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We propose a twisted supersymmetric (SUSY) invariant formulation of the Chern-Simons theory on a

Euclidean three-dimensional lattice. The SUSY algebra to be realized on the lattice is the N ¼ 4 D ¼ 3

twisted algebra that was recently proposed by D’Adda et al. In order to keep the manifest anti-Hermiticity

of the action, we introduce oppositely oriented supercharges. Accordingly, the naive continuum limit of

the action formally corresponds to the Landau-gauge fixed version of the Chern-Simons theory with

complex gauge group which was originally proposed by Witten. We also show that the resulting action

consists of parity even and odd parts with different coefficients.
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I. INTRODUCTION

Chern-Simons gauge theory is a fundamentally impor-
tant field theory in both physics and mathematics. The
Lagrangian density [1,2] is just the famous Chern-
Simons secondary characteristic class [3] for a principal
bundle. As a topological field theory, its action can be
defined in an odd dimensional spacetime without involving
its metric. So mathematically the metric independent
physical observables of the theory are topological invari-
ants independent of a spacetime metric [4]. In particular,
the partition function of the theory on a compact manifold
gives rise to a three-manifold invariant, while the expecta-
tion value of Wilson loops gives rise to knot-link invari-
ants, say Jones polynomials [5] in the case with the non-
Abelian gauge group SUð2Þ. On the physics side, by now it
is well known that Chern-Simons gauge theory can be used
as a low energy effective theory to describe a new type of
matter, the so-called topological phases, in planar con-
densed matter systems (or in 2þ 1 spacetime dimensions),
such as the fractional quantum Hall effect [6]. Also, quan-
tum gravity in ð2þ 1Þ-dimensional spacetime, which is
known to be diffeomorphism invariant, can be formulated
as a Chern-Simons theory with the Poincaré group as the
gauge group [7]. In recent years, the close relationship
between Chern-Simons gauge theory, topological invari-
ants, and topological phases has attracted a lot of attention
for developing topological quantum computation [8,9].
The above is just a few examples of the ubiquitousness
of the Chern-Simons theory in physical applications. For a
recent survey see, e.g., Ref. [10].

Because of the primary importance of the Chern-Simons
theory, it is much desirable to put the theory on a lattice for
the convenience of computer simulations. However, up to
now this task has been achieved with limited success.
Previously, lattice formulations of the Chern-Simons the-

ory have been addressed in the context of bosonization or
anyonization [11–13] or of topological excitations [14] in a
regularized framework.1 Two major difficulties in formu-
lating the lattice Chern-Simons theory have been identi-
fied. One is the problem of an extra zero eigenvalue in the
gauge field kernel, which arises from the fact that the gauge
kinetic terms involve only first order derivatives. This
feature resembles the ‘‘doubling problem’’ for lattice fer-
mions, which is also tightly connected with the Hermiticity
issue of the lattice action [17,18]. The other difficulty, in
formulating a non-Abelian Chern-Simons theory on a lat-
tice, is related to gauge noninvariance of the action for a
non-Abelian theory under large gauge transformations.
In this paper we attack the problem of the lattice for-

mulation of the Chern-Simons theory with a new method.
Instead of attempting to directly put the Chern-Simons
action on a lattice, we propose to put the gauge-fixed
Chern-Simons theory on a Euclidean lattice. We also in-
troduce oppositely oriented component fields in order to
ensure the manifest anti-Hermiticity of the lattice action.
We are motivated by two observations in the literature. The
first observation is an old one [19,20] that there exists a
very rich symmetry structure in the Landau-gauge fixed
Chern-Simons action; namely, apart from the ordinary
BRST symmetry which is the remnant of the original
gauge symmetry, there exist more fermionic symmetries
of a vector type. In Ref. [21], the set of symmetries together
with the anti-BRST–type symmetries are identified as a
certain type of twisted supersymmetry (SUSY), which was
originally proposed in the context of topological quantum
field theory [22]. Since then, the twisted SUSY invariant
properties of the Chern-Simons theory in Landau gauge
have been studied in more detail concerning its quantum
aspects [23] as well as its rich symmetry structure [24]. The
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1There are works on simplicial lattices addressing Abelian
Chern-Simons theory in terms of a geometric discretization
scheme [15] and also Chern-Simons gravity via the Ponzano-
Regge model [16].
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second observation that inspires us is a recent one, in which
the twisted SUSY plays a particularly important role in
realizing SUSYon a lattice [25–29]. This is essentially due
to the intrinsic relation between twisted fermions and
Dirac-Kähler fermions [30]. It is observed that among
other recent developments of lattice SUSY [31], the so-
called deconstruction formulation of lattice SUSY [32] can
also be related to the twisted SUSY framework [33].
Motivated by these recent developments, we naturally
anticipate that a lattice formulation of Chern-Simons the-
ory can be given through the lattice realization of the
twisted SUSY associated with the Landau-gauge fixed
action.

This article is devoted to constructing a Landau-gauge
fixed Chern-Simons multiplet directly on a three-
dimensional lattice and to proposing a manifestly anti-
Hermitian Euclidean lattice action. This paper is organized
as follows. In Sec. II, we review the symmetries of the
Landau-gauge fixed Chern-Simons action in continuum
spacetime. In Sec. III, after giving an overview of the
twisted SUSY formulation on a lattice developed in [25]
and introducing the twisted N ¼ 4 D ¼ 3 lattice algebra
[27], we proceed to construct a lattice counterpart of the
Chern-Simons multiplet. We also introduce oppositely
oriented supercharges and component fields in order to
realize the manifest (anti-)Hermiticity of the lattice multi-
plet. In Sec. IV, we construct a lattice version of Landau-
gauge fixed Chern-Simons action and show how the
twisted SUSY invariance is realized. We further show
that the zero-eigenvalue problem does not occur in our
formulation owing to manifest anti-Hermiticity of the lat-
tice action. We also discuss about the naive continuum
limit and its relation to the Chern-Simons theory with
complex gauge group [34]. Section V addresses the parity
transformation properties of our lattice action, and Sec. VI
summarizes our formulation with some discussions.

II. CHERN-SIMONS IN LANDAU GAUGE

In this section, we review the symmetry aspects of the
Chern-Simons action with Landau gauge fixing in the
continuum spacetime. Although the original Chern-
Simons action is given in a metric independent form, it
becomes metric dependent after the gauge-fixing terms are
introduced. In this paper, we only consider the Euclidean
three-dimensional flat spacetime. The gauge-fixed action is
given by

S ¼ i
k

2�

Z
d3xTr

�
����

�
1

2
A�@�A� þ 1

3
A�A�A�

�

� b@�A� � �c@�D�c

�
; (2.1)

where A�, b, c, and �c denote the gauge field, an auxiliary

field, the ghost, and the antighost fields, respectively. The
coefficient k should be a multiple of integer required by

invariance under large gauge transformations. Note the
overall purely imaginary factor i in the Euclidean action,
because the path integral measure of the topological field
theory has to be a pure phase factor. All of the component
fields belong to the adjoint representation of the gauge
group with the following anti-Hermiticity conditions [21],

Ay� ¼ �A�; by ¼ �b; cy ¼ �c; �cy ¼ �c:

(2.2)

The gauge-fixed action (2.1) is invariant under the BRST
transformations which are remnants of the original gauge
symmetry,

sA� ¼ �D�c; sc ¼ c2; (2.3)

s �c ¼ b; sb ¼ 0; (2.4)

where the covariant derivative D� is defined by D�c ¼
@�cþ ½A�; c�. Furthermore, it was pointed out in [19–21]

that the action (2.1) is also invariant under additional
fermionic transformations including vector-type transfor-
mations, �s�, s�, and �s, where the index � runs from 1 to 3.

We list their transformation laws for the component fields
in Table I. The whole set of eight generators ðs; �s�; s�; �sÞ is
shown to satisfy the following algebra [21]:

fs; �s�g _¼@�; fs�; �s�g _¼����@�; (2.5)

f �s; s�g _¼� @�; fothersg ¼ 0: (2.6)

Here the dotted equality means that the algebra closes only
on shell, namely, up to equations of motion. The anti-
Hermiticity conditions for the twisted supercharges can
be imposed consistently with those for the component
fields (2.2):

sy ¼ �s; �sy ¼ �s; sy� ¼ �s�;
�sy� ¼ �s�; @y� ¼ �@�:

(2.7)

Since the BRST generator s is supposed to transform as a
scalar under the Lorentz transformation, we immediately
read off from the algebra (2.5) and (2.6) that the remaining
fermionic generators �s�, s�, and �s transform as a vector,

another vector, and a scalar, respectively. These transfor-
mation properties are identical to the ones in a certain type
of twisted SUSY, where the new Lorentz group, which is
called the twisted Lorentz group, is defined as the diagonal

TABLE I. Fermionic transformation laws in continuum space-
time.

s �s� s� �s

c c2 �A� 0 �bþ f �c; cg
�c b 0 A� �c2

A� �D�c �����@� �c �����@�c �D� �c
b 0 @� �c D�c ½ �c; b�
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subgroup of the original Lorentz group and a certain type
of internal symmetry group. In the present case with eight
supercharges ðs; �s�; s�; �sÞ, the twisted Lorentz group is

understood as the diagonal subgroup of SOð3ÞLorentz �
SOð3Þinternal whose covering group is ðSUð2Þ �
SUð2ÞÞdiag. The twisted structure can be explicitly seen

from the following combinations of ðs; �s�; s�; �sÞ into the

generators Q�k and �Qk� with spin index � and internal
index k:

Q�k ¼ ð1sþ ��ð�is�ÞÞ�k; (2.8)

�Q k� ¼ ð1�sþ ��ði �s�ÞÞk�; (2.9)

where 1 represents the unit matrix while �� (� ¼ 1, 2, 3)

represent three-dimensional gamma matrices which can be
taken to be Pauli matrices. One can easily see that s� and

�s� transform as vectors if the spin and internal indices are

rotated simultaneously. Furthermore, in terms of Q�k and
�Qk�, the algebra (2.5) and (2.6) can be reexpressed as

fQ�k; �Ql�g ¼ 2i	klð��Þ��@�: (2.10)

This clearly shows that the internal symmetry indices k and
l can be viewed as the suffices labeling extended SUSY,
while� and� remain the ordinary spinor indices. From the
above observations it becomes clear that the fermionic
symmetries associated with the Landau-gauge fixed
Chern-Simons action are essentially connected with a cer-
tain type of extended SUSY through the twisting proce-
dure. Following the standard nomenclature in topological
field theory [35,36], we refer to the algebra (2.5) and (2.6)
as the N ¼ 4 D ¼ 3 twisted SUSY algebra.2 A superfield
formulation based on the twisted N ¼ 4 D ¼ 3 SUSY
algebra is recently elaborated on in Ref. [28] with a direct
application to continuum super Yang-Mills theories in the
off-shell regime.

It is important to mention here about parity transforma-
tions of the component fields and the supercharges of the
Chern-Simons multiplet. Since we are working on a
Euclidean three-dimensional spacetime, a parity operation
on the spacetime coordinates may be defined by the simul-
taneous inversion of all the directions,

Pðx1; x2; x3ÞP�1 ¼ ð�x1;�x2;�x3Þ: (2.11)

The gauge fields and the derivative operators are supposed
to transform as vectors, obeying

PA�ðxÞP�1 ¼ �A�ð�xÞ; P@�P
�1 ¼ �@�; (2.12)

where �x denotes �x ¼ ð�x1;�x2;�x3Þ. The parity na-
ture of the supercharges could be determined consistently
with the SUSY transformations of the component fields,
provided parity is compatible with the SUSY algebra (2.5)
and (2.6). Here we assume that the ghost field cðxÞ trans-

forms as a scalar, namely, PcðxÞP�1 ¼ cð�xÞ. We then
immediately read off the parity of the supercharges as

PsP�1 ¼ s; P�s�P
�1 ¼ ��s�;

Ps�P
�1 ¼ s�; P�sP�1 ¼ ��s:

(2.13)

The parities of �c and b are accordingly given by
P �cðxÞP�1 ¼ � �cð�xÞ and PbðxÞP�1 ¼ �bð�xÞ. Notice
that the entire action (2.1) is parity odd under these
assumptions.

III. TWISTED SUSYAND CHERN-SIMONS
MULTIPLET ON LATTICE

A. Lattice SUSY algebra

It was recently recognized [27] that the N ¼ 4 D ¼ 3
twisted SUSY algebra could be realized on a lattice con-
sistently with the lattice Leibniz rule; then it was immedi-
ately applied to a twisted super Yang-Mills formulation on
a three-dimensional lattice. We first briefly review the
lattice formulation of the twisted SUSY proposed in
Ref. [25] and then proceed to construct the Chern-
Simons multiplet based on the N ¼ 4 D ¼ 3 twisted
SUSY structure on the lattice. Since the lattice spacing is
always finite, on a lattice all the derivative operators should
be replaced by difference operators:

@� ! ���; (3.1)

where � denotes forward and backward differences, re-
spectively. The operation of difference on a function �ðxÞ
is defined by the following type of ‘‘shifted’’ commutators,

ð����ðxÞÞ � ���ðxÞ ��ðx� n�Þ���; (3.2)

where n� (� ¼ 1; . . . ; r) denote the unit vectors in r

dimensions, whose component is given by ðn�Þ� ¼ 	��.

We take the lattice spacing to be unity. The difference
operators ��� are most naturally located on links from x

to x� n� for a generic value of x, and they take unit values

such that the definition (3.2) actually gives the forward and
backward differences:

��� ¼ ð���Þx�n�;x ¼ �1: (3.3)

Starting from the definition (3.2), one finds that the opera-
tion of ��� on a product of functions �1ðxÞ�2ðxÞ gives
ð����1ðxÞ�2ðxÞÞ ¼ ð����1ðxÞÞ�2ðxÞ

þ�1ðx� n�Þð����2ðxÞÞ; (3.4)

which we refer to as the Leibniz rule on the lattice. The
importance of the Leibniz rule has also been recognized in
the context of noncommutative differential geometry on a
lattice [37]. Since in continuum, SUSY is essentially noth-
ing but the fermionic decomposition of the differential
operators @�, we may then naturally expect that the fermi-

onic decomposition of the difference operators ��� will2In the early literatures it was referred to as N ¼ 2 algebra.
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accordingly serve as the starting point of a lattice formu-
lation of SUSY. In order to be compatible with the link
nature of difference operators, we introduce a generic
lattice supercharge QA on a link from x to xþ aA:

QA ¼ ðQAÞxþaA;x; (3.5)

where the aA denotes a generic vector whose expression is
to be determined in the following. The operation of QA is
again defined as a shifted (anti-)commutator,3

ðQA�ðxÞÞ � ðQAÞxþaA;x�ðxÞ � ð�1Þj�j�ðxþ aAÞ
� ðQAÞxþaA;x: (3.6)

Accordingly, the operation on a product of functions gives

ðQA�1ðxÞ�2ðxÞÞ ¼ ðQA�1ðxÞÞ�2ðxÞ
þ ð�1Þj�1j�1ðxþ aAÞðQA�2ðxÞÞ;

(3.7)

where j�j stands for 0 or 1 for bosonic or fermionic �,
respectively. The anticommutator of these supercharges
may naturally be defined as the successive connections of
link operators:

fQA;QBgxþaAþaB;x � ðQAÞxþaAþaB;xþaBðQBÞxþaB;x
þ ðQBÞxþaAþaB;xþaAðQAÞxþaA;x:

(3.8)

In terms of the above link operators, we can express the
generic form of lattice SUSY algebra as

fQA;QBg ¼ ð���Þx�n�;x; (3.9)

provided the following lattice Leibniz rule conditions hold:

aA þ aB ¼ þn� for �þ�; (3.10)

aA þ aB ¼ �n� for ���: (3.11)

Figures 1 and 2 depict the possible configurations of the
general lattice SUSYalgebra (3.9) subject to the conditions
(3.10) and (3.11), respectively. It is a nontrivial question to
ask what type of SUSY algebras satisfy these conditions.
As described in [25,26], one can show that the Dirac-
Kähler twisted N ¼ D ¼ 2 and N ¼ D ¼ 4 satisfy the
above conditions. Furthermore, it is recently shown in
[27] that the twisted N ¼ 4 D ¼ 3 algebra also satisfies
the conditions. We actually find the lattice realization of
the algebra (2.5) and (2.6) as

fs; �s�g _¼�þ�; fs�; �s�g _¼�������; (3.12)

f�s; s�g _¼� �þ�; fothersg ¼ 0; (3.13)

where �, �, � ¼ 1, 2, 3 and the link anticommutators in
the left-hand side are understood. The corresponding
Leibniz rule conditions on the choice of aA can be ex-
pressed as

aþ �a� ¼ þn�; a� þ �a� ¼ �j����jn�;
�aþ a� ¼ þn�;

(3.14)

which are satisfied by the following general solutions:

a ¼ ðarbitraryÞ; �a� ¼ þn� � a; (3.15)

a� ¼ �
X

��

n
 þ a; �a ¼ þX3

¼1

n
 � a: (3.16)

Note that there is a one-vector arbitrariness in the choice of
aA, which eventually governs the resulting lattice configu-
ration of the model. We will come back to this point when
we construct the lattice Chern-Simons action. Notice also
that the total sum of all the shift parameters vanishes
despite the one-vector arbitrariness:

X
aA ¼ aþ �a1 þ �a2 þ �a3 þ a1 þ a2 þ a3 þ �a ¼ 0:

(3.17)

∆ + µ

QBQA

x x + nµ

x + aB

x + aA

QAQB

FIG. 1. Lattice SUSY algebra subject to the condition (3.10).

∆ − µ

QAQB

xx − nµ

x + aA

x + aB

QBQA

FIG. 2. Lattice SUSY algebra subject to the condition (3.11).

3We thank Jourjine for his comment on the shifted (anti-)
commutator from the cell-complex cohomological point of view
and for letting us know his works [38]. For recent works on
algebraic topology in connection with the Dirac-Kähler fermion
on a lattice, one may also refer to Ref. [39].
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B. Twisted SUSY Chern-Simons multiplet on the lattice

The lattice implementation of the twisted SUSY trans-
formation laws is possible only with an appropriate link
assignment for each component field. For example, the
transformation law sc ¼ c2 requires that the ghost field c
should be located on a generic link from x to xþ a in order
to be consistent with the link assignment of s which is also
from x to xþ a. With this link assignment, the correspond-
ing lattice transformation law can be expressed as

ðscÞxþ2a;x ¼ ðcÞxþ2a;xþaðcÞxþa;x: (3.18)

By studying all the twisted SUSY transformation laws in a
similar way, one finds that the link attributes can be con-
sistently assigned for all the component fields. Tables II
and III summarize the link attributes of the component
fields and their twisted SUSY transformation laws. In
Table II and in the following, the symbol

P
n represents

the abbreviation
P3


¼1 n
. In Table III, all the field products
and (anti-)commutators should be understood as link prod-
ucts and link (anti-)commutators, with the link indices
suppressed for simplicity. Dþ� denotes the covariant de-

rivative with forward difference, Dþ� � �þ� þ A�.

Notice that the gauge fields are associated only with the
forward difference and not with the backward difference.
The absence of the backward covariant derivative implies
that the (anti-)Hermiticity cannot be maintained if only one
lattice multiplet ðA�; b; c; �cÞ is considered. One obvious

way to maintain the (anti-)Hermiticity on the lattice is to
introduce the oppositely oriented multiplet associated with

a set of oppositely oriented supercharges. From now on, we
slightly change the notations and denote the set of super-
charges introduced in the above as sþA ¼ ðsþ; �sþ�; sþ�; �sþÞ.
Then we introduce an additional set of oppositely oriented
supercharges and denote them by s �A ¼ ðs�; �s��; s��; �s�Þ.
The SUSY algebra is assumed to be

fsþ; �sþ�g _¼�þ�; fsþ�; �sþ� g _¼�������;

f �sþ; sþ�g _¼� �þ�;
(3.19)

fs�; �s��g _¼���; fs��; �s��g _¼�����þ�;

f �s�; �s��g _¼� ���;
(3.20)

with other anticommutators of the supercharges vanishing:
fothersg ¼ 0. We anticipate the on-shell closure of the
algebra and express them with dotted equalities. We have
assumed that the mixing sector of the algebra is just zero:
fsþA ; s �Bg ¼ 0. The Hermitian conjugation of the lattice
supercharges and difference operators are defined as

ðsþÞy ¼ �s�; ð �sþÞy ¼ �s�; (3.21)

ðsþ�Þy ¼ �s��; ð �sþ�Þy ¼ �s��; (3.22)

ð�þ�Þy ¼ ����; ð���Þy ¼ ��þ�: (3.23)

We assign the supercharges sþA and s�A to be located on the
same links but with mutually opposite orientation, namely,
ðsþA ÞxþaA;x and ðs�A Þx;xþaA , respectively, as summarized in

TABLE III. Twisted SUSY transformation laws on the lattice. The link attributes of the
products and (anti-)commutators are understood.

s �s� s� �s

c c2 �A� 0 �bþ f �c; cg
�c b 0 A� �c2

A� �½Dþ�; c� �����½���; �c� �����½���; c� �½Dþ�; �c�
b 0 ½�þ�; �c� ½Dþ�; c� ½ �c; b�

TABLE IV. Link properties of oppositely oriented supercharges and component fields.

sþ �sþ� sþ� �sþ s� �s�� s�� �s�

Link ðsþÞxþa;x ð�sþ�Þxþ �a�;x ðsþ�Þxþa�;x ð�sþÞxþ �a;x ðs�Þx;xþa ð�s��Þx;xþ �a� ðs��Þx;xþa� ð�s�Þx;xþ �a

cþ �cþ Aþ� bþ c� �c� A�� b�

Link ðcþÞxþa;x ð �cþÞxþ �a;x ðAþ�Þxþn�;x ðbþÞxþP n;x ðc�Þx;xþa ð �c�Þx;xþ �a ðA��Þx;xþn� ðb�Þx;xþP n

TABLE II. Link assignment of the fields and supercharges for a generic value of x. Note that
the shift parameters ða; �a�; a�; �aÞ are subject to (3.15) and (3.16).

c �c A� b s �s� s� �s

Link ðcÞxþa;x ð �cÞxþ �a;x ðA�Þxþn�;x ðbÞxþP n;x ðsÞxþa;x ð�s�Þxþ �a�;x ðs�Þxþa�;x ð�sÞxþ �a;x.
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Table IV. Correspondingly, we introduce oppositely ori-
ented lattice Chern-Simons multiplets ðcþ; �cþ; Aþ�; bþÞ
and ðc�; �c�; A��; b�Þ, together with the following

Hermitian conjugation conditions,

ðcþÞy ¼ �c�; ð �cþÞy ¼ �c�; (3.24)

ðAþ�Þy ¼ �A��; ðbþÞy ¼ �b�: (3.25)

The link attributes of the multiplets and their SUSY trans-
formation laws are given in Tables IV and V, respectively.
The covariant differences in Table V, Dþ� and D��, are
defined as D�� � ��� þ A��, which obey the obvious

Hermitian conjugation relations,Dy�� ¼ �D��. We again

assume that the SUSY transformation between the differ-
ent sectors be trivial, namely,

½sþA ; ’�g ¼ ½s �A; ’
þg ¼ 0; (3.26)

where ’þ and ’� denote any component of
ðcþ; �cþ; Aþ�; bþÞ and ðc�; �c�; A��; b�Þ, respectively.

Note that although the number of total supercharges is
doubled in the present (anti-)Hermitian formulation, the
lattice Leibniz rule requirements associated with the alge-
bra (3.19) and (3.20) remain unchanged and are expressed
as (3.14). The generic solutions are still given by (3.15) and
(3.16).

IV. LATTICE CHERN-SIMONS ACTION

In terms of the two oppositely oriented multiplets, the
anti-Hermitian, Landau-gauge fixed Chern-Simons action
on a three-dimensional lattice is given by

Stot ¼ kþSþ þ k�S�; (4.1)

with

Sþ ¼ i

4�

X
x

Tr

�
1

2
����ðAþ�ÞxþP n;xþn�þn�

� ½�þ�; Aþ��xþn�þn�;x
þ 1

3
����ðAþ�Aþ�Aþ�ÞxþP n;x

� ðbþÞxþP n;x½���; Aþ��x;x
� ð �cþÞxþP n;xþa½���; ½Dþ�; cþ��xþa;x

�
; (4.2)

S� ¼ i

4�

X
x

Tr

�
1

2
����ðA��Þx�P n;x�n��n�

� ½���; A���x�n��n�;x
þ 1

3
����ðA��A��A��Þx�P n;x

� ðb�Þx�P n;x½�þ�; A���x;x
� ð �c�Þx�P n;x�a½�þ�; ½D��; c���x�a;x

�
; (4.3)

where kþ and k� denote complex parameters related to
each other by complex conjugation, ðk�Þ� ¼ k�. The sum-
mation over x in (4.2) and (4.3) covers all the integer sites
of a three-dimensional regular lattice, anticipating the fact
that the a needs to be integer vectors. The anti-Hermiticity
of the total action is manifest.

A. Twisted SUSY invariance

Before showing the SUSY invariance of the lattice ac-
tion (4.1), (4.2), and (4.3), we would like to make the
following remarks. First, in order to ensure the SUSY
invariance of the action, one needs to take care of the
ordering of the link fields. The notion of proper ordering
in lattice SUSY formulations has been addressed in
Ref. [27]. Here in the lattice Chern-Simons action, the
proper ordering is nothing but the geometrically connected
ordering; namely, each term of Sþ or S� consists of factors
on connected links. Furthermore, all the terms in Sþ and
S� connect x to xþP

n and x to x�P
n, respectively,

through a sequence of links. The homogeneous connecting
property is a direct consequence of the link component
fields consistently allocated with the N ¼ 4 D ¼ 3 twisted

TABLE V. Twisted SUSY transformation laws on the lattice. The upper and lower signs show
the transformation laws of ðcþ; �cþ; Aþ�; bþÞ under ðsþ; �sþ�; sþ�; �sÞ and ðcþ; �cþ; Aþ�; bþÞ under
ðsþ; �sþ�; sþ�; �sÞ, respectively. The link attributes of the products and (anti-)commutators are

understood.

s� �s�� s�� �s�

c� ðc�Þ2 �A�� 0 �b� þ f �c�; c�g
�c� b� 0 A�� ð �c�Þ2
A�� �½D��; c�� �����½���; �c�� �����½���; c�� �½D��; �c��
b� 0 ½���; �c�� ½D��; c�� ½ �c�; b��
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SUSY transformation laws on the lattice. Figure 3 depicts
the configuration of the component fields per unit cell in
the case of a ¼ �P

n. The second remark is that the N ¼
4 D ¼ 3 twisted SUSY invariance of the action (4.1) is
intrinsically related to the one-vector arbitrariness (3.15)
and (3.16) in the solutions for the lattice Leibniz rule
conditions. Since the twisted SUSY variations satisfy
Eq. (3.26), the only nontrivial variations come from either
sþA S

þ or s�A S
�, whose link attributes are given by ðxþP

nþ aA; xÞ and ðx�P
n� aA; xÞ, respectively. One ob-

serves here that if one takes aA ¼ �P
n, then the twisted

SUSY variation of the action is reduced to that for closed
loops.

The twisted SUSY invariance of the action can be ex-
plicitly verified by exploiting the above remarks. For ex-
ample, the sþ variation of the second term in (4.2) gives

sþSþj2nd term¼ i

4�

X
x

Tr

�
1

3
����ððsþAþ�ÞAþ�Aþ�ÞxþPnþa;x

þ1

3
����ðAþ�ðsþAþ�ÞAþ�ÞxþPnþa;x

þ1

3
����ðAþ�Aþ�ðsþAþ�ÞÞxþPnþa;x

�
;

(4.4)

whose link attribute is given by ðxþP
nþ a; xÞ. If we

take a ¼ �P
n, then each term above is reduced to con-

nected links forming a closed loop. After using the cyclic
property of trace under the summation over x and the sþ
transformation law of Aþ�, sþAþ� ¼ �½Dþ�; cþ�, one
obtains

sþSþj2nd term ¼ � i

4�

X
x

Tr����ð½Dþ�; cþ�Aþ�Aþ�Þx;x

¼ � i

4�

X
x

Tr

�
����ð½�þ�; cþ�Aþ�Aþ�Þx;x

þ ����ð½Aþ�; cþ�Aþ�Aþ�Þx;x
�

¼ � i

4�

X
x

Tr����ð½�þ�; cþ�Aþ�Aþ�Þx;x;

(4.5)

where from the first to the second line, we just inserted the
expression of forward covariant differences, Dþ� ¼
�þ� þ Aþ�, while from the second to the third equality,

we used the trace property and antisymmetric property of
���� to cancel out the second term. Figure 4 depicts the

typical configuration of component fields in the sþ trans-
formed action with the particular choice of a ¼ �P

n.
The operation of sþ plays the role to close the loop.
Performing the same procedure for the other terms in
(4.2), one can explicitly show that sþ variations of Sþ
give the total difference terms which are vanishing under
the summation over x. Furthermore, s�S� ¼ 0 can also be
shown explicitly with the choice of a ¼ �P

n. In a simi-

lar manner, we may verify the invariance of the total action
(4.1) with respect to each supercharge of ðs�; �sþ�; s��; �s�Þ
under an appropriate choice of aA:

s�Stot ¼ 0; for a ¼ �X
n; (4.6)

�s��Stot ¼ 0; for �a� ¼ �
X

n ð� ¼ 1; 2; 3Þ; (4.7)

s��Stot ¼ 0; for a� ¼ �
X

n ð� ¼ 1; 2; 3Þ; (4.8)

�s�Stot ¼ 0; for �a ¼ �X
n: (4.9)

Notice again that the one-vector arbitrariness associated
with the lattice algebra (3.19) and (3.20) has played a
fundamental role in the natural realization of the invariance
under the full lattice SUSY algebra.
Keeping in accordance with the above invariance of the

lattice Chern-Simons action, one may define the twisted
SUSY variations 	A for the component fields as follows:

	Að’Þxþa’;x ¼ T
 
aA�AðsA’Þxþa’þaA;x ðno sumÞ;

(4.10)

where ð’Þxþa’;x denotes any of the component fields

ðc�; �c�; A��; b�Þ. T
 
aA represents a shift operator acting

c

c

+ n1

+ n3

+ n2
b

A +1
A +2

A +3

FIG. 3. Configurations of the component fields ðAþ�; c; �c; bÞ in
the action Sþ for a ¼ �P

n: All the edges of each unit cell are
occupied by Aþ�.

s+

A +1
A +2

A +3

FIG. 4. A typical configuration in the transformed action
sþSþ.
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on the functions from the right, fðxÞT aA ¼ fðxþ aAÞ,
while �A represents a constant Grassmann parameter.
One can verify the invariance of the total action (4.1) under
the above componentwise twisted SUSY variations,

Stot½’þ 	A’� � Stot½’� ¼ 0; for aA ¼ �
X

n;

(4.11)

where ’ represents collectively the set of all component
fields that appear in the total action. The existence of the

shift operator T
 
aA in the componentwise SUSY variations

(4.10) and the notion of the proper ordering in the lattice
action seems to imply that the entire lattice SUSY formu-
lation could be embedded in a certain noncommutative
(super)space framework, which will be addressed in the
future development.

B. Kernels

Another important feature of the lattice Chern-Simons
action (4.1), (4.2), and (4.3) is that the kinetic terms of the
lattice gauge fields can be expressed in terms of the one-
sided difference version of the Fröhlich-Marchetti kernels
[11],

Sþj1st term ¼ i

8�

X
xy

TrðAþ�Þxþn�;xK̂��ðx� yÞðAþ�Þyþn�;y;

(4.12)

S�j1st term ¼ i

8�

X
xy

TrðA��Þx;xþn�K��ðx� yÞðA��Þy;yþn� ;

(4.13)

where the kernels Kðx� yÞ and K̂ðx� yÞ are given by [17]

K��ðx� yÞ ¼ ~Tn�����@þ�	xy; (4.14)

K̂ ��ðx� yÞ ¼ ~T�n�����@��	xy; (4.15)

with @þ�fðxÞ ¼ fðxþ n�Þ � fðxÞ, @��fðxÞ ¼
fðxÞ � fðx� n�Þ, ~Tn�fðxÞ ¼ fðxþ n�Þ, and ~T�n�fðxÞ ¼
fðx� n�Þ. Since the gauge fields are located on links, the

analysis in the momentum space superficially depends on
where to pick up their representatives in the configuration
space. Fourier transformation of the link gauge fields is
given by

ðAþ�Þxþn�;x ¼
Z
B

d3p

ð2�Þ3 e
�ip�ðxþ�n�ÞAþ�ðpÞ; (4.16)

ðA��Þx;xþn� ¼
Z
B

d3p

ð2�Þ3 e
�ip�ðxþ�n�ÞA��ðpÞ; (4.17)

where the constant � parametrizes the representative
points of the gauge fields. Namely, � ¼ 0, 12 , and 1 corre-

spond to the initial point, midpoint, and ending point
prescriptions, respectively. B denotes the Brillouin zone:
B ¼ fp�j � � 	 p� 	 �;� ¼ 1; 2; 3g. Aþ�ðpÞ and

A��ðpÞ are related to each other by the complex conjuga-

tion, A��ðpÞy ¼ �A��ð�pÞ, in order to satisfy the con-

jugation relation of the gauge fields in the configuration
space. Momentum space representation of the kernels
(4.14) and (4.15) is accordingly given by

Kð�Þ��ðpÞ ¼ �2i����e
�iðð1��Þp�þ�p�þð1=2Þp�Þ sin

p�

2
;

(4.18)

K̂ ð�Þ��ðpÞ ¼ �2i����e
þið�p�þð1��Þp�þð1=2Þp�Þ sin

p�

2
:

(4.19)

Although the form of the kernels is explicitly dependent on
the parameter �, their eigenvalues should be independent
of �. In fact, one may easily verify that the eigenvalues of
K are given by 
ðpÞ ¼ 0,

� 2e
�ði=2ÞP3

�¼1 p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
�¼1

sin2
p�

2

vuuut :

Likewise the eigenvalues of K̂ are given by 
̂ðpÞ ¼ 0,

� 2e
þði=2ÞP3

�¼1 p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
�¼1

sin2
p�

2

vuuut ;

the complex conjugate of 
ðpÞ. The zero eigenvalue, which
arises from the original gauge invariance of the action,
should be cured by the gauge-fixing terms. It is important
to notice that they do not have any other extra zero eigen-
values, which implies that both (4.18) and (4.19) could
serve as the invertible kernels after the gauge-fixing terms
are properly taken into account. Notice again that the
eigenvalues always come in complex conjugated pairs,
ensuring the anti-Hermiticity of the entire formulation.
These features are direct consequences of the use of two
sets of oppositely oriented component fields on the lattice.

C. Naive continuum limit

The naive continuum limit of the total action is taken by
replacing the difference operators by differential operators,

��� ! @�: (4.20)

The Hermitian conjugation property of ��� is accordingly

reduced into the anti-Hermiticity of @�,

KAZUHIRO NAGATA AND YONG-SHI WU PHYSICAL REVIEW D 78, 065002 (2008)

065002-8



ð���Þy ¼ ���� ! ð@�Þy ¼ �@�: (4.21)

The Hermitian conjugation properties, Eqs. (3.24) and
(3.25), of the component fields are supposed to be retained
in the continuum. The component fields in the continuum
limit are accordingly given by

ðAþ�Þxþn�;x ! Aþ�ðxÞ � A�ðxÞ þ iB�ðxÞ;
ðA��Þx;xþn� ! A��ðxÞ � A�ðxÞ � iB�ðxÞ;

(4.22)

ðcþÞxþa;x ! cþðxÞ � cðxÞ þ idðxÞ;
ðc�Þx;xþa ! c�ðxÞ � cðxÞ � idðxÞ; (4.23)

ð �cþÞxþ �a;x ! �cþðxÞ � �cðxÞ þ i �dðxÞ;
ð �c�Þx;xþ �a ! �c�ðxÞ � �cðxÞ � i �dðxÞ; (4.24)

ðbþÞxþP n;x ! bþðxÞ � bðxÞ þ ihðxÞ;
ðb�Þx;xþP n ! b�ðxÞ � bðxÞ � ihðxÞ: (4.25)

Here ðA�; B�; b; hÞ, ðc; dÞ, and ð �c; �dÞ denote bosonic anti-

Hermitian fields, Grassmann odd anti-Hermitian fields, and
Grassmann odd Hermitian fields, respectively. Note that
the two possible orientations of the lattice component
fields can naturally be interpreted as the complex structure
of the gauge group. In terms of the above expansions, the
entire action (4.1), (4.2), and (4.3) can be expressed in the
continuum limit as

Stotcont ¼ kþSþcont þ k�S�cont

¼ i

2�
u
Z

d3xTr

�
1

2
����ðA�@�A� � B�@�B�Þ þ 1

3
����ðA�A�A� � 3A�B�B�Þ � b@�A� þ h@�B�

� �c@�ðD�c� ½B�; d�Þ þ �d@�ðD�dþ ½B�; c�Þ
�
� i

2�
v
Z

d3xTr

�
1

2
����ðA�@�B� þ B�@�A�Þ

þ 1

3
����ð3A�A�B� � B�B�B�Þ � b@�B� � h@�A� � �d@�ðD�c� ½B�; d�Þ � �c@�ðD�dþ ½B�; c�Þ

�
; (4.26)

where the constants u and v are the real and imaginary
parts of the complex parameters k� ¼ u� iv. The cova-
riant derivative D� is again defined by D�c ¼
@�cþ ½A�; c�. The action (4.26) can be regarded as the
Landau-gauge fixed version of the Chern-Simons action

with complex gauge group originally proposed in
Ref. [34]. Obviously, if one takes B� ¼ d ¼ �d ¼ h ¼ 0,
the entire action (4.26) is reduced into the expression (2.1)
with the coefficient u ¼ k. In the general case, according to
Ref. [34], the parameter u must always be quantized to be

TABLE VI. Twisted SUSY transformation laws in the naive continuum limit for the expanded
component fields ðc; d; �c; �d; A�; B�; b; hÞ.

sð1Þ �sð1Þ� sð1Þ� �sð1Þ

c c2 � d2 �A� 0 �bþ f �c; cg � f �d; dg
d fc; dg �B� 0 �hþ f �c; dg þ f �d; cg
�c b 0 A� �c2 � �d2

�d h 0 B� f �c; �dg
A� �D�cþ ½B�; d� �����@� �c �����@�c �D� �cþ ½B�; �d�
B� �D�d� ½B�; c� �����@� �d �����@�d �D�

�d� ½B�; �c�
b 0 @� �c D�c� ½B�; d� ½ �c; b� � ½ �d; h�
h 0 @� �d D�dþ ½B�; c� ½ �c; h� þ ½ �d; b�

sð2Þ �sð2Þ� sð2Þ� �sð2Þ

c fc; dg B� 0 h� f �c; dg � f �d; cg
d �c2 þ d2 �A� 0 �bþ f �c; cg � f �d; dg
�c h 0 B� �f �c; �dg
�d �b 0 �A� �c2 � �d2

A� �D�d� ½B�; c� ����@� �d �����@�d D�
�dþ ½B�; �c�

B� D�c� ½B�; d� �����@� �c ����@�c �D� �cþ ½B�; �d�
b 0 �@� �d D�dþ ½B�; c� �½ �c; h� � ½ �d; b�
h 0 @� �c �D�cþ ½B�; d� ½ �c; b� � ½ �d; h�
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an integer k if the Tr is normalized correctly, while there is
no quantization condition for the real parameter v.

The lattice supercharges ðs�; �s��; s��; �s�Þ may also be

expanded as

s� ¼ 1
2ðsð1Þ � isð2ÞÞ; �s� ¼ 1

2ð �sð1Þ � i �sð2ÞÞ; (4.27)

�s�� ¼ 1
2ð�sð1Þ� � i�sð2Þ� Þ; s�� ¼ 1

2ðsð1Þ� � isð2Þ� Þ; (4.28)

with which the naive continuum limit of the lattice SUSY
algebra (3.19) and (3.20) is given by

fsðiÞ; �sðjÞ� g _¼ð	ij � i�ijÞ@�;
fsðiÞ� ; �sðjÞ� g _¼ð	ij � i�ijÞ����@�;

(4.29)

f �sðiÞ; sðjÞ� g _¼� ð	ij � i�ijÞ@�; fothersg ¼ 0; (4.30)

for the continuum-limit multiplet ’� ¼ ðc�; �c�; A��; b�Þ,
respectively. The suffixes i, j take 1 or 2, and �12 ¼
��21 ¼ 1. The SUSY transformation laws in terms of

ðsðiÞ; �sðiÞ� ; sðiÞ� ; �sðiÞÞ for the expanded component fields
ðA�; B�; c; d; �c; �d; b; hÞ are summarized in Table VI. It is

straightforward to verify that the action with the coefficient
u and the action with v in (4.26) are separately invariant

under the twisted SUSY transformations ðsðiÞ; �sðiÞ� ; sðiÞ� ; �sðiÞÞ.

V. TRANSFORMATION PROPERTIES UNDER
PARITY

The properties under parity transformation are an im-
portant issue for continuum Chern-Simons theory. In this
section we address this issue for our twisted SUSY Chern-
Simons action on a lattice. We first recall that on a
Euclidean three-dimensional lattice or spacetime, parity
may be defined by the simultaneous inversion of all coor-
dinates (2.11). Since the gauge fields A�� are located on

links ðA��Þx�n�;x and the parity also flips the link orienta-

tions, one may naturally define the parity operation P for
A�� on the lattice by

PðAþ�Þxþn�;xP�1 ¼ �ðA��Þ�x�n�;�x; (5.1)

where �x denotes ð�x1;�x2;�x3Þ. The difference opera-
tors are also located on links so that their parity trans-
formation law is

Pð�þ�Þxþn�;xP�1 ¼ �ð���Þ�x�n�;�x; (5.2)

which is also consistent with the fact that ��� actually

take the unit values in the link commutators [see (3.3)]. As
for the gauge-fixing component fields and the super-
charges, we define

PðcþÞxþa;xP�1 ¼ þðc�Þ�x�a;�x;
Pð �cþÞxþ �a;xP

�1 ¼ �ð �c�Þ�x� �a;�x;
(5.3)

PðbþÞxþP n;xP
�1 ¼ �ðb�Þ�x�P n;�x; (5.4)

PðsþÞxþa;xP�1 ¼ þðs�Þ�x�a;�x;
Pð�sþÞxþ �a;xP

�1 ¼ �ð�s�Þ�x� �a;�x;
(5.5)

Pð�s�Þxþ �a�;xP
�1 ¼ �ð�s�Þ�x� �a�;�x;

Pðsþ�Þxþa�;xP�1 ¼ þðs��Þ�x�a�;�x:
(5.6)

In the following we will see two interesting features result-
ing from these definitions. One is regarding the parity of
the lattice Chern-Simons action. The other one is the parity
property in the continuum limit.
As for the parity transformation of the action, it is easy

to see that the definitions (5.1), (5.2), (5.3), and (5.4)
interchange the two oppositely oriented parts of the action,
Sþ given by Eq. (4.2) and S� given by Eq. (4.3):

PSþP�1 ¼ i

4�
P
X
x

Tr

�
1

2
����ðAþ�ÞxþP n;xþn�þn�½�þ�; Aþ��xþn�þn�;x þ � � �

�
P�1

¼ � i

4�

X
x

Tr

�
1

2
����ðA��Þ�x�P n;�x�n��n�½���; A����x�n��n�;�x þ � � �

�

¼ � i

4�

X
x

Tr

�
1

2
����ðA��Þx�P n;x�n��n�½���; A���x�n��n�;x þ � � �

�
¼ �S�: (5.7)

Here from the second line to the third, we have replaced
x! �x. Likewise, we also have PS�P�1 ¼ �Sþ. We
thus have the parity transformation for the total action
Stot (4.1) as

PStotP�1 ¼ �kþS� � k�Sþ; (5.8)

which implies that the total action is not an eigenstate of
the parity defined by (5.1), (5.2), (5.3), and (5.4). Writing

the complex parameters k� as k� ¼ u� iv, we actually
have

Stot ¼ uðSþ þ S�Þ þ ivðSþ � S�Þ; (5.9)

PStotP�1 ¼ �uðSþ þ S�Þ þ ivðSþ � S�Þ: (5.10)

Now it becomes clear that the total action is a sum of a
parity even part with the coefficient u and a parity odd part
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with the coefficient iv.

Stotjv¼0: parity odd; Stotju¼0: parity even: (5.11)

One can understand the mixed behavior of the total
action under parity more clearly by examining the parity
behavior of the component fields in the continuum limit. In
fact, by considering the continuum limit (4.22) of the
lattice parity operation (5.1), one obtains

PA�ðxÞP�1 ¼ �A�ð�xÞ; PB�ðxÞP�1 ¼ þB�ð�xÞ;
(5.12)

which imply that the A�ðxÞ is an ordinary vector, while the
B�ðxÞ is a pseudovector. By considering the continuum

limit of the relations (5.3), (5.4), (5.5), and (5.6), one also
obtains the parity behavior of the other component fields
and the supercharges as listed in Table VII. In the language
of forms, the complex gauge fields A�� may be regarded as

complex combinations of a one-form A and a two-form B,

A��dx� ¼ A� i � B; (5.13)

where A ¼ A�dx� and B ¼ 1
2B��dx� ^ dx�. The symbol

� denotes the Hodge star operation. Likewise, the contin-
uum limits of the gauge-fixing component fields
ðc�; �c�; b�Þ are divided into the complex combinations
of 0-forms and 3-forms. It is interesting to note that our
anti-Hermitian lattice formulation together with the
twisted SUSY structure actually involves all possible sim-
plicial forms in the three-dimensional spacetime.

The mixed behavior under parity of the continuum
action (4.26) is now clearly understood. One can easily
see from Table VII that part of the action with the coeffi-
cient u is actually parity odd, just like the ordinary Chern-
Simons action for a single gauge field, while part of the
action with the coefficient v is parity even. The manifestly
anti-Hermitian formulation on the lattice thus eventually
leads to a unified picture of even and odd parity Chern-
Simons theory. It is worthwhile to mention that the parity
even part of the continuum action (4.26) shares the same
parity behavior as the so-called ‘‘dumbbell’’ Chern-
Simons action addressed in [13], where vector and pseu-
dovector gauge fields are introduced as the lattice objects
dual to each other. We also note that the parity even part of
the continuum action (4.26) shares the same parity behav-
ior with the so-called ‘‘doubled’’ Chern-Simons theory
discussed in [8], though the action is actually not the same.

VI. SUMMARYAND DISCUSSIONS

We have constructed the Landau-gauge fixed Chern-
Simons theory on a three-dimensional regular lattice. The
N ¼ 4 D ¼ 3 twisted SUSY associated with the Chern-
Simons action in Landau gauge has played a crucial role as
the guiding principle in the present lattice construction.
The one-vector arbitrariness associated with the N ¼ 4
D ¼ 3 lattice algebra is shown to play an important role
in maintaining the twisted SUSY invariance of the lattice
action. In order to ensure the manifest anti-Hermiticity on
the lattice, we have introduced two sets of oppositely
oriented component fields attached to every possible link.
Owing to this ‘‘doubling’’ of the lattice component fields,
the gauge kernels are shown to be free from the extra zero-
eigenvalue problem. We have also addressed the trans-
formation properties under parity of the fields involved in
our construction. It was pointed out that a natural definition
of parity on the lattice involves component fields of oppo-
site parity. Parity invariance then puts a constraint between
the coefficients in front of the actions for the oppositely
oriented component fields.
It is important to ask whether one can recover the

appropriate N ¼ 4 D ¼ 3 twisted SUSY Chern-Simons
theory in the continuum limit. In particular, whether the
continuum rotational symmetry and the entire N ¼ 4 D ¼
3 twisted SUSY invariance are restored in the continuum
limit is an important issue, worth further study. Discussing
these aspects requires a careful examination of possible
quantum corrections on the lattice. Here we would like to
point out an important correlation between the rotational
symmetry and the twisted SUSY invariance of the lattice
action (4.6), (4.7), (4.8), and (4.9). Since in our formulation
we respect only part of the entire set of SUSY generators,
not only the continuous rotational symmetry but also the
discrete rotational symmetry (for the square lattice) are
broken on the lattice. However, as one can see in Table IV
and Fig. 3, the lattice action with the parameter choice a ¼
�P

n, which corresponds to the invariance (4.6), has a
symmetry subgroup with a single 3-fold rotation axis, C3 ¼
ðE;C3; C

2
3Þ, of the octahedral group O. This is because all

the gauge-fixing component fields ðc�; �c�; b�Þ are located
on the diagonal link parallel to a ¼ �P

n, while the gauge
fields A�� are located on the regular edges. The lattice

action with �a ¼ �P
n, which corresponds to the invari-

ance (4.9), also has the same symmetry. Figure 5 shows the
projected field configurations normal to a ¼ �P

n, where
the 3-fold rotational symmetry is manifest. It is interesting
to notice that the gauge-fixing component fields ðc; �c; bÞ
and the supercharge s are projected onto a point, which

TABLE VII. Behavior under parity of the component fields and supercharges in the continuum limit.

A� B� c d �c �d b h sð1Þ sð2Þ �sð1Þ� �sð2Þ� sð1Þ� sð2Þ� �sð1Þ �sð2Þ @�

Parity � þ þ � � þ � þ þ � � þ þ � � þ �
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corresponds to the fact that these component fields and the
supercharge should behave as (pseudo-)scalars in the con-
tinuum limit.

It should be stressed again that our lattice action is a
gauge-fixed one. Namely, it is not invariant under gauge
symmetry. Instead, it has N ¼ 4 D ¼ 3 twisted supersym-
metry whose scalar transformation corresponds to the
BRST transformation associated with the Landau-gauge
fixed Chern-Simons theory. Although further study is
needed to clarify whether the entire N ¼ 4 D ¼ 3 twisted
SUSY invariance can be properly restored in the contin-
uum limit, the following three important features of our
formulation may be explored to argue for the gauge invari-
ance in the continuum limit: (1) The Landau gauge-fixed
action (2.1) enables us to make use of the N ¼ 4 D ¼ 3
twisted SUSY structure in building the lattice action;

(2) the remnant of the gauge symmetry in the original
Chern-Simons action has turned into the scalar part of
the N ¼ 4 D ¼ 3 twisted SUSY; (3) the infinitesimal
BRST transformations are preserved on the lattice.
Therefore, at least formally, in our gauge-fixed formulation
there is no need to be concerned about large gauge trans-
formations, which would be far more difficult to realize
directly on the lattice.
It is also important to ask whether the lattice formulation

presented in this paper could really serve as a useful
regularization scheme; namely, whether the quantum as-
pects such as the Chern-Simons coefficient renormaliza-
tion [40] could be calculated in this framework. We should
also address the possibility that the entire lattice SUSY
description presented in this paper could be formulated
more rigidly in terms of a certain noncommutative
(super)space formalism. The work is in progress.
Another interesting question for possible applications in

physics is whether there exists a real or model system in
condensed matter physics that has a topological phase
described by the Chern-Simons action with complex gauge
group.
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Ünsal, J. High Energy Phys. 08 (2003) 024; 12 (2003) 031;
J. Nishimura, S. J. Rey, and F. Sugino, J. High Energy
Phys. 02 (2003) 032; J. Giedt, E. Poppitz, and M. Rozali,
J. High Energy Phys. 03 (2003) 035; J. Giedt, Nucl. Phys.
B668, 138 (2003); B674, 259 (2003); Int. J. Mod. Phys. A
21, 3039 (2006); D. B. Kaplan and M. Unsal, J. High
Energy Phys. 09 (2005) 042; M. Unsal, J. High Energy
Phys. 11 (2005) 013; 04 (2006) 002; T. Onogi and T.
Takimi, Phys. Rev. D 72, 074504 (2005); M.G. Endres
and D. B. Kaplan, J. High Energy Phys. 10 (2006) 076;
P. H. Damgaard and S. Matsuura, J. High Energy Phys. 07
(2007) 051; Phys. Lett. B 661, 52 (2008); S. Matsuura, J.
High Energy Phys. 12 (2007) 048.
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