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It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time

dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring

or lens-space topology. In this paper, we study the third possibility, a so-called black lens with Lðn; 1Þ
horizon topology. Using the inverse scattering method, we construct a black-lens solution with the

simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are

then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature

singularity present in the space-time.

DOI: 10.1103/PhysRevD.78.064062 PACS numbers: 04.20.Jb, 04.70.Bw

I. INTRODUCTION

In four space-time dimensions, it is well known that
stationary, asymptotically flat black holes are uniquely
determined by their asymptotic mass, angular momentum,
and charge. However, such uniqueness results do not apply
to five or higher dimensions. A counterexample is the five-
dimensional rotating black ring [1,2], with event-horizon
topology S2 � S1, which may in certain cases carry the
same mass and angular momentum as a Myers–Perry
black-hole [3] with S3 event-horizon topology. Thus, un-
like in four dimensions, black holes in five dimensions may
have nonspherical event-horizon topologies, and the al-
lowed topologies have been classified in [4–6].

Hollands and Yazadjiev [7,8] have recently considered
how a uniqueness result might be proved for black holes in
five dimensions. They showed that stationary, asymptoti-
cally flat vacuum black holes with two commuting axial
symmetries are uniquely determined by their mass, angular
momentum, and so-called rod structure [9,10]. In particu-
lar, it is the rod structure that determines the topology of
the event horizon, and it was shown that there are only
three possibilities: a 3-sphere S3, a ring S2 � S1, or a lens-
space Lðp; qÞ, consistent with the results of [4–6]. The first
two cases are just the Myers–Perry black hole and the
black ring, and it is the purpose of this paper to investigate
the third possibility—a so-called black lens.1

Supposing that such a black-lens solution exists,
Hollands and Yazadjiev [7] showed that the simplest rod
structure it could take is the one depicted in Fig. 1. In this
figure, t is the time coordinate, while  and � are the two
axial coordinates. The orientation of each rod with respect
to the coordinates ðt;  ;�Þ is indicated above it. As can be
seen, there is a finite timelike rod that represents the event
horizon, and two semi-infinite spacelike rods, which are

the usual asymptotic axes. The new feature lies in the finite
spacelike rod, which has components in both the  and �
directions. If it has orientation ð0; p; qÞ for coprime inte-
gers p and q, then it follows that the horizon has topology
Lðp; qÞ. Two special cases can immediately be seen: First,
if its orientation is (0, 0, 1), then the horizon topology is
Lð0; 1Þ ¼ S2 � S1, which corresponds to the black ring.
Second, if its orientation is (0, 1, 0), then the horizon
topology is Lð1; 0Þ ¼ S3, which corresponds to the
Myers-Perry black hole.
Actually, it was explained in [7] that when two spacelike

rods meet at a junction, the spacelike components of the
two orientation vectors must have determinant �1. This is
the requirement for there not to be an orbifold singularity at
the junction [13]. In the case of the two spacelike rods in
Fig. 1 meeting at z3, this implies that q ¼ 1. If we rename
p more suggestively as n, the orientation of the finite rod
will be ð0; n; 1Þ, and thus the allowed horizon topology for
the black lens is Lðn; 1Þ. Without loss of generality, we may
take n to be positive.
Very recently, Evslin [13] made a first attempt toward

constructing an explicit black-lens solution. However, he
did not consider the rod structure in Fig. 1, but rather one
with a second finite spacelike rod inserted to the left of the
timelike rod, with orientation ð0; 1;�nÞ. The presence of
this extra rod means the event horizon would have the more
restrictive lens-space topology Lðn2 þ 1; 1Þ. Evslin man-

FIG. 1. The rod structure of the rotating black-lens solution.

1Black holes with lens-space horizon topology have previously
been considered in the literature, but these have been in non-
asymptotically flat spaces. Examples include Taub-NUT space
[11] and the more general Gibbons-Hawking space [12].
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aged to construct a static metric with this rod structure;
furthermore, he found that while conical and orbifold
singularities could be eliminated from the space-time,
there exist spherical naked curvature singularities sur-
rounding each of the two junctions where the spacelike
rods meet. He went on to conjecture that these singularities
could somehow be resolved, possibly by making the black
lens rotate.

In this paper, we shall revisit the simpler rod structure of
Fig. 1, and construct an asymptotically flat black-lens
solution with this rod structure. This is done using the
inverse scattering method, and indeed we are able to derive
a solution that possesses an asymptotic angular momentum
in the  direction. In the static limit, this solution was
actually found independently in [14,15], although it was
not interpreted as an asymptotically flat black lens in either
paper. We find that even with rotation present, the black
lens either has to have a conical singularity along the finite
spacelike rod, or a naked singularity with spherical topol-
ogy surrounding the junction z3 similar to what Evslin
found in his static solution. Of these two possibilities, we
actually prefer the former interpretation for reasons that
would be explained below.

For clarity of presentation, the static and rotating cases
will be discussed separately in this paper. We begin in
Sec. II by presenting the static black-lens solution. Its
properties are then analyzed with particular attention
paid to the global structure of the space-time, including
the possible existence of conical and curvature singular-
ities outside the horizon. The black lens with a single
angular momentum is then presented and analyzed in
Sec. III, emphasizing mainly the differences introduced
by the rotation. Sec. IV concludes the paper with a dis-
cussion of our results. The background and certain black-
hole limits of the solution are studied in the appendices.

II. STATIC BLACK LENS

The space-time solution describing a static black lens
was first derived in [14], although it was not interpreted as
such, being used as a stepping-stone to construct a black
ring in Taub-NUT space. This solution was obtained using
the inverse scattering method [16–18], starting from the
static black ring solution with the rod structure as given in
Fig. 1 with n ¼ 0. An antisoliton is first removed from the
point z3 with a so-called Belinsky-Zakharov (BZ) vector
(0, 1, 0), and then added back with a more general BZ
vector ð0; 1;�aÞ. (For the more technical details of this
procedure, the reader is referred to [14,19].) A change in
coordinates is then needed to bring the solution into an
asymptotically flat form, with the rod structure exactly as
in Fig. 1.

While this solution was originally derived in Weyl co-
ordinates, it turns out to have a simpler form in C-metric
type coordinates familiar from the black ring case [10,20].
The explicit relation between the two coordinates can be

found in Appendix H of [10]. After this transformation, the
metric reads2

ds2 ¼ � 1þ cy

1þ cx
dt2 þ 2�2ð1þ cxÞ

ð1� a2Þðx� yÞ2Hðx; yÞ
�

�
Hðx; yÞ2
1� c

�
dx2

GðxÞ �
dy2

GðyÞ
�

þ ð1� x2Þ½ð1� c� a2ð1þ cyÞÞd�
� acð1þ yÞd �2 � ð1� y2Þ
� ½ð1� c� a2ð1þ cxÞÞd � acð1þ xÞd��2

�
;

(2.1)

where the functions G and H are defined as

GðxÞ ¼ ð1� x2Þð1þ cxÞ;
Hðx; yÞ ¼ ð1� cÞ2 � a2ð1þ cxÞð1þ cyÞ:

(2.2)

As in the black ring case, � is a scale parameter, while the
parameter c takes the range 0< c< 1. The new parameter
a takes the range �1< a< 1 to ensure the correct space-
time signature. Note that the metric is invariant under the
action a! �a and either  ! � or �! ��. The
coordinates take the range �1< t <1, �1 � x � 1,
�1=c < y � �1, with  , � having periodicity 2� to
ensure asymptotic flatness. Asymptotic infinity is located
at x, y! �1, while y ¼ �1=c turns out to be the location
of an event horizon. The Arnowitt-Deser-Misner (ADM)
mass of this space-time can be calculated to be

M ¼ 3��2c

2G
; (2.3)

where G is the gravitational constant in five dimensions.
The background limit is recovered when c! 0, and this
will be examined in more detail in Appendix A.
In the coordinates of (2.1), the three points labeled in

Fig. 1 are given by z1 ¼ �c�2, z2 ¼ c�2, and z3 ¼ �2;
while the four rods, from left to right, are located at x ¼
�1, y ¼ �1=c, x ¼ 1, and y ¼ �1, respectively. It can be
checked that the orientations of the x ¼ �1, y ¼ �1=c,
and y ¼ �1 rods are (0, 0, 1), (1, 0, 0), and (0, 1, 0),
respectively, as expected of an asymptotically flat, static
black hole. The orientation of the finite spacelike rod at
x ¼ 1 is

�
0;

2ac

1� c� a2ð1þ cÞ ; 1
�
: (2.4)

2Some minor notational differences: coordinates ðx; yÞ are
used instead of ðu; vÞ in [10], while a! �a and �$  
compared to [14].
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Two special cases can immediately be read off from this
result. One is when a ¼ 0, in which the x ¼ 1 rod is
parallel to the x ¼ �1 rod. In this event, we recover the
static black ring with S2 � S1 event-horizon topology. The

other is when a ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� cÞ=ð1þ cÞp
, in which the x ¼ 1

rod is parallel to (indeed, joined up to) the y ¼ �1 rod. In
this event, we recover the usual five-dimensional
Schwarzschild black hole with S3 horizon topology (see
Appendix B).

To obtain a black lens with horizon topology Lðn; 1Þ, we
set the second component of (2.4) to be

2ac

1� c� a2ð1þ cÞ ¼ n (2.5)

for positive integer n. This can be solved in terms of a as

a ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ n2ð1� c2Þp � c

nð1þ cÞ : (2.6)

It can be shown that the solution with positive sign satisfies

0< a<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� cÞ=ð1þ cÞp

; we call this Range I. On the

other hand, the solution with negative sign satisfies �1<

a<� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� cÞ=ð1þ cÞp
; we call this Range II. It is in-

structive to plot the left-hand side of (2.5) against a (for
fixed c) to see these two ranges, as in Fig. 2. Note that in
Range I, n takes integer values in the interval ð0;1Þ; while
in Range II, n takes integer values in the interval ð1;1Þ.

We now turn to a study of possible conical singularities
in the space-time. Recall that the condition of asymptotic
flatness requires  and � to have standard periodicity 2�.
This means that the coordinate associated with the Killing

vector @=@ ~ � n@=@ þ @=@� that vanishes along the

x ¼ 1 axis also has period �~ ¼ 2�. Now, the condition

for the absence of a conical singularity along this axis is

�~ ¼ 2�

m
; (2.7)

where m is defined such that 2�=m is equal to the right-
hand side of Eq. (3.10) in [10]. In other words, we require
that m ¼ 1. In the present case, this condition becomes

m2 � ð1� a2Þ2ð1� c2Þ
½1� c� a2ð1þ cÞ�2 ¼ 1: (2.8)

Solving it gives

a ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞ=ð1þ cÞ4

p
: (2.9)

The positive solution does not lie in Range I, so the conical
singularity cannot be eliminated for any a in this range;
indeed, it can be shown that m2 > n2. However, the nega-
tive solution of (2.9) lies in Range II, so the conical
singularity can be eliminated for this particular value of
a. Imposing the two conditions (2.5) and (2.8) simulta-
neously, we see that it corresponds to the solution

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

p
� n

2
; c ¼ 1� a4

1þ a4
; (2.10)

and is only applicable for n � 3. (The n ¼ 2 case is
excluded, as it implies c ¼ 0, which means that there is
no longer a black lens present in the space-time.) The
allowed range of a for this solution is �1< a< 0.
While it may seem from the preceding result that

Range II is the more appropriate range to consider, all
solutions in this range unfortunately suffer from the fol-
lowing pathology: It can be checked that the value of
Hðx; yÞ is zero on a closed surface, which separates the
point ðx; yÞ ¼ ð1;�1Þ from the rest of the space-time,
including the horizon and asymptotic infinity. Since the
curvature invariant RabcdR

abcd �Hðx; yÞ�6, this surface is
a singular one; moreover, it is nakedly singular since it is
not enclosed by the event horizon. Since this surface
intersects the y ¼ �1 and x ¼ 1 axes, it has an Lð1; nÞ ¼
S3 spherical topology. On the other hand, it can be checked
that for Range I, Hðx; yÞ is positive everywhere in the
space-time outside the event horizon, so this naked singu-
larity does not exist. For either range, if we extend the
coordinate range below the horizon y <�1=c, we would
also find a curvature singularity at y! �1.
At this stage, let us explicitly examine the horizon

geometry of our solution to confirm the above interpreta-
tion that it has an Lðn; 1Þ lens-space topology. Our analysis
will follow that of [15]. From (2.1), its metric on a constant
time slice is given by

FIG. 2. Graph of the left-hand side of (2.5) against a, for
fixed c.
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ds2H ¼ 2�2

ð1� a2Þð1� cÞð1þ cxÞ
�
c2ð1� cÞ2 dx2

GðxÞ � 2acð1þ xÞð1þ cxÞ½1� c� a2ð1þ cÞ�d d�
þ ðð1þ cÞ½1� c� a2ð1þ cxÞ�2 þ a2c2ð1� cÞð1� x2ÞÞd 2

þ c2ð1þ xÞ½ð1� cÞð1� xÞ þ a2ð1þ cÞð1þ xÞ�d�2

�
: (2.11)

We now introduce new azimuthal coordinates ~� and ~ , chosen such that the Killing vectors ‘1 and ‘2 that vanish at
x ¼ �1 and x ¼ 1, respectively, are simply given by

‘1 ¼ @

@ ~�
; ‘2 ¼ @

@ ~ 
: (2.12)

These coordinates are related to � and  by

~� ¼ �� 1

n
 ; ~ ¼ 1

n
 ; (2.13)

and can be seen to have period 2�. If we recall that n is given by the left-hand side of (2.5), the metric (2.11) can be written
in terms of these coordinates in either of the following two forms:

ds2H ¼ 2�2c2

ð1� a2Þð1þ cxÞ
�
ð1� cÞ dx2

GðxÞ þ
4a2ð1þ xÞ
g1ðxÞ d ~�2 þ ð1� xÞm2g1ðxÞðd ~ þ f1ðxÞd ~�Þ2

�
;

ds2H ¼ 2�2c2

ð1� a2Þð1þ cxÞ
�
ð1� cÞ dx2

GðxÞ þ
4a2m2ð1� xÞ

g2ðxÞ d ~ 2 þ ð1þ xÞg2ðxÞðd ~�þ f2ðxÞd ~ Þ2
�
:

(2.14)

Here, we have defined

g1ðxÞ ¼ 1� c

1þ c
ð1þ xÞ þ a2ð1� xÞ;

f1ðxÞ ¼ ð1� a2Þð1þ xÞ
m2g1ðxÞ

;

g2ðxÞ ¼ ð1� xÞ þ a2
1þ c

1� c
ð1þ xÞ;

f2ðxÞ ¼ ð1� a2Þð1� xÞ
g2ðxÞ ;

(2.15)

and m2 is given by the left-hand side of (2.8). Both metrics
in (2.14) resemble that of a 3 sphere, albeit a squashed one,
with degenerations occuring at x ¼ �1. We can examine
the vicinity of the ‘‘north pole’’ x ¼ �1 by introducing the
new coordinate r1, such that x ¼ �1þ r21. For small r1,
the first metric in (2.14) reduces to

ds2H ! 4�2c2

ð1� a2Þð1� cÞ ðdr
2
1 þ r21d

~�2Þ

þ 2�2ð1� a2Þð1þ cÞn2d ~ 2: (2.16)

On the other hand, we can examine the vicinity of the
‘‘south pole’’ x ¼ 1 by introducing the new coordinate
r2, such that x ¼ 1� r22. For small r2, the second metric
in (2.14) reduces to

ds2H ! 4�2c2ð1� cÞ
ð1� a2Þð1þ cÞ2 ðdr

2
2 þm2r22d

~ 2Þ

þ 2�2ð1� a2Þð1þ cÞ n
2

m2
d ~�2: (2.17)

Note that there will be a conical singularity at the point
r2 ¼ 0 unless m ¼ �1, which is consistent with our inter-
pretation above. Thus, the local behavior of the horizon
metric at these two poles (modulo the possible presence of
the conical singularity) is similar to the standard metric on
S3. However, there are some global differences resulting
from (2.13). Since  has period 2�, it follows from (2.13)
that identifications should be made under the operation

~�! ~�� 2�

n
; ~ ! ~ þ 2�

n
: (2.18)

These are precisely the identifications of S3 required to turn
it into the lens space Lðn; 1Þ [7,15], thus confirming that the
horizon has this topology.
It is instructive to similarly examine the geometry of the

space near the point ðx; yÞ ¼ ð1;�1Þ, where the x ¼ 1 and
y ¼ �1 axes meet up. We introduce azimuthal coordinates
�0 and  0, chosen such that the Killing vectors ‘2 and ‘3
that vanish at x ¼ 1 and y ¼ �1 are given by

‘2 ¼ @

@�0 ; ‘3 ¼ @

@ 0 : (2.19)

These coordinates are related to � and  by

�0 ¼ �;  0 ¼  � n�; (2.20)

and can be seen to have period 2�. If we introduce the new
coordinates r and � by

x ¼ 1� ð1þ cÞr2sin2�; y ¼ �1� ð1� cÞr2cos2�;
(2.21)

then the spatial part of (2.1) in the region of small r is
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ds2 ¼ �2ð1þ cÞ½1� c� a2ð1þ cÞ�
1� a2

� ½dr2 þ r2ðd�2 þm2sin2�d�02 þ cos2�d 02Þ�:
(2.22)

This is just a flat-space geometry with a conical singularity
along the � ¼ 0 (x ¼ 1) axis in general. The form of this
geometry is exactly the same as that of the more familiar
case of the black ring. In particular, there is no orbifold
singularity at the origin r ¼ 0. For a taking values in
Range II, however, this metric has the wrong signature,
and is an indication of the fact that there are closed timelike
curves (CTCs) in this region.

Now, the requirement for the absence of CTCs is that the
2� 2 metric gij, i, j ¼  , � be positive semidefinite. This

is equivalent to checking that its determinant and one of the
diagonal components, say g  , are non-negative. These

two quantities can be read off from (2.1), and we have
checked that the following results hold: For a taking values
in Range I, there are no CTCs anywhere in the space-time
outside the horizon. For a taking values in Range II, there
are no CTCs outside the horizon and naked singularity;
however, CTCs do exist in the region inside the naked
singularity, as we have seen above in the vicinity of r ¼
0. Fortunately, they are not a concern for us as this region is
not accessible to observers outside the naked singularity.

Finally, we note that the entropy (from area) and tem-
perature (from surface gravity) of the black-lens horizon
are given by the expressions

S ¼ 4�2�3c2

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1� a2Þð1þ cÞ

s
;

T ¼ 1

8��c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� a2Þð1þ cÞ

q
:

(2.23)

It follows that the Smarr relation

2
3M ¼ TS (2.24)

is satisfied by the static black lens. When � and c are kept
fixed (so that mass M is fixed), observe from Fig. 2 that
solutions in Range I have a value of a that increases with n.
From (2.23), it follows that S also increases with n, so
black lenses with larger n are entropically favored. The
configuration in this range with the highest entropy is the
n! 1 limiting case of the Schwarzschild black hole. On
the other hand, it can be seen that solutions in Range II
have an entropy that decreases as n is increased. In this
case, black lenses with smaller n are entropically favored.
Note also that solutions in Range II have higher entropy
than solutions in Range I.

To summarize, the black-lens solution (2.1) can be di-
vided into two Ranges I and II depending on the value of a,
which exhibit rather different properties outside the hori-
zon. All solutions in Range I possess a conical singularity
along the x ¼ 1 axis, but are otherwise regular and well
behaved. Included in this range are all positive values of n.
For the case n ¼ 1 [corresponding to a ¼ ð1� cÞ=ð1þ
cÞ], we recover a black hole with Lð1; 1Þ ¼ S3 horizon
topology. It differs from the usual Schwarzschild black
hole because of the presence of the conical singularity in
the space-time; this solution will be revisited in
Appendix B. For the case n ¼ 2, we have a black lens
with Lð2; 1Þ ¼ RP3 event-horizon topology.
Solutions in Range II also in general possess a conical

singularity along the x ¼ 1 axis, although it can be elim-
inated for a particular value of a in this range and with n �
3. However, all solutions in this range possess a naked
singularity with spherical topology surrounding the point
ðx; yÞ ¼ ð1;�1Þ. A similar situation was found in the static
black-lens solution of [13], which actually contains two
such singularities. It was conjectured in [13] that adding
angular momentum might eliminate such singularities, and
we shall revisit this issue in the following section when we
add a single asymptotic angular momentum to our black-
lens solution.

III. ROTATING BLACK LENS

The derivation of the single-rotating black-lens solution
begins with the derivation of the single-rotating black ring
solution using the inverse scattering method. This was
originally done in [21,22] using a two-soliton transforma-
tion, although we used a simpler version of it involving just
one soliton similar to the one described in [23,24].3 To then
make the finite spacelike rod rotate to the correct orienta-
tion, we need to perform the following operations:
Borrowing from the labelling of Fig. 1, first remove sol-
itons from z1 and z3, both with BZ vector (0, 0, 1). Then
add back the two solitons, with BZ vectors ðC2; 0; 1Þ and
ð0; C1; 1Þ, respectively. Here, C1 and C2 are appropriately
chosen constants; in particular, C1 turns out to be propor-
tional to the parameter a introduced above in the static
case. A final change in coordinates is needed to bring the
solution into an asymptotically flat form. The constant C2

is chosen to ensure that the finite spacelike rod has no
timelike component in this final solution.4

In C-metric type coordinates, the metric we obtain is

3The main difference is that we placed the negative density rod
to the right of the horizon, rather than to the left as in Fig. 9(a) of
[24]. It is also possible to obtain the same solution with the latter
choice, although the solitons to be subsequently removed and
added back would have to be at different locations and have
different BZ vectors.

4This is equivalent to demanding that there are no Dirac-
Misner string singularities along this axis.
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ds2 ¼ �Hðy; xÞ
Hðx; yÞ ðdt�! d �!�d�Þ2 � Fðx; yÞ

Hðy; xÞ d 
2 þ 2

Jðx; yÞ
Hðy; xÞ d d�þ Fðy; xÞ

Hðy; xÞ d�
2

þ �2Hðx; yÞ
2ð1� a2Þð1� bÞ3ðx� yÞ2

�
dx2

GðxÞ �
dy2

GðyÞ
�
; (3.1)

where

! ¼ 2�

Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1þ bÞðb� cÞ
ð1� a2Þð1� bÞ

s
ð1� cÞð1þ yÞf2½1� b� a2ð1þ bxÞ�2ð1� cÞ

� a2ð1� a2Þbð1� bÞð1� xÞð1þ cxÞð1þ yÞg;

!� ¼ 2�

Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1þ bÞðb� cÞ
ð1� a2Þð1� bÞ

s
að1� cÞð1þ xÞ2ð1þ yÞ½a4ð1þ bÞðb� cÞ þ a2ð1� bÞð�bþ cbþ 2cÞ � ð1� bÞ2c�:

(3.2)

The functions G, H, F, and J are defined as

GðxÞ ¼ ð1� x2Þð1þ cxÞ;
Hðx; yÞ ¼ 4ð1� bÞð1� cÞð1þ bxÞfð1� bÞð1� cÞ � a2½ð1þ bxÞð1þ cyÞ þ ðb� cÞð1þ yÞ�g þ a2ðb� cÞð1þ xÞð1þ yÞ

� fð1þ bÞð1þ yÞ½ð1� a2Þð1� bÞcð1þ xÞ þ 2a2bð1� cÞ� � 2bð1� bÞð1� cÞð1� xÞg;

Fðx; yÞ ¼ 2�2

ð1� a2Þðx� yÞ2 ½4ð1� cÞ2ð1þ bxÞ½1� b� a2ð1þ bxÞ�2GðyÞ � a2GðxÞð1þ yÞ2ð½1� b� a2ð1þ bÞ�2

� ð1� cÞ2ð1þ byÞ � ð1� a2Þð1� b2Þð1þ cyÞfð1� a2Þðb� cÞð1þ yÞ þ ½1� 3b� a2ð1þ bÞ�ð1� cÞgÞ�;

Jðx; yÞ ¼ 4�2að1� cÞð1þ xÞð1þ yÞ
ð1� a2Þðx� yÞ ½1� b� a2ð1þ bÞ�½ð1� bÞcþ a2ðb� cÞ�

� ½ð1þ bxÞð1þ cyÞ þ ð1þ cxÞð1þ byÞ þ ðb� cÞð1� xyÞ�: (3.3)

The coordinates take the same ranges as in the previous
section, while the parameters satisfy 0< c � b < 1 and
�1< a< 1. Note that the metric is invariant under the
action a! �a and�! ��. The ADMmass and angular
momenta of this space-time can be calculated to be

M ¼ 3��2bð1� cÞ
2Gð1� bÞ ;

J ¼ ��3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� a2Þbð1þ bÞðb� cÞp ð1� cÞ

Gð1� bÞ3=2 ;

J� ¼ 0:

(3.4)

As desired, we have a space-time with angular momentum
in a single direction, namely, the  direction. The static
limit is recovered when b ¼ c, and (3.1) reduces to the
previous solution (2.1). The background limit is recovered
when b, c! 0, and this will be examined in more detail in
Appendix A.

The orientation of the y ¼ �1 rod is (0, 1, 0), while that
of the x ¼ �1 rod is (0, 0, 1), as expected. The orientation
of the finite spacelike rod at x ¼ 1 is

�
0;

2a½ð1� bÞcþ a2ðb� cÞ�
½1� b� a2ð1þ bÞ�ð1� cÞ ; 1

�
: (3.5)

Two special cases can immediately be read off from this
result. One is when a ¼ 0, in which the x ¼ 1 rod is
parallel to the x ¼ �1 rod. In this event, we recover the
Emparan-Reall black ring with parameters b and c as

introduced in [10]. The other is when a ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� bÞ=ð1þ bÞp

; in which the x ¼ 1 rod is joined up
to the y ¼ �1 rod in the same direction. In this event, we
recover the single-rotating Myers-Perry black hole (see
Appendix B).
To obtain a black lens with horizon topology Lðn; 1Þ, we

set

2a½ð1� bÞcþ a2ðb� cÞ�
½1� b� a2ð1þ bÞ�ð1� cÞ ¼ n (3.6)

for positive integer n. To study the solutions of this equa-
tion, it is again instructive to plot the left-hand side of (3.6)
against a (for fixed b and c). The graph obtained is quali-
tatively similar to that in Fig. 2, except that now the vertical

asymptotes are located at a ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� bÞ=ð1þ bÞp
. There
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are again two ranges of solutions to consider: the first 0<

a<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� bÞ=ð1þ bÞp

, which we call Range I; and the

second �1< a<� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� bÞ=ð1þ bÞp
, which we call

Range II. Note that in Range I, n takes integer values in
the interval ð0;1Þ; while in Range II, n takes integer values
in the interval ð1;1Þ.

The finite timelike rod at y ¼ �1=c represents the event
horizon of the black lens. Its orientation can be calculated
to be

�
1;
1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞðb� cÞ

2ð1� a2Þbð1þ bÞ

s
1

1� c
;
1

2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞðb� cÞ

2ð1� a2Þbð1þ bÞ

s
a½1� b� a2ð1þ bÞ�
ð1� bÞcþ a2ðb� cÞ

�
: (3.7)

The second component represents the angular velocity of
the horizon in the  direction, while the third component
represents its angular velocity in the � direction. The ratio
of these two quantities is, in fact, n=a2. Thus, the event
horizon of the black lens is rotating in both the  and �
directions, although not independently. This is in contrast
to the situation at asymptotic infinity, in which only the
angular momentum in the  direction survives.

Let us now turn to a study of possible conical singular-
ities in the space-time. With  and � taking the standard

periodicity 2�, the coordinate ~ associated with the x ¼ 1

axis also has period �~ ¼ 2�. Since the condition for the
absence of a conical singularity along this axis is given by
(2.7), we require m ¼ 1. In the present case, this condition
becomes

m2 � ð1� a2Þ2ð1� bÞ3ð1þ cÞ2
½1� b� a2ð1þ bÞ�2ð1þ bÞð1� cÞ2 ¼ 1: (3.8)

As in the static case, it is possible to show that this
condition cannot be satisfied for any a in Range I.
Indeed, solving (3.6) in terms of b or c and substituting it
into the left-hand side of (3.8) shows that m2 > ðnþ aÞ2.

Thus, the only possibility for the conical singularity to
be eliminated lies in Range II. It turns out to be simpler to
solve the conditions (3.6) and (3.8) simultaneously in terms
of ðb; cÞ, rather than ða; bÞ or ða; cÞ. We obtain the solution

b ¼ nðnþ 2aÞ
n2 þ 2naþ 2a2

;

c ¼ nð1� n2 � 3na� 3a2Þ
ðnþ 2aÞð1� n2 � na� a2Þ :

(3.9)

The requirement that b � c then implies that a takes
values in the range

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

p
� n

2
� a < 0; (3.10)

with the lower bound corresponding to the static case b ¼
c. Note that unlike the static case, the n ¼ 2 solution is a
valid one when there is rotation. The static limit of this
particular solution forces b, c! 0, and the black lens
disappears leaving just the background space-time (see
Appendix A).
Unfortunately, all solutions in Range II suffer from the

same pathology as in the static case; namely, the value of
Hðx; yÞ vanishes on a closed surface of spherical topology
that surrounds the point ðx; yÞ ¼ ð1;�1Þ, separating it from
the rest of the space-time, including the horizon and
asymptotic infinity. On this surface, the curvature invariant
RabcdR

abcd diverges, so it is a nakedly singular one. This
singularity does not exist in Range I. For either range, if we
extend the coordinate range below the horizon y <�1=c,
there is also a curvature singularity at y! �1, x! �1.
When rotation is present, there will be an ergoregion in

the space-time where the Killing vector @=@t changes from
being timelike to spacelike. It is bounded by the closed
surface on which the value of Hðy; xÞ vanishes. For solu-
tions in Range I, it is possible to show that this surface
completely encloses the event horizon, and only intersects
the x ¼ �1 and x ¼ 1 axes. Thus, this surface has the
same Lðn; 1Þ topology as the event horizon. For solutions
in Range II with sufficiently small values of a2, there will
continue to be an ergoregion with surface topology Lðn; 1Þ
enclosing the event horizon. However, another separate
ergoregion appears enclosing the naked singularity, with
an S3 surface topology, since it intersects the y ¼ �1 and
x ¼ 1 axes. For larger values of a2 (which includes the
case when the conical singularity is eliminated), the two
ergoregions in fact merge into a single one that encloses
both the event horizon and the naked singularity, as well as
the finite axis x ¼ 1. Its surface intersects the x ¼ �1 and
y ¼ �1 axes, and so it has an S3 topology.
Now, it is possible to analyze the horizon geometry as

was done for the static case, to verify that it has an Lðn; 1Þ
lens-space topology. The details are similar; in particular,
the required transformation has the same form as (2.13).
We will not repeat the analysis here. Similarly, it can be
shown that the geometry near the point ðx; yÞ ¼ ð1;�1Þ is
just flat space with a conical singularity along the x ¼ 1
axis. However, when a takes values in Range II, there
appears to be CTCs in this region.
We can check the possible existence of CTCs in the

space-time (3.1), in the same manner as the static case.
Since the expressions are a lot more complicated in this
case, we have resorted to numerical analysis to do so.
When a takes values in Range I, no CTCs were found
outside the horizon despite extensive checks. However,
when a takes values in Range II, CTCs were found not
only inside the naked singularity, but also outside it when
there is rotation present. These CTCs tend to occur very
close to the surface of the naked singularity, and so appear
to be more a feature of the naked singularity rather than the
black lens itself.
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Finally, we note the following expressions for the en-
tropy and temperature of the black-lens horizon:

S ¼ 4�2�3

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bcð1þ bÞ
1� a2

s
ð1� cÞ½ð1� bÞcþ a2ðb� cÞ�

ð1� bÞ2ð1þ cÞ ;

T ¼ 1

8��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cð1� a2Þ
bð1þ bÞ

s
ð1� bÞ2ð1þ cÞ

ð1� cÞ½ð1� bÞcþ a2ðb� cÞ� :
(3.11)

It can then be checked that the rotating black lens satisfies
the Smarr relation

2

3
M ¼ TSþ� J þ��J�; (3.12)

where the angular velocities of the horizon, � and ��,

are given by the second and third components of (3.7),
respectively. We also note that the Komar mass and angular
momenta evaluated at the horizon of the black lens agree
with the asymptotic quantities in (3.4). This implies that
the conical singularity and/or naked singularity do not
contribute to the total ADM mass and angular momentum
of the space-time.

To summarize, the black-lens solution (3.1) can be di-
vided into two Ranges I and II, as defined above, which
exhibit different properties. All solutions in Range I pos-
sess a conical singularity along the x ¼ 1 axis, but are
otherwise regular and well behaved. Included in this range
are all positive values of n. For the case n ¼ 1, we recover
a rotating black hole with Lð1; 1Þ ¼ S3 horizon topology,
with a conical singularity attached to it. This solution will
be revisited in Appendix B. For the case n ¼ 2, we have a
rotating black lens with Lð2; 1Þ ¼ RP3 horizon topology.

Solutions in Range II also in general possess a conical
singularity along the x ¼ 1 axis, although it can be elim-
inated for a particular value of a in this range and with n �
2. However, all solutions in this range possess a naked
singularity with spherical topology surrounding the point
ðx; yÞ ¼ ð1;�1Þ. Thus, the introduction of a single rotation
to the black lens does not remove this singularity, as was
hoped for in [13]. Moreover, the rotation causes CTCs to
appear just outside the surface of the naked singularity. If
one does not desire the presence of CTCs with its associ-
ated paradoxes, then it would appear that Range I solutions
are the more appropriate ones to consider.

IV. DISCUSSION

The main results we have obtained are as follows: We
have derived the metric for an asymptotically flat black
lens with Lðn; 1Þ event-horizon topology, with asymptotic
angular momentum in one direction. Unfortunately, we
have found that this space-time cannot be made completely
regular. One either has to have a conical singularity at-
tached to the black-lens event horizon, or a spherical naked
singularity away from the event horizon. The latter inter-

pretation was adopted by Evslin [13], who argued that
since this singularity is isolated from the event horizon, it
may somehow be eliminated locally without affecting the
black lens itself. One of the results we have found is that
introducing a single angular momentum does not seem
able to eliminate it.
An obvious extension of this study would be to include

angular momentum in the other azimuthal direction. We
have in fact used the inverse scattering method to construct
a black-lens solution with two independent angular mo-
menta. It contains, as special cases, both the double-
rotating black ring [25] as well as the single-rotating black
lens (3.1). Unfortunately, this solution has a very compli-
cated form, which we will not present here. However, we
have analyzed its properties numerically, and it does not
seem to be possible to eliminate the conical and naked
singularities simultaneously, while at the same time main-
taining a positive ADMmass for the black lens. We hope to
present these results in more detail elsewhere.
It may well turn out that completely regular black lenses

do not exist, and that either conical or naked singularities
are unavoidable. Of these two possibilities, we actually
prefer the scenario containing conical singularities. The
presence of a conical singularity (which in this case can be
seen to be a conical excess, corresponding to what is also
known as a strut singularity) is physically needed to bal-
ance the gravitational self-attraction of the black lens,
something that the centrifugal force from the rotation
seems unable to do alone. Such conical singularities are
also quite common in other black-hole solutions in general
relativity, especially in space-times containing multiple
black holes, all of which are considered legitimate space-
times.
There are other reasons to prefer the scenario with

conical singularities rather than naked singularities. As
we have found, the introduction of angular momentum to
the space-time causes closed timelike curves to appear near
the naked singularity, but otherwise seem to be absent in
those solutions without naked singularities. The class of
black-lens solutions containing just conical singularities
(Range I as defined above) also has the feature that the
familiar black-ring solution emerges as a limiting case, and
so can be regarded as the natural generalization of the
black ring. It follows that this class of solutions possesses
some appealing properties in common with the black-ring
solution, such as the existence of a well-defined black-hole
limit (see Appendix B).
What about black lenses with more general event-

horizon topology Lðp; qÞ, where p, q are coprime integers?
Actually, this solution is still given by (3.1), if we set n ¼
p=q in (3.6). The condition for there to be no conical
singularities along x ¼ 1 is then m ¼ 1=q, instead of m ¼
1 as in (3.8). It turns out that the analysis in Sec. III is still
valid in this case, and that there will be either a conical
singularity or a naked singularity [with topology Lðq; pÞ]
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in the space-time. Furthermore, there will be a Zq orbifold
singularity at the point ðx; yÞ ¼ ð1;�1Þ when q > 1. This
orbifold singularity may be resolved by introducing a
second black lens with horizon topology Lðq; pÞ at this
point.

In a recent paper [15], Lu et al. actually rediscovered
and provided an alternative interpretation of the metric
(2.1), which has no conical or naked singularities. They
were able to satisfy both conditions (2.5) and (2.7) simul-
taneously, by giving up the condition of asymptotic flat-
ness: that  and � have period 2�. What they found was a
static black-lens solution with horizon topology Lðn;mÞ,
asymptotic to a locally flat space-time whose spatial sec-
tions are in fact lens spaces Lðm; nÞ. We expect that the
metric (3.1) can similarly be interpreted as a rotating
Lðn;mÞ black lens with an Lðm; nÞ asymptotic structure,
for appropriate re-identifications of  and �.

It is also possible to consider charged versions of our
rotating black-lens solution, for example, in the context of
five-dimensional minimal supergravity. Such a solution
can be constructed using standard solution-generating
techniques (see, e.g., [26]), and would be expected to carry
both an electric charge and a (nonconserved) magnetic
dipole charge. It would be interesting to construct and
examine the properties of this solution. However, we
note, somewhat disappointedly, that asymptotically flat
supersymmetric black lenses have been proved not to exist
in five-dimensional minimal supergravity [27].

At this point, one may be tempted to ponder about
asymptotically flat black holes with nonspherical horizon
topologies in six or higher dimensions. Unfortunately,
most of the methods relied upon in this paper: the gener-
alizedWeyl formalism [9] and the concept of rod structures
[10], the inverse scattering method [16–18], etc., will no
longer be applicable. This is due to the simple fact that
black holes in six or higher dimensions do not have the
requisite number of commuting Killing vectors, and com-
plete integrability of the Einstein equations is no longer
assured. Thus, finding higher-dimensional analogues of
black rings or black lenses would probably require a radi-
cally different approach. This is certainly a worthwhile and
challenging problem to be left for the future.

APPENDIX A: BACKGROUND SPACE-TIME

The background space-time for the static black lens
(2.1), or more generally the rotating black lens (3.1), can
be uniquely determined after making the following reason-
able assumptions: Firstly, we should take c! 0 to elimi-
nate the horizon; in the context of Fig. 1, this corresponds
to taking the limit z1 ! z2. Secondly, the mass and angular
momentum of the background space-time should vanish.
From the relevant expressions in (3.4), it follows that we
should also take b! 0, while keeping b � c. On the other
hand, the non-negative integer n should be fixed to main-
tain the orientation of the finite spacelike rod. For solutions

in Range I, it follows from (3.6) that a takes the form

a ¼ 1� 1þ n

n
bþOðb2Þ (A1)

in this limit. The black-lens metric (3.1) then reduces to

ds2 ¼�dt2 þ �2

ð1þ nÞðx� yÞ2
�
½2�nðxþ yÞ�

�
�

dx2

1� x2
� dy2

1� y2

�
þ 1� x2

2�nðxþ yÞ
� ½ð2þnð1� yÞÞd�� nð1þ yÞd �2

� 1� y2

2�nðxþ yÞ ½ð2þnð1� xÞÞd �nð1þ xÞd��2
�
;

(A2)

with �1< t <1, �1 � x � 1, �1< y � �1, and  ,
� having periodicity 2� to ensure asymptotic flatness.
Note that this background depends only on the parameters
� and n, as expected. It has a nonvanishing curvature if
n � 0.
It can be verified that this space-time contains three

axes: the two usual semi-infinite axes at x ¼ �1 and y ¼
�1, and a finite one at x ¼ 1 with orientation ð0; n; 1Þ.
There is in general a conical singularity along the latter
axis, since a calculation of m2 in (3.8) shows that it has
value ð1þ nÞ2 in the background limit. On the other hand,
we have checked that there are no CTCs present in this
space-time.
There are clearly two special points in the space-time

that deserve attention. The first is where the x ¼ 1 and y ¼
�1 axes meet up. The region around this point was already
examined in Sec. II, and the details are largely similar in
this case. The second is where the x ¼ �1 and x ¼ 1 axes
meet up. Let us now examine the region around this point.
We change to new coordinates ðr; �Þ as follows:

x ¼ cos2�; y ¼ � 2

r2
; (A3)

where 0 � � � �=2. The point in question is then located
at r ¼ 0. For small r, the spatial part of the metric (A2)
becomes

d s2 ¼ 2�2n

1þ n

�
dr2 þ r2

�
d�2 þ ð1þ nÞ2

n2
sin2�d 2

þ cos2�

�
d�� 1

n
d 

�
2
��
; (A4)

which is just a flat-space geometry. We may introduce

azimuthal coordinates ~� and ~ , such that the Killing
vectors ‘1 and ‘2 that vanish at � ¼ �=2 and � ¼ 0 are
given by (2.12). They are related to � and  by

~� ¼ �� 1

n
 ; ~ ¼ 1

n
 : (A5)

When n � 2, this transformation does not have unit deter-
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minant, and it follows that there is a Zn orbifold singularity
at r ¼ 0. There is no orbifold singularity when n ¼ 1,
which can also be seen from the fact that in this case, the
two points where the axes meet up are mirror images of
each other. In general, there is also a conical singularity
[with excess angle 2�n=ð1þ nÞ] along the � ¼ 0 axis.

On the other hand, for solutions in Range II, it follows
from (3.6) that a should take the form

a ¼ �1þ n� 1

n
bþOðb2Þ (A6)

in the background limit. In this case, the black-lens metric
(3.1) then reduces to

ds2 ¼�dt2 þ �2

ð1�nÞðx� yÞ2

�
�
½2þnðxþ yÞ�

�
dx2

1� x2
� dy2

1� y2

�

þ 1� x2

2þ nðxþ yÞ ½ð2�nð1� yÞÞd��nð1þ yÞd �2

� 1� y2

2þ nðxþ yÞ ½ð2�nð1� xÞÞd � nð1þ xÞd��2
�
:

(A7)

This background is actually related to the previous one
(A2) under the transformation n! �n and either  !
� or �! ��. It has the same rod structure as (A2); in
particular, there is a Zn orbifold singularity at the point
where the x ¼ �1 and x ¼ 1 axes meet up. There is in
general a conical singularity along the x ¼ 1 axis, as well
as a naked singularity with spherical topology located at
points where 2þ nðxþ yÞ ¼ 0. It can be checked that
there are no CTCs outside this naked singularity.

Now, if we restrict ourselves to the particular solution
(3.9) in Range II, which does not contain conical singular-
ities, then we would require (3.8) to hold even in the
background limit. A calculation shows that m2 ¼
ðn� 1Þ2, which means that this background can only be
obtained for the special case of the n ¼ 2 solution.5 As
mentioned in Sec. III, this corresponds to taking the static
limit of this solution. However, there is still the spherical
naked singularity in this background.

APPENDIX B: BLACK-HOLE LIMITS

There are three limits in which black holes with spheri-
cal event-horizon topology can be obtained from our black-
lens solution. In the interest of generality, we will only
consider limits of the rotating black-lens solution (3.1)
here. The black-hole limits of the static black lens can
readily be obtained as special cases.

First, consider the case when a ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� bÞ=ð1þ bÞp
,

in which the x ¼ 1 rod is joined up to the y ¼ �1 rod in
the same direction. To show that the metric (3.1) is equiva-
lent to the Myers-Perry black hole, we need to first trans-
form to Weyl coordinates, and then to prolate spheroidal
coordinates. The relevant formulae can be found in the
appendices of [10]. The coordinate transformation relating
the C-metric coordinates ðx; yÞ to the prolate spheroidal
coordinates ð~x; ~yÞ is

x ¼ ð1� cÞR1 � ð1þ cÞR2 � 2R3 þ 2ð1� c2Þ�2

ð1� cÞR1 þ ð1þ cÞR2 þ 2cR3

;

y ¼ ð1� cÞR1 � ð1þ cÞR2 � 2R3 � 2ð1� c2Þ�2

ð1� cÞR1 þ ð1þ cÞR2 þ 2cR3

;

(B1)

where

R1 ¼ c�2ð~xþ ~yÞ; R2 ¼ c�2ð~x� ~yÞ;

R3 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð~x2 � 1Þð1� ~y2Þ þ ðc~x ~y�1Þ2

q
:

(B2)

Finally, we transform to Boyer-Lindquist coordinates ðr; �Þ

~x ¼ 2r2

�� �2
� 1; ~y ¼ cos2�; (B3)

where � and � are new parameters, related to b and c by

b ¼ �

4�2 þ �2
; c ¼ �� �2

4�2
: (B4)

Under these transformations, (3.1) becomes

ds2 ¼ � r2 ��þ �2cos2�

r2 þ �2cos2�

�
dtþ ��sin2�

r2 ��þ �2cos2�
d 

�
2

þ r2cos2�d�2 þ ðr2 þ �2cos2�Þ

�
�

dr2

r2 ��þ �2
þ d�2

þ r2 ��þ �2

r2 ��þ �2cos2�
sin2�d 2

�
; (B5)

which is the familiar form of the Myers-Perry black hole
[3] rotating in the  direction.
The second limit we shall consider is when the finite axis

in the black lens space-time is shrunk to zero length—z2 !
z3 in the context of Fig. 1—while preserving its orienta-
tion. It turns out that we recover the Myers-Perry black
hole only when a takes values in Range I, which we recall
contains the black ring as a limiting case. Indeed, the
transformation we seek is similar to the one used in the
black-ring case [20]: We define the parameters � and � by

� ¼ 4�2

1� c
; �2 ¼ 4�2 b� c

ð1� cÞ2 ; (B6)

such that they remain finite in the limit b, c! 1, and �!
0. In this limit, the relevant root of (3.6) has the form

5Another way to see this is to plot c, as given in (3.9), against a
in the range (3.10). For n > 2, the graphs do not touch the c ¼ 0
axis at any point.
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a ¼ n

2
ð1� cÞ þOð1� cÞ2: (B7)

If we transform to new coordinates r and � via the relations

x ¼ �1þ
�
1� �2

�

�
4�2cos2�

r2 � ð�� �2Þcos2� ;

y ¼ �1�
�
1� �2

�

�
4�2sin2�

r2 � ð�� �2Þcos2� ;
(B8)

and rescale t

t!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

�� �2

s
t; (B9)

then it can be checked that the metric (3.1) indeed reduces
to the Myers-Perry metric (B5), up to an overall constant
factor.

The third limit in which a black hole can be obtained
from the black-lens solution is when n ¼ 1. In this case,
the topology of the horizon is also an S3. However, it
differs from the usual Myers-Perry black hole in that there
is now a conical singularity attached to the black hole
along the x ¼ 1 axis. One way to see this is to push the
y ¼ �1 axis to infinity by making the x ¼ 1 axis infinitely
long, while preserving the latter’s orientation. In the con-
text of Fig. 1, this corresponds to taking z3 ! 1. We first
perform the transformations (B1) to (B4), and then take the
limits b, c! 0, and �! 1 such that b�2 and c�2 remain
finite. In this limit, the relevant root of (3.6) has the form

a ¼ 1� ð1þ nÞ�
4n�2

þO

�
1

�4

�
; (B10)

where we keep n general for the time being. If we rescale

t! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ð1þ nÞp

t, then (3.1) becomes, up to an overall
constant factor,

ds2 ¼ � r2 ��þ �2cos2�

r2 þ �2cos2�

�
�
dtþ ��sin2�

r2 ��þ �2cos2�

1þ n

n
d 

�
2

þ r2cos2�

�
d�� 1

n
d 

�
2 þ ðr2 þ �2cos2�Þ

�
�

dr2

r2 ��þ �2
þ d�2

þ r2 ��þ �2

r2 ��þ �2cos2�

ð1þ nÞ2
n2

sin2�d 2

�
: (B11)

Now, we may introduce azimuthal coordinates ~� and ~ ,
such that the Killing vectors ‘1 and ‘2 that vanish at � ¼
�=2 and � ¼ 0 are given by (2.12). They are related to �
and  by

~� ¼ �� 1

n
 ; ~ ¼ 1

n
 : (B12)

In these coordinates, the space-time described by (B11) for
the case n ¼ 1 can be seen to be just the Myers-Perry black

hole rotating in the ~ direction, but with a conical singu-
larity (with excess angle �) along the � ¼ 0 axis. For
n � 2 however, this space-time is quotiented by Zn, so
that (B11) describes a black lens with horizon topology

Lðn; 1Þ rotating in the ~ direction, asymptotic to a locally
flat space-time whose spatial sections are also lens spaces
Lðn; 1Þ. Note that there is still a conical singularity [with
excess angle 2�n=ð1þ nÞ] along the � ¼ 0 axis.
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