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We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action

is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be

dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field

equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general

relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is

automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong

equivalence principle. Every general relativistic solution remains a solution to the modified theory for any

constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions

reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame,

forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet

completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is

played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.
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I. INTRODUCTION

The failure of general relativity (GR) to explain the
nature of spacetime and cosmological singularities begs
for a completion of the theory. One path toward this
completion is the unification of GR and quantum mechan-
ics, through the postulate that spacetime itself is
discrete—loop-quantum gravity (LQG) [1–3]. This for-
malism is most naturally developed within the first-order
approach [4] in terms of a generic connection and its
conjugate electric field. When cast in these new variables,
the quantization of the Einstein-Hilbert action resembles
that of quantum electrodynamics, and thus, tools from field
and gauge theories can be employed.

Currently, two versions exist of the connection variables:
a self-dual SLð2;CÞ Yang-Mills-like connection and a real
SUð2Þ connection. The first kind is the so-called Ashtekar
connection, which was the first employed to develop LQG
and which must satisfy some reality conditions [5]. The
second type is the so-called Barbero connection and it was
constructed to avoid these reality conditions [6]. Both the
Ashtekar or Barbero formalisms can be obtained directly
from the so-called Holst action, which consists of the
Einstein-Hilbert piece plus a new term that depends on
the dual to the curvature tensor [7]. The Barbero-Immirzi
(BI) parameter � arises in the Holst action as a multi-
plicative constant that controls the strength of the dual
curvature correction. In the quantum theory, it determines
the minimum eigenvalue of the discrete area and discrete
volume operators [8].

The Holst action reduces to the Einstein-Hilbert action
upon imposition of the field equations obtained through the
action principle. Variation with respect to the connection
reduces to a torsion-free condition, and when this is used at
the level of the action, the dual curvature piece vanishes
due to the Bianchi identities. Therefore, the Holst action
leads to the same dynamical field equations as the Einstein-
Hilbert action, with modifications only in the quantum
regime. In the presence of matter, such as fermions, the
dual curvature piece does not vanish identically since the
variation of the action with respect to the connection leads
to a nonvanishing torsion tensor [9,10].
In this paper, we consider a generalization of GR, modi-

fied Holst gravity, where we scalarize the BI parameter in
the Holst action, i.e. we promote the BI parameter to a field
under the integral of the dual curvature term. Allowing the
BI field to be dynamical implies that derivatives of this
field can no longer be set to zero when one varies the action
and integrates it by parts. These derivatives generically
lead to a torsion-full condition that produces nontrivial
modifications to the field equations.
Scalarization is motivated in two different ways. One

such way is the study of the possible variation of what we
believe to be ‘‘universal physical constants.’’ The study of
models that allow nonconstant couplings have a long his-
tory, one of the most famous of which, perhaps, is the so-
called Jordan-Brans-Dicke theory [11,12]. In this model,
the universal gravitation constant G is effectively replaced
by a time-varying coupling field, such that _G � 0 (see e.g.
[13] and references therein for a review). Along these same
lines, one could consider the possibility of a nonconstant
Holst coupling, where the variation could arise, for ex-
ample, due to renormalization of the quantum theory. Such
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a possibility could and does lead to interesting corrections
to the dynamics of the field equations that deserve further
consideration.

Another motivation for scalarization is rooted in a recent
proposal of a parity-violating correction to GR in four
dimensions: Chern-Simons modified gravity [14]. In this
model, a Pontryagin density is added to the Einstein-
Hilbert action, multiplied by a � field that controls the
strength of the correction. The Pontryagin density, how-
ever, can also be written as the divergence of some current
(the so-called Pontryagin current). Thus, upon integrating
the action by parts, the Chern-Simons correction can be
thought of as the projection of the Pontryagin current along
the embedding vector @�. Modified Holst gravity can also
be interpreted as the embedding of a certain current along
the direction encoded in the exterior derivative of the BI
field. In this topological view, @� acts as an embedding
coordinate that projects a certain current, given by the
functional integral of the dual curvature tensor.

We shall here view modified Holst gravity as a viable,
falsifiable model that allows us to study the dynamical
consequences of promoting the BI parameter to a dynami-
cal quantity. This model is a formal enlargement or defor-
mation of GR in the phase space of all gravitational
theories, in which the BI scalar acts as a dynamical defor-
mation parameter, where � ¼ const corresponds to GR.
Arbitrarily close to this fixed point, one encounters devia-
tions from GR, which originate from a modified torsional
constraint that arises upon variation of the modified Holst
action with respect to the spin connection. We shall ex-
plicitly solve this constraint to find that the torsion and
contorsion tensors become proportional to first derivatives
of the BI field. In the absence of matter, we find no parity
violation induced by such a torsion tensor, as opposed to
other modifications of GR that do include matter [9,10,15].

The variation of the action with respect to the tetrad
yields the field equations, which differ from those of GR
due to the nonvanishing contorsion tensor. The modifica-
tion to the field equations is found to be quadratic in the
first derivatives of the BI field, and in fact equivalent to a
scalar-field stress-energy tensor with no potential and non-
trivial kinetic energy. This stress energy is shown to be
covariantly conserved, provided the BI field satisfies the
equation of motion derived from the variation of the action
with respect to this field. Since the BI field now possesses
equations of motion, it is dynamically determined and not
fixed a priori. Moreover, the motion of point particles is
still determined by the divergence of their stress-energy
tensor and unaffected by the Holst modification, allowing
the modified theory to satisfy the strong equivalence
principle.

Solutions of the modified theory are also studied, both
for slowly varying and arbitrarily fast, time-varying BI
fields. Since the modification to the field equations depends
on derivatives of the BI scalar, every GR solution remains a

solution of the modified model for constant �. For slowly
varying BI fields, we find that GR solutions remain solu-
tions to the modified theory up to second order in the
variation of the BI parameter, due to the structure of the
stress-energy tensor. In fact, gravitational waves in a
Minkowski or Friedmann-Roberston-Walker (FRW) back-
ground remain unaffected by the Holst modification, and
the BI field is seen to satisfy a wave equation. For arbi-
trarily fast, time-varying BI fields, cosmological solutions
are considered and the scalar-field stress-energy tensor
induced by the Holst modification is found to reduce to
that of a pressureless perfect fluid in a comoving reference
frame. For a flat FRW background and in the absence of
other fields, the scale factor is shown to evolve in the same
way as in the presence of a stiff perfect fluid.
Finally, an effective action is constructed by reinserting

the solution to the torsional constraint into the modified
Holst action, which is found to lead to the same dynamics
as the full action. This effective action corresponds again to
that of a scalar field with no potential but nontrivial kinetic
energy. Such nontrivial kinetic terms in the action prompt
the comparison of modified Holst gravity to k-inflationary
models, in which the inflaton is driven not by a potential
but by nonstandard kinetic terms. Modified Holst gravity
only contains nontrivial quadratic first derivatives of the
scalar field, which in itself is insufficient to lead to inflation
in the k-inflationary scenario [16]. However, inflationary
solutions are found to be allowed provided quadratic cur-
vature corrections are added to the modified Holst action,
which are prone to arise upon a UV completion of the
theory.
The remainder of this paper deals with details that

establish the results summarized above. We shall here
adopt the following conventions. Capitalized Latin letters
I; J; . . . ¼ 0, 1, 2, 3 stand for internal Lorentz indices,
while lower Greek letters �; �; . . . ¼ 0, 1, 2, 3 stand for
spacetime indices. Spacetime indices are usually sup-
pressed in favor of wedge products and internal indices.
We also choose the Lorentzian metric signature
ð�;þ;þ;þÞ and the Levi-Cività symbol convention
~�0123 ¼ þ1, which implies ~�0123 ¼ �1. Square brackets
around indices stand for antisymmetrization, such as
A½ab� ¼ ðAab � AbaÞ=2. Other conventions and notational

issues are established in the next section and in the
Appendix.

II. MODIFIED HOLST GRAVITY

In this section we introduce modified Holst gravity and
establish some notation. Let us consider the following
action in first-order form:

S ¼ 1

4�

Z
�IJKLe

I ^ eJ ^ FKL þ 1

2�

Z
��eI ^ eJ ^ FIJ

þ Smat; (1)

VICTOR TAVERAS AND NICOLÁS YUNES PHYSICAL REVIEW D 78, 064070 (2008)

064070-2



where � ¼ 8�G, Smat is the action for possible additional
matter degrees of freedom, �IJKL is the Levi-Cività tensor,
e is the determinant of the tetrad eI, and eI is its inverse. In
Eq. (1), the quantity FIJ is the curvature tensor of the
Lorentz spin connection wIJ, while �� ¼ 1=� is a coupling
field, with � the BI field. Note that the first term in Eq. (1)
is the standard Einstein-Hilbert piece, while the second
term reduces to the standard Holst piece in the limit �� ¼
const (or � ¼ const). Also note that in the modified theory
there are three independent degrees of freedom, namely,
the tetrad, the spin connection, and the coupling field.

Varying the action with respect to the degrees of free-
dom, one obtains the field equations of the modified theory.
Assuming that the additional matter action does not depend
on the connection and varying the full action with respect
to this quantity, one obtains

�IJKLT
I ^ eJ ¼ �eK ^ eL ^Dð!Þ ��� 2 ��T½K ^ eL�; (2)

whereDð!Þ stands for covariant differentiation with respect
to the spin connection and the torsion tensor is defined as
TI ¼ Dð!ÞeI. One can arrive at Eq. (2) by noting that

	!R
KL ¼ Dð!Þ	!KL, where 	! is shorthand for the varia-

tion with respect to the spin connection, and integrating by
parts. We shall here ignore boundary contributions that
arise when integrating by parts, since they shall not con-
tribute to the scenarios we shall investigate in later sections
(gravitational waves and cosmological solutions). For the
case of black hole solutions, such boundary terms could
modify black hole thermodynamics in the quantum theory,
but this goes beyond the scope of this paper.

The remaining field equations can be obtained by vary-
ing the modified Holst action with respect to the tetrad and
the coupling field. Varying first with respect to the tetrad
we find

�IJKLe
J ^ FKL � 1

2�MJKLeIe
M ^ eJ ^ FKL

¼ �2 ��eJ ^ FIJ; (3)

where again we have assumed the additional matter de-
grees of freedom do not depend on the tetrad. Varying now
the action with respect to the coupling field we find

	Smat

	 ��
¼ � 1

2�
eI ^Dð!ÞTI; (4)

where we have assumed the matter degrees of freedom
could contain a contribution that depends on �� and thus the
BI field.

The field equations of modified Holst gravity are then
Eqs. (2)–(4). Note that for any nonconstant value of ��, the
Holst modification leads to a torsion theory of gravity.
More interestingly, even if �� ¼ 0, modified Holst gravity
also leads to torsion provided the derivatives of the BI
parameter are nonvanishing. In fact, Eq. (3) resembles
the Einstein equations in the presence of matter, where
the matter stress energy is given by the covariant derivative

of the torsion tensor. Such a resemblance is somewhat
deceptive because the curvature tensor is not the
Riemann tensor, but a generalization thereof, which also
contains torsion-dependent pieces. Thus, the full modified
field equations can only be obtained once Eq. (2) is solved
for the torsion and contorsion tensors.

III. TORSION AND CONTORSION IN MODIFIED
HOLST GRAVITY

In this section we solve for the torsion and contorsion
tensors inherent to modified Holst gravity. Equation (2) is
difficult to solve in its standard form, so instead of address-
ing it directly we shall follow the method introduced by
[9].
Let us then simplify Eq. (1) in the following manner:

S ¼ 1

4�

Z
�IJKLe

I ^ eJ ^ eP ^ eQ 1

2
FKLPQ

þ 1

2�

Z
��eI ^ eJ ^ eK ^ eL 1

2
FIJKL þ Smat; (5)

¼ 1

8�

Z
�IJKLð� ~
Þ�IJPQFKLPQ

þ 1

4�

Z
��ð� ~
Þ�IJKLFIJKL þ Smat; (6)

¼ 1

8�

Z
ð�4Þð�~
Þ	½PQ�

KL FKLPQ

þ 1

4�

Z
��ð� ~
Þ�IJKLFIJKL þ Smat; (7)

¼ 1

2�

Z
~
½	½PQ�

KL FKLPQ � ��

2
�IJKLFIJKL� þ Smat;

where ~
 ¼ d4x
ffiffiffiffiffiffiffi�gp ¼ d4xe. In Eq. (5) we reinstated all

indices of the curvature tensor following the conventions in
the Appendix. In Eq. (6), we have used the following
identity:

eI ^ eJ ^ eK ^ eL^ ¼ �~
�IJKL; (8)

which derives from the relation e0 ^ e1 ^ e2 ^ e3 ¼
1=4!~�IJKLe

IeJeKeL, where ~�IJKL is the Levi-Cività sym-
bol. Equation (7) makes use of the 	� � relation, which in
four dimensions reduces to

�IJKL�IJPQ ¼ 	½KL�
PQ

:¼ 	½K
P 	

L�
Q ¼ 1

2ð	KP	LQ � 	LP	
K
QÞ: (9)

The modified Holst action can thus be recast as follows:

S ¼ 1

2�

Z
d4x epIJKLe

�
I e

�
JF

KL
��; (10)

where the operator pIJKL is given by

pIJ
KL ¼ 	½K

I 	
L�
J � ��

2
�IJ

KL: (11)
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In terms of this operator, Eq. (2) becomes

pIJKLDð!Þðe�I e�J Þ ¼ 1
2e
�
I e

�
J�

IJ
KLDð!Þ ��; (12)

and after isolating the torsion tensor we obtain

2T½I ^ eJ� ¼
@Q ��

2 ��2 þ 2
½�MNIJeM ^ eN ^ eQ

� 2 ��eI ^ eJ ^ eQ�; (13)

where we have employed the inverted projection tensor

ðp�1ÞKLIJ ¼
1

��2 þ 1

�
	½I
K	

J�
L þ ��

2
�KL

IJ

�
: (14)

The torsion tensor can now be straightforwardly com-
puted by solving the torsion condition [Eq. (13)] to find

TI ¼ 1

2

1

��2 þ 1
½�IJKL@L ��þ ��	I½J@K� ���eJ ^ eK: (15)

This expression can be shown to solve Eq. (2), thus sat-
isfying the field equation associated with the variation of
the action with respect to the spin connection.

Before we can address the modified field equations for
the tetrad fields, we must first calculate the contorsion
tensor. This tensor plays a critical role in the construction
of the spin curvature, correcting the Riemann curvature
through torsion-full terms. Let us then split this connection
into a symmetric, tetrad compatible piece �IJ and an anti-
symmetric piece CIJ, called the contorsion:

!IJ ¼ �IJ þ CIJ: (16)

In the Appendix, we derive the relation between the con-
torsion and torsion tensor, so in this section it suffices to
mention that they satisfy

CIJK ¼ �1
2ðTIJK þ TJKI þ TKJIÞ; (17)

where here we have converted the suppressed spacetime
index into an internal one with the tetrad.

The contorsion tensor is then simply

CIJ ¼ � 1

2

1

��2 þ 1
ð�IJKQeK@Q ��� 2 ��e½I@J� ��Þ: (18)

One can verify that this tensor indeed satisfies the required
condition TIJK ¼ �2CI½JK�.

IV. FIELD EQUATIONS IN MODIFIED HOLST
GRAVITY

The field equations in modified Holst gravity are given
by Eqs. (2)–(4), the first of which (the torsion condition)
was already solved for in the previous section. We are then
left with two sets of coupled partial differential equations,
one equation for the reciprocal of the BI field �� [Eq. (4)]
and ten equations for the tetrad fields [Eq. (3)].

Let us begin with the equation of motion for ��. We can
compute the right-hand side of Eq. (4), by first calculating

the covariant derivative of the torsion tensor. Upon con-
traction with a tetrad, this quantity is given by

eI ^Dð!ÞTI ¼ �3 ~

��

ð ��2 þ 1Þ2 ð@ ��Þ
2 þ 3 ~


1

��2 þ 1
h ��;

(19)

where h ¼ DLD
L ¼ g��D�D� is the covariant

D’Alembertian operator, ~
 ¼ ffiffiffiffiffiffiffi�gp ¼ e is the volume

element, and ð@ ��Þ2 :¼ ð@L ��Þð@L ��Þ ¼ g��ð@� ��Þð@� ��Þ.
The equation of motion for �� then becomes

	Smat

	 ��
¼ 3 ~


2�

��

ð ��2 þ 1Þ2 ð@ ��Þ
2 � 3 ~


2�

1

��2 þ 1
h ��: (20)

Even in the absence of other matter degrees of freedom, the
field equations themselves guarantee that the BI coupling
be dynamical. In a later section we shall study solutions to
the equations of motion in different backgrounds that are
approximate solutions to the modified field equations in the
new theory.
In order to obtain the modified field equations, let us

contract eS^ into Eq. (3). Doing so we obtain

�F S
I �

1

2
	SI �F ¼ � ��

2
�SJPQ �FIJPQ � 1

4
�FeS ^ eI; (21)

where note that the last term will later vanish because it is
totally antisymmetric and we shall drop it henceforth. The
overhead bar in Eq. (21) is a reminder that no indices have

been suppressed, and thus, here �FIJ :¼ 	KL �FKILS and �F ¼
	½PQ�
KL

�FKLPQ ¼ 	IJ �FIJ.

With this notation, the modified field equations resemble
that of GR, except that here the �F tensor is not the Ricci
curvature but it also contains corrections due to torsion. Let
us then decompose the curvature tensor into the Riemann
curvature plus additional terms that depend on the contor-
sion tensor:

�F IJ
KL ¼ RIJKL þHIJ

KL; (22)

where HIJ
KL stands for the Holst correction tensor

HIJ
KL

:¼ 2Dð�Þ
½K C

IJ
L� þ 2CIM½KC

MJ
L� (23)

with Dð�Þ the covariant derivative associated with the sym-

metric connection. We then find that Eq. (21) reduces to

GS
I ¼ �

�
HS

I �
1

2
	SIH

�
� ��

2
�SJPQHIJPQ; (24)

where againHIJ :¼ 	KLHKILS andH ¼ 	½PQ�
KL HKL

PQ. The

right-hand side of Eq. (24) acts as a stress-energy tensor for
the reciprocal of the BI scalar.
The remainder of the calculation reduces to the explicit

calculation of the Holst correction tensor for the contorsion
found in the previous section. In a sense, Eq. (24) is similar
to the decomposition of the correction into irreducible
pieces: a trace, a symmetric piece, and an antisymmetric
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piece. The calculation of these pieces is simplified if we first calculate the covariant derivative of the contorsion and the
contorsion squared, namely,

Dð�Þ
M CKLN ¼ � 1

2

1

��2 þ 1

��
� 2 ��

��2 þ 1
ð@M ��Þð@Q ��Þ þDð�Þ

M @Q ��

�
�KLNQ þ

�
2
��2 � 1

��2 þ 1
@M ��� 2 ��Dð�Þ

M

�
	½K
N @

L� ��
�

CKM½QC
ML

T� ¼
1

4

1� ��2

ð ��2 þ 1Þ2
�
ð@ ��Þ2	K½Q	LT� þ 2ð@½K ��Þ	L�½Qð@T� ��Þ þ

2 ��

1� ��2
ð@½K ��Þ�L�TQSð@S ��Þ

�
: (25)

With these expressions at hand, the Holst correction tensor is given by

HI
J ¼ 1H

I
J þ 2H

I
J

1H
I
J
:¼ 2Dð�Þ

½K C
KI
J� ¼

1

��2 þ 1

�
��2 � 1

��2 þ 1

�
ð@I ��Þð@J ��Þ þ 1

2
	IJð@ ��Þ2

�
� ��

�
DJ@

I ��þ 1

2
h ��	IJ

��

2H
I
J
:¼ 2CKM½KC

MI
J� ¼

1

2

1� ��2

ð1þ ��2Þ2 ½ð@ ��Þ
2	IJ � ð@I ��Þð@J ��Þ�;

(26)

and its trace is then simply

H ¼ 3

2

��2 � 1

ð ��2 þ 1Þ2 ð@ ��Þ
2 � 3 ��h ��

��2 þ 1
: (27)

Finally, the antisymmetric part of this tensor is given by

�SJ
PQHIJ

PQ ¼ � 6 ��

ð ��2 þ 1Þ2
�
ð@S ��Þð@I ��Þ � 1

2
ð@ ��Þ2	IS

�

� 2

��2 þ 1
ð	ISh ���DI@S ��Þ: (28)

We have now all the machinery in place to compute the
modification to the field equations [i.e. the right-hand side
of Eq. (24)]. Combining all irreducible pieces of the Holst
correction tensor, we find

GS
I ¼

3

2

1

��2 þ 1

�
ð@S ��Þð@I ��Þ � 1

2
	SI ð@ ��Þ2

�
; (29)

or in terms of spatial indices

G�� ¼ 3

2

1

��2 þ 1

�
ð@� ��Þð@� ��Þ � 1

2
g��ð@ ��Þ2

�
: (30)

Remarkably, the second derivatives of �� have identically
canceled upon substitution of the solution to the torsional
constraint. Perhaps even more remarkably, we find that
modified Holst gravity is exactly equivalent to GR in the
presence of an BI field with stress-energy tensor

T�� ¼ 3

2�

1

��2 þ 1

�
ð@� ��Þð@� ��Þ � 1

2
g��ð@ ��Þ2

�
: (31)

Such a stress-energy tensor is similar to that of a scalar
field, except for a scalar-field dependent prefactor and the
fact that �� obeys a more complicated and nonlinear evo-
lution equation [Eq. (20)] than the scalar-field one.

V. SOLUTIONS IN MODIFIED HOLST GRAVITY

Now that the field equations have been obtained, one can
study whether well-known solutions in GR are still solu-

tions in modified Holst gravity. Formally, in the limit �� ¼
const, all GR solutions remain solutions of the modified
theory. If one adopts the view that derivatives of the BI field
are small, then to first order in these derivatives, all stan-
dard solutions in GR also remain solutions of modified
Holst gravity. This is because the stress-energy tensor
found in the previous section depends quadratically on
derivatives of the BI field, and thus, can be neglected to
first order.
Perturbations of standard solutions that solve the line-

arized Einstein equations, however, need not in general be
also solutions to the linearized modified Holst field equa-
tions. For example, perturbations of the Schwarzschild
spacetime will now acquire a source that depends on the
BI field. This source could in turn modify the gravitational
wave emission of such perturbed spacetime, and thus, the
amount of energy-momentum carried by such waves.
Exact solutions to the modified field equations are diffi-

cult to find, due to the nontrivial coupling of the BI scalar
to all metric components. We can however study some of
the perturbative features of this theory to first order. In the
next subsections we shall do so for spacetimes with prop-
agating gravitational waves and FRW metrics.

A. Gravitational waves and other approximate
solutions

Let us begin by assuming a flat background metric with a
gravitational wave perturbation

g�� ¼ ��� þ h��: (32)

In the limit �� ¼ const, all solutions of the Einstein equa-
tions are also solutions of the modified Holst equations,
and thus, Minkowski is also a solution. The Minkowski
metric then is the background solution we shall employ.
Let us now concentrate on the first-order evolution of ��

in a Minkowski background. Since we are assuming the BI
field varies slowly, terms quadratic in @ �� can be neglected,
and the equation of motion for �� becomes
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ð�@2t þ @k@
kÞ �� ¼ 0; (33)

whose solution is

�� ¼ ��C cosð!t� kix
iÞ þ ��S sinð!t� kix

iÞ; (34)

where ��C;S are constants of integration, while !
2 ¼ kik

i is

the dispersion relation, with ! the angular velocity and ki
the wave-number vector in the direction of propagation.

Now that the evolution of the BI field has been deter-
mined to first order, one can study first-order gravitational
wave perturbations about Minkowski spacetime. In doing
so, the modified field equations become

G��½h
	� ¼ Oð!=�Þ2; (35)

where� is the gravitational wave frequency. Note that the
left-hand side stands for differential operators acting on the
metric perturbation (i.e. in the Lorentz gauge, this operator
would be the flat-space Laplacian), while the right-hand
side stands for terms of second order in the variation of the
BI field. Thus, in modified Holst gravity, gravitational
waves obey the same wave equation as in GR, to leading
order in the variation of the BI field.

The equation of motion for �� can also be solved exactly
in a flat background, namely,

�� ¼ ��0 lnð1þ k�x
�Þ; (36)

where ��0 and k� are constants of integration. One can
check that for c�x

� � 1 one recovers the linearized ver-

sion of the wave solution presented above. Of course, if all
orders in the derivatives of the BI field are retained, gravi-
tational wave perturbations will be modified, but then one
must treat the coupled system simultaneously. Such a study
is beyond the scope of this paper.

The result presented above is of course not dependent on
the background chosen. For example, let us consider a
Friedmann-Robertson-Walker (FRW) background in co-
moving coordinates

ds2 ¼ að�Þð�d�2 þ d�id�
iÞ; (37)

where að�Þ is the conformal factor, � is conformal time,
and �i are comoving coordinates. As before, to zeroth
order in the derivatives of the BI field, the FRW metric
remains an exact solution of the modified theory.
Neglecting quadratic first derivatives of the BI field, its
evolution is still governed by a wave equation, but this time
about an FRW background:

� @2� ��� 2H@� ��þ @i@
i �� ¼ 0; (38)

where H :¼ @�a=a is the conformal Hubble parameter.

The solution to this equation is still obviously a wave, with
comoving angular velocity and wavelength, i.e. Eq. (36)

with k! ~k ¼ að�Þk and !! ~! ¼ að�Þ!.
The argument presented above can be generalized to

other exact solutions. For example, the Schwarzschild
and the Kerr metrics remain exact solutions to the modified

Holst field equations to zeroth order in the derivatives of
the BI field. In turn, �� is constrained to obey a wave
equation in these background, neglecting its quadratic
derivatives. This field would then source corrections to
the background that would appear as modifications to the
perturbation equations, but we shall not study these per-
turbations here.

B. Cosmological solutions

Let us now consider the evolution of the universe in
modified Holst gravity. Let us then consider the FRW line
element in cosmological noncomoving coordinates:

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin2ð�Þd�2Þ

�
;

(39)

where aðtÞ is the scale factor, t is cosmological time, and k
is the curvature parameter.
First, let us study the evolution of �� in this background.

In GR, the evolution of any cosmological stress energy is
given by the divergence of T��, namely r�T

�
�. The

zeroth component of this equation is usually used to de-
termine the scale-factor dependence of the energy density,
once an equation of state is posed. In modified Holst
gravity, we find that energy conservation is automatically
guaranteed, provided �� satisfies its own equation of motion
[Eq. (20)], which in the absence of exterior source it
reduces to

h �� ¼ ��

��2 þ 1
ð@ ��Þ2: (40)

In order to make progress, we shall assume that the BI
field depends only on time, such that the equation of
motion of its reciprocal reduces to

€��þ 3H _�� ¼ ��

��2 þ 1
_��2; (41)

where overhead dots stand for partial derivatives with
respect to cosmological time and H :¼ _a=a. This equation
can be solved exactly to find

_��

ð1þ ��2Þ1=2 ¼ L2
0

a3
; (42)

where L0 is a constant of integration needed for dimen-
sional consistency. Equation (42) can be inverted to render

��ðtÞ ¼ sinhA; (43)

where we have defined

A ðtÞ :¼
Z L2

0

a3ðtÞ dt; (44)

which contains a hidden constant of integration. We see
then that the BI field depends on the integrated history of
the inverse volume element of spacetime. Naturally, as
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spacetime contracts [near the spacelike singularity where
aðtÞ ! 0], ��! 1 and the BI scalar tends to zero.

Let us now return to the modified field equations.
Because of the symmetries of the background, there are
only two independent modified field equations, namely,

� 3
€a

a
¼ 3

2

_��2

��2 þ 1
; (45)

€a

a
þ 2

�
_a

a

�
2 þ 2

k

a2
¼ 0: (46)

We can simplify Eq. (45) with both Eqs. (42) and (46) to
find

�
_a

a

�
2 ¼ L4

0

4a6
� k

a2
: (47)

Equations (46) and (47) are the only two independent
modified field equations and they reduce to the
Raychaudhuri and Friedmann equations, respectively, in
the limit �� ¼ const. The flat (k ¼ 0) solution to the Holst-
modified Friedmann-Raychaudhuri equations is simply

a / L2=3
0 ðt� t0Þ1=3, where t0 is an integration constant,

associated with the classical singularity.
Interestingly, one can now reinsert this solution into

Eq. (44) to study the temporal behavior of the BI scalar.

Doing so, one finds that �� / ½ðt� t0Þ=t1�2=3 � ½ðt�
t0Þ=t1��2=3, where t1 is the hidden constant of integration
of Eq. (44), which is fixed via initial conditions on ��. Such
a solution implies that as t! t0 or t! 1, ��! 1, which
forces the BI scalar � to asymptotically approach zero.

Such results, however, are at this point premature since
modified Holst gravity is a classical theory and one must
analyze its quantization more carefully to determine what
the �� field represents in terms of the spectrum of quantum
geometric operators. If we make the naive assumption that
this field plays the same role in the quantized modified
theory as in LQG, then in the infinite future limit t! 1,
the spectrum of quantum geometric operators would be-
come continuous. Surprisingly, in the infinite-past limit
t! t0, the spectrum of geometric operators also ap-
proaches continuity, which could indicate that the BI scalar
becomes asymptotically free.

The Holst modification with time-dependent BI field is
then equivalent to GR in the presence of a perfect fluid. The
stress-energy tensor of such fluids is given by T�� ¼ ð
þ
pÞu�u� � pg��, where p is the pressure, 
 is the energy

density, and u� is the 4-velocity of the fluid. In this case,

the Holst modification is equivalent to a pressureless per-
fect fluid in a comoving reference frame u� ¼
½�1; 0; 0; 0�, with energy density

T00 ¼ 
 ¼ 3

4�

_��2

1þ ��2
¼ 3L2

0

4�a6
: (48)

Such a stress-energy energy in fact also leads to the same

scale-factor evolution as a pressureful perfect fluid in a
comoving reference frame with equation of state p ¼ w

and w ¼ þ1. Such an equation of state is called stiff in the
literature.

VI. EFFECTIVE ACTION AND INFLATION

The structure of the torsion and contorsion tensors re-
mind us of the Klein-Gordon scalar field. For this reason, it
is interesting to study the correction to the effective action
obtained by reinserting these tensors into Eq. (10). In doing
so, one obtains

Seff ¼ 1

2�

Z
~


�
R� 3

2

1

��2 þ 1
ð@ ��Þ2

�
; (49)

where again we see that the second derivatives have iden-
tically vanished. In general, the insertion of the solution to
the torsion condition into the action and its variation to
obtain field equations need not commute. In this case,
however, they do as one can trivially check by varying
Eq. (49) with respect to the metric. Similarly, from this
effective action one can recompute the stress-energy tensor
of �� to obtain Eq. (31).
Nontrivial kinetic terms in the action, similar to those in

Eq. (31), are the pillars of the k-inflationary model. In this
model, inflation and the inflaton field are driven by such
terms, instead of a potential. More precisely, Ref. [16]
considers the following action:

Sk ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�gp �
R� �Kð Þð@ Þ2 � �

2
Lð Þð@ Þ4

�
;

(50)

where  is the inflaton, while Kð Þ and Lð Þ are nontrivial
arbitrary functions of the scalar field  . Reference [16]
shows that this modified action is equivalent to GR with a
perfect fluid, whose stress-energy tensor T�� ¼
ð
þ pÞu�u� � pg�� and its energy density and pressure

are given by


 ¼ 1
2Kð Þð@ Þ2 þ 3

4Lð Þð@ Þ4;
p ¼ 1

2Kð Þð@ Þ2 þ 1
4Lð Þð@ Þ4;

(51)

with four-velocity

u� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffið@ Þ2p @� ; (52)

and with _ > 0. Inflation then arises provided w ¼ p=
 ¼
�1, which corresponds to

K

L
¼ �ð@ Þ2: (53)

One then discovers that, if nontrivial quadratic and quartic
kinetic terms are present in the action, inflation can arise
naturally without the presence of a potential.
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The k-inflationary scenario can be compared now to
modified Holst gravity. Doing so, one finds that the modi-
fied Holst contribution to the effective action is equivalent
to the one considered in [16], where, modulo a conven-
tional overall minus sign

K ¼ 3

2�

1

��2 þ 1
; L ¼ 0: (54)

Note that the functional K is always positive, provided the
BI field is real. If �� is complex (which is allowed provided
�� � i), then the K functional could in fact change signs.
One is thus tempted to arrive at the perhaps surprising

identification of the BI field as the inflaton of early cos-
mology. However, modified Holst gravity as analyzed here
(without external potential contributions) is not sufficient
to lead to an inflationary solution. One has already seen this

in the previous section, where we found that aðtÞ / t1=3 �
eHt. In other words, since L ¼ 0 the energy density of the
analog perfect fluid would be equal to its pressure, thus
leading to a so-called ‘‘hard’’ or ‘‘stiff’’ equation of state

and aðtÞ / t1=3.
Two paths can lead to inflation in modified Holst gravity.

The first path is to include a potential or kinetic contribu-
tion for the BI field to the action or matter Lagrangian
density (the Smat considered earlier). The obvious choice
would be to simply add a quartic term of the form Nð ��Þ�
ð@ ��Þ4. Another less trivial possibility would be to include a
term of the form

Smat ¼ 1

2

Z
�IJKLe

I ^ eJ ^ FKL½ð@ ��Þ2 þ Vð ��Þ�; (55)

such that the full Lagrangian density became L ¼
LEH½1þ ð@ ��Þ2 þ Vð ��Þ�. Since the Einstein-Hilbert
Lagrangian density contains nontrivial kinetic terms,
such an additional kinetic piece would lead to quartic first
derivatives and thus nonvanishing Lð Þ.

Another much more natural route to produce quartic
terms that does not involve adding arbitrary potential or
kinetic contributions to the action is the inclusion of
higher-order curvature corrections to the action. The modi-
fied Holst action corrects GR at an infrared level, without
producing ultraviolet corrections. However, the effective
quantum gravitational model represented by modified
Holst gravity might require UV completion, just as string
theory does. In string theory, such completion arises natu-
rally in the form of effective Gauss-Bonnet and Chern-
Simons terms. Such terms are topological in 4-dimensions
and are thus usually integrated by parts and the boundary
contribution set to zero. However, in modified Holst grav-
ity, such terms will generically be nonvanishing. For ex-
ample, a squared-curvature scalar correction to the action
would lead to three new terms, one of which would be of
the form

SR
2

eff ¼
1

2�

Z
d4x

ffiffiffiffiffiffiffi�gp 9

4

1

ð ��2 þ 1Þ2 ð@ ��Þ
4: (56)

With this correction, the Lð Þ function is not vanishing and
in fact reduces to

L ¼ � 9

2�

1

ð ��2 þ 1Þ2 : (57)

The ratio of functionals then becomes

K

L
¼ � 1

3
ð1þ ��2Þ; (58)

which could generically lead to inflation. Of course, one
would have to investigate such a scenario much more
carefully, since an F2 correction to the action not only
adds a nonvanishing L functional but it also introduces
corrections to the Friedmann equations through R2 and
Rð@ ��Þ2 terms.
We thus conclude that, although plain modified Holst

gravity (with the assumption of a homogenous and iso-
tropic BI scalar) does not lead directly to inflation, it might
allow for k-type inflation given the inclusion of UV-
motivated, dimension-four corrections to the modified
Holst action, such as a Gauss-Bonnet term. With the tools
developed in this and the previous section, one could now
study UV-completed modified Holst gravity in the light of
k inflation, but this is beyond the scope of this paper.

VII. CONCLUSIONS

We have studied an LQG-inspired generalization of GR,
where the Holst action is modified by promoting the BI
parameter to a dynamical scalar field. Three sets of field
equations were obtained from the variation of the action
with respect to the degrees of freedom of the model. The
first one is a nonlinear, wavelike equation of motion for the
reciprocal of the BI field, obtained from the variation of the
action with respect to this field. The second one is a tor-
sional constraint, obtained from the variation of the action
with respect to the spin connection, which forces the spin
connection to deviate from the Christoffel one. The third
set corresponds to the modified field equations (a modifi-
cation to the Einstein equations), obtained by varying the
action with respect to the metric.
The torsional constraint was found to generically lead to

Riemann-Cartan theory, with a torsion-full connection that
we calculated explicitly in terms of derivatives of the BI
field. From this torsion tensor, we computed the contorsion
tensor, which allowed us to calculate the correction to the
curvature tensor. Once this correction was obtained, we
found explicit expressions for both the equation of motion
for the reciprocal of the BI field as well as the modified
field equations. The structure of the latter was in fact found
equivalent to GR in the presence of a scalar-field stress-
energy tensor. This tensor was then seen to be covariantly
conserved in the modified theory via the equation of mo-
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tion of the BI field, thus satisfying the strong equivalence
principle.

In modified Holst gravity, the BI parameter is deter-
mined dynamically, possessing its own equation of motion.
In principle, �� can take on an infinite number of values in
our universe (the space of solutions of �� is infinite dimen-
sional), but perhaps only one of these is dynamically
selected by some potential. Thus, by promoting the BI
parameter to a scalar field we allow for a mechanism that
could drive the otherwise arbitrary parameter to that theo-
retically selected by black hole thermodynamics.

Typically the value of the BI parameter � ¼ ���1 is
determined by black hole thermodynamics and takes the
value � ’ 0:24. However, in modified Holst gravity the BI
parameter is determined dynamically via its own equation
of motion. In this sense, �� can take on an infinite number of
values in our universe (the space of solutions of �� is infinite
dimensional) and its precise value depends on the solution
to a coupled system of partial differential equations for ��
and the metric. For instance, in the cosmological context
discussed in Sec. VB neglecting backreaction and for a BI
scalar that is isotropic and homogeneous, the solution we
found for � approaches 0 and not 0.24 as in the black hole
case. Therefore, in this context, one would need to intro-
duce a suitable effective potential for �� to drive it to the
black hole value. We have here only discussed the possi-
bility of such a relaxation mechanism for the BI scalar in
modified Holst gravity, but much more work remains to be
done to understand the fully nonlinear behavior of � and to
explain the inclusion of an effective potential.

Solutions were next studied in the modified theory.
Since the correction to the field equations is in the form
of quadratic first-order derivatives of ��, all solutions of GR
are also solutions to the modified theory if these derivatives
are treated as small in some well-defined sense.
Gravitational wave perturbations about a Minkowski and
FRW background were also studied and found to still be
solutions of the modified theory without any additional
modifications. The reciprocal of the BI field in such back-
grounds was seen to perturbatively satisfy the wave
equation.

Cosmological solutions were also investigated in the
modified theory for an FRW background. The equations
of motion for the reciprocal of the BI field were solved
exactly to find hyperbolic sinusoidal solutions. The modi-
fied Friedmann equations were then derived and solved to
find a scale-factor evolution corresponding to that of a stiff
equation of state. In fact, in an FRW background and for a
time-dependent BI field, the modified theory was found
equivalent to GR in the presence of a pressureless perfect
fluid in a comoving reference frame.

Finally, an effective action was derived by inserting the
solution to the torsional constrained into the modified
Holst action. The effective action was found to be equiva-
lent to the standard kinetic part of a scalar-field action, with

a nontrivial prefactor. Such an action was then compared to
the ones studied in the k-inflationary model, where the
inflaton is driven by such nontrivial kinetic terms. With the
assumptions considered here (homogenous and isotropic
BI scalar and neglecting backreaction), modified Holst
gravity is insufficient to drive inflation, since the BI field
is found to be too stiff a fluid. However, upon UV com-
pletion, quartic kinetic terms should naturally arise due to
torsion contributions that are quadratic in the curvature
tensor. The combination of such nontrivial quadratic and
quartic kinetic terms could generically allow for inflation-
ary fixed points in the phase space of solutions.
Whether such inflationary solutions are truly realized

remains to be studied further, but such a task is difficult on
many fronts. First, the lack of a UV-completed modified
Holst gravity theory forces one to draw physical inspiration
from UV completions in string theory, such as Gauss-
Bonnet or Chern-Simons–like terms. The inclusion of a
Gauss-Bonnet term would require the addition of three new
terms to the modified Holst action, including quadratic
curvature tensor pieces, which would render the new equa-
tions of motion greatly nonlinear. The solution to this new
system would thus necessarily have to be fully numerical
and also raises questions about the proper choice of initial
conditions.
Even if such a UV completion leads to a tractable system

and a solution were found, its mere existence is not suffi-
cient to render the model viable as an inflationary scenario.
One would necessarily also have to study the duration of
the inflationary period (the number of e-folds), the spec-
trum of perturbations, and other tests that the standard
inflationary model passes. This paper lays the foundations
for a new set of ideas that could potentially tie together
phenomenological k-inflationary scenarios to quantum
gravitational foundations. The tools developed here will
hopefully allow researchers to consider this model more
carefully and finally contrast it with experimental data.
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APPENDIX A: FIRST-ORDER FORMALISM:
CONVENTIONS AND NOTATION

In this Appendix we establish the notation for the first-
order formalism used in this paper. Let us first note that all
spacetime indices are suppressed, and if reinstated, they
are to be added after the internal ones. It then follows that
the tetrad eI and the spin connection !KL are 1-forms on
the base manifold, while the curvature tensor associated
with it, FKL, is a 2-form on the base manifold.

Spacetime indices are reinstated through wedge product
operators, where the latter are defined by the operation

ðA ^ BÞ�� :¼ ðpþ qÞ!
p!q!

A½�1...�p
B�1...�q� (A1)

with A and B p- and q-forms, respectively. Note that the
wedge product satisfies the following chain rule

Dð!ÞðA ^ BÞ ¼ ðDð!ÞAÞ ^ Bþ ð�1ÞqA ^ ðDð!ÞBÞ; (A2)

and the following commutativity relation:

A ^ B ¼ ð�1ÞpqB ^ A: (A3)

Thus, for example,

TI ¼ TI�� ¼ TIMNe
M
�e

N
� ¼ 1

2T
I
MNe

M ^ eN: (A4)

Since the wedge product acts on spacetime indices only, it
acts on the base manifold and not on the internal fiber
structure.

With this in mind, the covariant derivative only acts on
internal indices as follows:

Dð!ÞAKL :¼ dAKL þ!KM ^ AML þ!LM ^ AKM; (A5)

Dð!ÞAKL :¼ dAKL �!K
M ^ AML �!L

M ^ AKM; (A6)

where the exterior derivative operator d acts on spacetime
indices only, namely,

dAKL :¼ 2@½�AKL��: (A7)

From the anticommutator of covariant derivatives, one
can define the curvature tensor associated with the spin
connection:

FKL ¼ d!KL þ!K
M ^!ML: (A8)

With this definition at hand, one can easily show by direct
computation that

	!F
IJ ¼ Dð!Þ	!IJ: (A9)

We choose here to work with a spin connection that is
internally compatible. In other words, we demand
Dð!Þ�IJ ¼ 0, which then forces the spin connection to be

fully antisymmetric on its internal indices !ðIJÞ ¼ 0. From

this connection and the tetrad, one can also construct the
torsion tensor defined as

TI :¼ Dð!ÞeI ¼ deI þ!I
M ^ eM; (A10)

which is equivalent to TI�� ¼ 2D½�eI��, or when spacetime

indices are reinstated

T
�� ¼ 2�
½�
�: (A11)

Note that internal metric compatibility is not equivalent to
a torsion-free condition.
The contorsion tensor can be obtained from the defini-

tion of the torsion tensor. We thus split the spin connection
into a symmetric and tetrad compatible piece �IJ and an
antisymmetric piece CIJ, called the contorsion. The defi-
nition of the torsion tensor Dð!ÞeI ¼ TI then imposes

TI ¼ CIJ ^ eJ; (A12)

or simply TIPQ ¼ �2CI ½PQ�. These equations can be in-

verted to find

CIJK ¼ �1
2ðTIJK þ TJKI þ TKJIÞ: (A13)

Note that the contorsion is fully antisymmetric on its first
two indices, while the torsion tensor is fully antisymmetric
on its last two indices. Also note that Eq. (A11) can be
obtained by converting Eq. (A10) to spacetime indices and
using the transformation law from spin to spacetime con-
nection established by Dð�ÞeI ¼ 0 (this relation is some-

times referred to as ‘‘the tetrad postulate’’).
With the contorsion tensor, we can now express the

curvature tensor in terms of the Riemann tensor RIJ and
terms proportional to the contorsion

FIJ ¼ RIJ þDð�ÞCIJ þ CIM ^ CMJ; (A14)

where Dð�Þ is the connection compatible with the symmet-

ric connection. One can also check that the Bianchi iden-
tities in first-order form become

Dð!ÞTI ¼ RIK ^ eK; Dð!ÞRIJ ¼ 0: (A15)

Finally, it is sometimes useful to control the expression
of the volume form in the first-order formalism. This
quantity is given by

~
 :¼ ffiffiffiffiffiffiffi�gp
d4x ¼ 1

4!
�IJKLe

IeJeKeL (A16)

and it allows one to rewrite the contraction of the Levi-
Cività tensor with tetrad vectors in terms of e.

APPENDIX B: OTHER USEFUL FORMULAS

In this Appendix we present a compendium of other
useful formulas, where the first expression corresponds to
suppressed spacetime indices, followed by a second ex-
pression with spacetime indices reinstated, but transformed
to internal ones with the tetrad.
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We begin with the torsion tensor

TI ¼ 1

2

1

��2 þ 1
½�IJKL@L ��þ ��	I½J@K� ���eJ ^ eK;

TIJK ¼ 1

��2 þ 1
½�IJKL@L ��þ ��	I½J@K� ���;

(B1)

and the contorsion tensor

CIJ ¼ � 1

2

1

��2 þ 1
ð�IJKQeK@Q ��� 2 ��e½I@J� ��Þ;

CIJK ¼ � 1

2

1

��2 þ 1
ð�IJKQ@Q ��� 2 ��	K½I@J� ��Þ:

(B2)
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