, the confinement mechanism in this regime must be
non-Abelian.

This situation is completely analogous to the Seiberg-
Witten solution [18] of four-dimensional N ¼ 2 SYM
theory exhibiting mass gap and linear confinement upon
a � deformation breaking N ¼ 2 down to N ¼ 1. If
�=�� 1, the Seiberg-Witten theory in the IR is in the
regime of broken gauge symmetry, i.e. SUðNÞ ! Uð1ÞN�1,
where it is solvable. For�=� * 1, one loses the separation
of scales between the W-bosons and nonperturbatively
gapped photons. The full gauge symmetry is restored. In
this regime, the low-energy theory approaches pure N ¼
1 SYM theory. The confining strings must be non-Abelian.
Currently no controllable analytical approaches allowing
one to continue the Seiberg-Witten solution to the domain
�=�� 1 are known, and yet there are good reasons to
believe that this continuation is smooth.

Conceptually the relation between �-deformed N ¼ 2
andN ¼ 1 SYM theories on R4 is parallel to that between
one-flavor QCD	 on R3 � S1 and QCD on R4. Both theo-
ries realize confinement via the following pattern

SU ðNÞ ���!Higgsing½Uð1Þ�N�1 ���!nonperturbative
no massless modes:

(102)

Existence of an intermediate Abelian gauge theory in the
IR is the key to analytical calculability in both cases.

In both cases by tuning the relevant parameter, �=� or
L�, respectively, from small to large values, we can re-
move the intermediate step of ‘‘Abelianization.’’ In this
paper we presented a number of arguments in favor of no
phase transitions separating the Abelian and non-Abelian
confinement regimes. It is desirable to develop a special
technique allowing one to perform ‘‘integrating in’’ of the
W-bosons (and their partners) gradually. If this task can be
achieved this could provide a direct route to QCD and
QCD-like theories on R4.

If we are right and the transition from QCD	 to QCD-
like theories is smooth, this smoothness could explain a
long-standing puzzle. The point is that a rather vaguely
defined method which goes under the name of the maximal
Abelian projection seems to give sensible results in the
lattice calculations. The reason might be the proximity of

the Abelian confinement regime we discussed in the body
of this paper.
The status of QCD-like theories with massless or very

light fermions with exact or approximate chiral symmetry
significantly improved in the recent years [45,46]. It is
highly desirable to implement QCD	 theories on lattices,
and then carry out an in-depth study of the transition from
Abelian to non-Abelian confinement.
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APPENDIX: CENTER STABILIZATION

Let UðxÞ be the path-ordered holonomy of the Wilson
line wrapping S1 at the point x 2 R3. It is known that for
complex representation fermions (F/AS/S/BF), the center
symmetry is broken down at sufficiently small rðS1Þ re-
gardless of the spin connections of fermions. For adjoint
fermions with periodic spin connection, the spatial center
symmetry is not broken at small rðS1Þ, whereas for anti-
periodic (thermal) boundary conditions the temporal center
symmetry is broken at sufficiently high temperatures.
An easy way to see this is to evaluate the one-loop

Coleman-Weinberg effective potential induced by quan-
tum fluctuations by using the background field method
(e.g. [41,47]). The minimum of the classical action is
achieved at the vanishing value of the gauge field strength,
and constant but arbitrary values of the UðxÞ. Quantum
corrections lift the degeneracy.
One can evaluate the one-loop-potentials for one-flavor

QCD-like theories. In the gauge in which the Polyakov line
is represented by a constant and diagonal matrix one
obtains18

Veff½U� ¼ 2

�2L4

X1
n¼1

1

n4
Tn; (A1)

where

Tn ¼ �jTrUnj2 þ anðTrUn þ TrU	nÞ; ðFÞ;
Tn ¼ ð�1þ anÞjTrUnj2; ðadjÞ; (A2)

18In the multiflavor generalization (with Nf fermions) one must
replace an ! anNf.
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Tn ¼ 1

2
ð�1þ anÞjTrUn

1 þ TrUn
2 j2

þ 1

2
ð�1� anÞjTrUn

1 � TrUn
2 j2; ðBFÞ; (A3)

Tn ¼ 1

4
ð�1þ anÞjTrUn þ TrU	nj2

þ 1

4
ð�1� anÞjTrUn � TrU	nj2

� 1

2
anðTrU2n þ TrU	2nÞ; ðAS=SÞ: (A4)

Here an are prefactors which depend on the fermion
boundary conditions

an ¼
� ð�1Þn for S�;
1 for Sþ: (A5)

Note that

CðTrUn � TrðU	ÞnÞ ¼ �ðTrUn � TrðU	ÞnÞ;
IðTrUn

1 � TrðU2ÞnÞ ¼ �ðTrUn
1 � TrðU2ÞnÞ:

(A6)

The minimum of the effective potential presented above
is located at

U� Diagð1; 1; . . . ; 1Þ all R with S� and F=BF=AS=S

with Sþ;

U ¼ Diagð1; eið2�=NÞ; . . . ; eið2�ðN�1Þ=NÞÞ adj with Sþ:

(A7)

Thus, the (spatial or temporal) center symmetry is broken
in all theories, except QCD(Adj) with the periodic spin
connection Sþ. In the cases of broken center symmetry the
small and large radius physics on S1 � R3 are separated by
a phase transition. In all these cases the fermions essen-
tially decouple from infrared physics, and the theory at
small rðS1Þ has not much in common with the theory at
large rðS1Þ.
The center symmetry breaking is induced by destabiliz-

ing double-trace operators such as e.g. �jTrUj2 and their
multiwinding counterparts. One can stabilize the center
symmetry while respecting the underlying symmetries of
the theories at hand by adding a stabilizing polynomial in
the appropriate variable up to the winding number ½N=2�
with judiciously chosen coefficients. This will overwhelm
the one-loop effect, and make the center-symmetric point a
stable vacuum in the small-rðS1Þ regime.
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