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In this work, some interesting details about quantum Minkowski space and quantum Lorentz group

structures are revealed. The task is accomplished by generalizing an approach adopted in a previous work

where quantum rotation group and quantum Euclidean space structures have been investigated. The

generalized method is based on a mapping relating the q-spinors (precisely the tensor product of dotted

and undotted fondamental q-spinors) to Minkowski q-vectors. As a result of this mapping, the quantum

analog of Minkowski space is constructed (with a definite metric). Also, the matrix representation of the

quantum Lorentz group is determined together with its corresponding q-deformed orthogonality relation.

DOI: 10.1103/PhysRevD.78.064068 PACS numbers: 04.20.Gz, 02.20.Uw

I. INTRODUCTION

It is not without reason to say that the most successful
model of theoretical physics in the twentieth century is in a
sense related to some kind of deformation: Special relativ-
ity and quantum mechanics, on which is built the notorious
standard model of particle physics, can be viewed as
deformed versions of Galilei’s relativity and classical me-
chanics, respectively [1], where the deformation parame-
ters are the velocity of light c for the former and the Planck
constant h for the latter.

In any case, many authors think that the deformation of a
theory is not unusual in physics and may give answers to
insoluble questions. For example, at present considerable
efforts are made in studying the ?-deformed Minkowski
space-time as well as the topics which rely upon its struc-
ture [2].1 Likewise, we are interested in Minkowski space-
time deformed structure but within Manin’s meaning of
deformed spaces [3]. The author, in [3], by evoking the
notion of quantum planes that are spaces on which quan-
tum groups act or coact (see also Ref. [4]), has stimulated
us to investigate in Ref. [5] how one can apply Manin’s
view in the peculiar case of quantum Euclidean space and
the quantum rotation group. This enabled us to construct
the quantum analog of Euclidean space with a definite
metric on one hand, and on the other hand we determined
the matrix representation of the SOqð3Þ quantum group

together with its corresponding orthogonality relation. In
this work, we intended to generalize the analysis developed
in [5] to the quantum Lorentz group and quantum
Minkowski space. There has been a proposal regarding
this problem in [6]. See also [7], where the question of
probing the structure of the quantum Lorentz group has
been carried out via an algebraic formulation. That is to say
the quantum Lorentz group has been studied through its
corresponding quantum Lie algebra which is equivalent to
the direct product of two quantum SUð2Þ Lie subalgebras.

However, as we worked out an approach [5] which is rather
geometric in treating the quantum Euclidean space,2 we
decided to pursue our analysis to recover the four-
dimensional quantum Minkowski space case.
The aim of this paper is to reveal more details about

quantum Minkowski space structure by using its link with
the dotted and undotted q-spinors. So, by generalizing the
prescription presented in [5], some interesting aspects on
quantum Minkowski space and quantum Lorentz group
structures are determined.
The paper is organized as follows. In Sec. II, we briefly

review some algebraical aspects concerning both dotted
and undotted q-spinors, wherein our notations are imple-
mented. Then the link between q-spinors and Minkowski
q-vectors is established. Thereby, the quantum Minkowski
metric is determined. In Sec. III, the general matrix repre-
sentation of the SOqð3; 1Þ quantum group and the corre-

sponding q-orthogonality relation are derived. Section IV
is devoted to some concluding remarks.

II. THE LINK BETWEEN q-SPINORS AND
MINKOWSKI q-VECTORS

Let c � be an element of the SLqð2Þ quantum plane, so

that

c � ¼ c 1

c 2

� �
:

Such elements will be called undotted q-spinors. We as-
sume q is real. Moreover, let SLqð2Þ coactions on contra-

variant q-spinor components be defined by

�Lðc �Þ ¼ T�
� � c � ¼ a b

c d

� �
� c 1

c 2

� �
; (1)

leaving invariant the bilinear form (c 1�2 � qc 2�1). c

1The cited references are just for illustration.

2The term geometric means that we have employed geomet-
rical tools as the metric, the quantum distance, and the orthogo-
nality relation.
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and � stand for any two undotted q-spinors and a, b, c, d
the T-matrix elements, satisfying the quantum Yang-
Baxter equation

R��
��T

�
�T

�
� ¼ T�

�T
�
�R

��
��; (2)

where R is a 4-by-4 matrix whose elements are given by

R ¼
q 0 0 0
0 � 1 0
0 1 0 0
0 0 0 q

0
BBB@

1
CCCA: (3)

Similarly, the left coaction of the SLqð2Þ quantum group on

covariant q-spinor components reads [5]

�Lðc �Þ ¼ S�1ðT�
�Þ � c �

¼ d �q�1c
�qb a

� �
� c 1

c 2

� �
; (4)

leaving invariant the bilinear form (c 1�2 � q�1c 2�1).
We note that the covariant and contravariant q-spinor
components are related by means of the quantum metrics
	�� and 	�� such that

c � ¼ 	��c
�; (5)

c � ¼ 	��c �: (6)

Their entrees are

	�� ¼ 0 q�1=2

�q1=2 0

 !
; (7)

	�� ¼ 0 q1=2

�q�1=2 0

 !
: (8)

Moreover, one can verify that the q-spinor components
obey the known noncommuting rule of the Manin quantum
plane [3], namely,

c 1c 2 ¼ qc 2c 1; (9)

or

c 1c 2 ¼ q�1c 2c 1: (10)

As a generalization of (9), for any two q-spinors c and �,
we have (see [6])

c 1�1 ¼ �1c 1; c 1�2 ¼ q�1½�2c 1 þ ��1c 2�;
c 2�1 ¼ q�1�1c 2; c 2�2 ¼ �2c 2; (11)

or

c 1�1 ¼ �1c 1; c 2�1 ¼ q�1½�1c 2 þ ��2c 1�;
c 1�2 ¼ q�1�2c 1; c 2�2 ¼ �2c 2: (12)

Similarly, let us denote by c _� (c _�) the contravariant
(covariant) dotted q-spinor components. They transform

as follows:

�Lðc _�Þ ¼ S�1ð �T _�
_�
Þ � c

_�; (13)

�Lðc _�Þ ¼ �T
_�
_� � c _�; (14)

leaving invariant the bilinear forms�
_2c

_1 � q�1�
_1c

_2 and
� _2c _1 � q� _1c _2, respectively. Noting that �T is the
Hermitian conjugate matrix of the matrix T satisfying the
quantum Yang-Baxter equation,

R _� _�
_� _�

�T _�
_�
�T _�

_� ¼ �T
_�
_�
�T _�

_�R
_� _�

_� _�
; (15)

and the dotted q-spinors are defined such that

c _� � ðc �Þ?; c _� � ðc �Þ?:
Here, ‘‘�’’ means ‘‘transforms as.’’ At this point, we note
that the dotted and undotted Rmatrices are the same. Now,
to lower or raise the dotted indices, one can use the
quantum metrics

	 _� _� ¼ 0 q1=2

�q�1=2 0

 !
; (16)

	 _� _� ¼ 0 q�1=2

�q1=2 0

 !
: (17)

Furthermore, one can verify that the q-spinor components
c _� obey the following noncommuting rule:

c
_1c

_2 ¼ qc
_2c

_1 (18)

or

c _1c _2 ¼ q�1c _2c _1: (19)

More generally, we have

c
_1�

_1 ¼ �
_1c

_1; c
_2�

_1 ¼ q½� _1c
_2 � ��

_2c
_1�;

c
_1�

_2 ¼ q�
_2c

_1; c
_2�

_2 ¼ �
_2c

_2;
(20)

or

c _1� _1 ¼ � _1c _1; c _1� _2 ¼ q½� _2c _1 � �� _1c _2�;
c _2� _1 ¼ q� _1c _2; c _2� _2 ¼ � _2c _2:

(21)

Using the dotted and undotted R matrices, the relations in
(11), (12), (20), and (21) can be put under these forms:

c ��� ¼ 1

q
R��

���
�c �; (22)

c _��
_� ¼ qðR�1Þ _� _�

_� _�
� _�c

_�; (23)

c ��� ¼ 1

q
R��

����c �; (24)
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c _�� _� ¼ qðR�1Þ _� _�
_� _�
� _�c _�: (25)

Where R�1 is the inverse matrix of R, numerically

R�1 ¼
q�1 0 0 0
0 0 1 0
0 1 �� 0
0 0 0 q�1

0
BBB@

1
CCCA: (26)

We point out that in our approach the representation rele-
vant for the quantum Lorentz group SOqð3; 1Þ will be

derived by requiring the following nontrivial commutation
relations:

c 1�
_1 ¼ �

_1c 1; c 1�
_2 ¼ q�1½� _2c 1 þ ��

_1c 2�;
c 2�

_1 ¼ q�1�
_1c 2; c 2�

_2 ¼ �
_2c 2;

or equivalently

c ��
_� ¼ 1

q
R� _�

_���
_�c �: (27)

In view of (1), (13), and (27), we also have a nontrivial
commutation relation between the matrices T and S�1ð �TÞ
as well as between the transposed matrices ~T and S�1ð~�TÞ
(see [5]), namely,

R� _�
_��S

�1ð �T _�
_�ÞT�


 ¼ T�
�S

�1ð �T _�
_�ÞR� _�

_�
; (28)

R� _�
_��S

�1ð~�T _�
_�Þ ~T�


 ¼ ~T�
�S

�1ð~�T _�
_�ÞR� _�

_�
: (29)

Now let us introduce the big q-spinor � with four compo-

nents ðc 1; c 2; c
_1; c

_2Þ; then the mixed q-spinor �� _� will
read3

�� _� ¼
c 1�

_1

c 1�
_2

c 2�
_1

c 2�
_2

0
BBB@

1
CCCA: (30)

By construction, one can verify that

�� _�� _�� ¼ Inv � Invariant: (31)

Using the quantum metrics (7) and (17), we obtain instead
of (31)

q�1�1 _1�
_22 ��1 _2�

_12 ��2 _1�
_21 þ�2 _2�

_11 ¼ Inv:

(32)

But as we also have [thanks to (27)]

�1 _1 ¼ �
_11; �2 _2 ¼ �

_22;

�1 _2 ¼ 1

q
½�_21 þ ��

_12�; �2 _1 ¼ q�1�
_12;

(33)

(32) becomes

q�1�1 _1�2 _2 � q�1 _2�2 _1 ��2 _1½q�1 _2 � �q�2 _1�
þ q�2 _2�1 _1 ¼ Inv: (34)

Once more the quantum metrics are used, this time 	 _� _�, in
order to transform (34) into

�½q�1�1
_2
�2

_1
� q�1

_1
�2

_2
� q�2

_2
�1

_1

� ��2
_2
�2

_2
þ q�2

_1
�1

_2
� ¼ Inv: (35)

At this level, we can propose a mapping between the
q-spinors and Minkowski q-vectors:

�1
_1
¼ q�1A0 þ A3; �2

_2
¼ qA0 � A3;

�1
_2
¼ A�; �2

_1
¼ Aþ:

(36)

In view of (36), and the expression between brackets in
(35) becomes

q�1A�Aþ þ qAþA� þ ðqþ q�1ÞA3A3

� q2ðqþ q�1ÞA0A0 ¼ Inv: (37)

It should be noticed that the usual Minkowski space dis-
tance is recovered when q ! 1. One can also see appearing
in (37) the q-deformed metric of quantum Minkowski
space; indeed

Inv ¼ G��A
�A�: (38)

The latter formula is nothing but the invariant quantum
Minkowski ‘‘distance.’’ So it becomes possible to obtain
from (37) the quantum metric G:

G ¼
�q2ðqþ q�1Þ 0 0 0

0 0 q 0
0 q�1 0 0
0 0 0 ðqþ q�1Þ

0
BBB@

1
CCCA: (39)

Note that the rows and columns ofG�� are labeled by 0,þ,

�, 3. In the restrictive case where ðc �Þ? � c �, A
0 will

vanish and the quantum metric reduces to

g ¼
0 q 0

q�1 0 0
0 0 ðqþ q�1Þ

0
@

1
A; (40)

as was found in [5].

III. THE MATRIX REPRESENTATION OF THE
QUANTUM LORENTZ GROUP

Now let us determine the general matrix representation
of the quantum Lorentz group SOqð3; 1Þ. First of all, let us
see how the mixed q-spinor��

_�
can be transformed under

3It should be noticed that c _������c _� as far as we have a
nontrivial commutation relation between the T and �T matrices
[see (28)]; then c _��� cannot be added to define the mixed
q-spinor �� _�.
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SLqð2Þ coactions. By definition we have

�Lð��
_�
Þ ¼ T�

�
�T
_�
_�
���

_�
: (41)

Explicitly,

�Lð�1
_1
Þ ¼ aa? ��1

_1
þ ab? ��1

_2
þ ba? ��2

_1
þ bb? ��2

_2
;

�Lð�1
_2
Þ ¼ ac? ��1

_1
þ ad? ��1

_2
þ bc? ��2

_1
þ bd? ��2

_2
;

�Lð�2
_1
Þ ¼ ca? ��1

_1
þ cb? ��1

_2
þ da? ��2

_1
þ db? ��2

_2
;

�Lð�2
_2
Þ ¼ cc? ��1

_1
þ cd? ��1

_2
þ dc? ��2

_1
þ dd? ��2

_2
:

In view of (36), one can transform (41) into

�LðA�Þ ¼ M�
� � A�; (42)

where M�
� is a matrix with the following entrees:

q�1ðaa?þcc?Þþqðbb?þdd?Þ
Q

ba?þdc?

Q
ab?þcd?

Q
aa?þcc?�bb?�dd?

Q

q�1ca? þ qdb? da? cb? ca? � db?

q�1ac? þ qbd? bc? ad? ac? � bd?

aa?�q�2cc?þq2bb?�dd?

Q
qba?�q�1dc?

Q
qab?�q�1cd?

Q
qðaa?�bb?Þ�q�1ðcc?�dd?Þ

Q

0
BBBB@

1
CCCCA:

The rows and columns are labeled by 0, þ,�, 3, and Q ¼
qþ q�1. Furthermore, by using (2), (15), (28), and (29)
one can verify that

~MGM ¼ G: (43)

The latter equation is nothing but the q-deformed orthogo-
nality relation of the SOqð3; 1Þ quantum group, where G is
the quantum Minkowski metric given by (39) and ~M the
transposed matrix of M. Also, it should be mentioned that
nontrivial commutation relations between quantum
Minkowski vector components have been found, namely,

A0A3 ¼ A3A0; A0Aþ ¼ q�2AþA0;

A0A� ¼ q2A�A0; A3Aþ ¼ q2AþA3;

A3A� ¼ q�2A�A3;

A�Aþ ¼ q2AþA�

� q�ðq2A0A0 � qA0A3 � qA3A0 þ A3A3Þ: (44)

To arrive at these nontrivial commutation relations, we
took into account the proposed mapping (36) and
Eqs. (22), (23), and (27). It should be stressed that from
the construction given above, the quantum rotation group
SOqð3Þ appears as a substructure; i.e.,

SOqð3Þ � SOqð3; 1Þ: (45)

For seeing that, it suffices to go to the restrictive case where
ðc �Þ? � c �; then SLqð2Þ ! SUqð2Þ. That is,

T�
� ¼ a b

c d

� �
! a b

�qb? a?

� �

and SOqð3; 1Þ ! SOqð3Þ. That is to say,

M�
� ! M3 ¼

a?a? �qb?b? �ð1þ q2Þa?b?
�qbb aa �ð1þ q2Þba
ba? ab? aa? � bb?

0
B@

1
CA;

as was found in [5] but by carrying out the following
changes:

b ! ð�qb?Þ; ð�qb?Þ ! b:

This is because in [5] we used the representation

T ¼ a �qb?

b a?

� �

for SUqð2Þ quantum group transformations.

IV. CONCLUDING REMARKS

In this paper we constructed the four-dimensional quan-
tumMinkowski space, which is the representation space of
the SOqð3; 1Þ quantum group, with a quantum Minkowski

metric (39) and a quantum Minkowski ‘‘length’’ (37). In
the limit q ! 1 this space reduces to classical Minkowski
space. We also derived the general matrix representation of
the SOqð3; 1Þ quantum Lorentz group together with its

corresponding q-deformed orthogonality relation. This
construction seems to be complete. Indeed, quantum
Euclidean space and the quantum rotation group appeared
within this study as substructures of quantum Minkowski
space and the quantum Lorentz group, respectively. On the
other hand, we know that the SLð2; CÞ group has been
considered, for a long time, as the most interesting track
to build the gauge theory of Einstein’s general relativity
[8]. Thus, one wonders whether the SLqð2Þ quantum group
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as realized in this paper can add something new to the
theory of gravitation, once its corresponding gauge theory
of gravitation is established.4 On the other hand, in com-
paring the present material with [6], we conclude the
following: First of all the two approaches are geometrical
in their formulation. The main difference is that in [6] the
time component is a central element in the algebra of the
coordinates (by construction). This property makes pos-
sible the retrieval of the quantum SOð3Þ group structure
just by posing the time component equal to zero. In our
case, the time component appears as an ordinary compo-
nent with nontrivial commutation relations [Eq. (44)]. So
when we want to retrieve the quantum SOð3Þ group struc-

ture, it just suffices to make identical the dotted spinor
component with its corresponding undotted one [ðc �Þ? �
c _� ¼ c �] as in the classical case (q ¼ 1) [10]. Moreover,
it seems to us constructive to mention that in the present
prescription we used a notation in which classical coordi-
nates and invariants appear in their deformed form. For
example, the time component of the deformed four-vector,
for q ¼ 1, becomes simply the probability of presence of
the fermion (spinor) once SLð2Þ ! SUð2Þ. Furthermore, in
view of the relations (44), we believe that the nontriviality
does appear in the case q � 1 only by complexifying the
real coordinates, in the present situation ðAx; AyÞ ! ðAþ ¼
Ax þ iAy; A

� ¼ Ax � iAyÞ. These coordinates ðAþ; A�Þ
seem to be at the origin of the observed nontriviality in
(44). Classically Aþ and A� are objects similar to charged
particle fields. Therefore, it seems to us that only
‘‘charged’’ components can exhibit nontrivial commuta-
tion relations.
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