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Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic

universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround

before they can create any problems. In this paper, using the mechanism of phantom accretion onto black

holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes

will not cause any problems due to Hawking evaporation.
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I. INTRODUCTION

The scenario of cyclic or oscillating universes is an
attractive idea in theoretical cosmology since it is expected
to avoid the initial singularity by providing an infinitely
oscillating universe. This idea has a long history [1,2]. In
recent years, there have been many discussions on such a
topic [3–5]. Generally, however, cyclic models of the uni-
verse confront a serious problem: black holes. If black
holes formed during expansion of the universe survive
into the next cycle, they will grow even larger from cycle
to cycle and act as defects in an otherwise nearly uniform
universe. Eventually, the black holes will occupy the entire
horizon volume, and then the cyclic models break away.

In [4], by assuming the existence of phantom dark
energy and using the modified Friedmann equation, the
authors suggested an oscillating cosmology. It is argued
that any black holes produced in an expanding phase in the
universe are torn apart before they can create problems
during contraction. A rough calculation has been given. In
general relativity, the source for a gravitational potential is
the volume integral of �þ 3p, where � is the energy
density in the universe and p is the pressure. So an object
of radius R and mass M is pulled apart when �ð4�=3Þ�
ð�þ 3pÞR3 �M. Then a black hole of mass M and hori-
zon radius R ¼ 2GM is pulled apart when the energy
density of the universe has climbed up to a value �BH �
ð3=32�ÞðM2G3j1þ 3wjÞ�1, where p ¼ w� is the equation
of state (for phantom dark energyw<�1). Then the black
holes will be torn apart before turnaround, if �BH < �c,
where �c is the critical energy density in the cyclic model,
namely, the energy density corresponding to the turn-
around (and bounce).

However, it is obvious that the destruction of black holes
is not an instantaneous event that just happened at ��
�BH, but a process. At the same time, the qualitative
analysis in [4] is too rough and cannot be taken as a
mechanism of tearing up black holes. We need such a
mechanism in order to know whether the analysis in [4]
works or not. In [6], the authors have suggested a mecha-

nism in which, by accreting the phantom energy, the mass
of a black hole decreases at the rate _M ¼ 4�AG2M2ð�þ
pÞ, where A is a positive dimensionless constant.
Replacing � and p by the effective energy density �eff ¼
�ð1� �=�cÞ and the effective pressure peff ¼pð1�
2�=�cÞ��2=�c, respectively, the author of [7] used this
mechanism, _M ¼ 4�AG2M2ð�eff þ peffÞ, to study the de-
struction of black holes in cyclic models. The conclusion in
[7] is that, in the expanding stage of the universe, through
the phantom accretion, the masses of black holes first
decrease and then increase. And at the turnaround, the
initial values of the black hole masses are restored. So it
is claimed that black hole cannot be torn up in the cyclic
model of [4].
But in [8], the author argued that �eff and peff are not

proper physical quantities. Taking into account this view,
in this paper we will study the destruction of black holes
in the phantom cyclic universe by using _M ¼
4�AG2M2ð�þ pÞ. A similar application in brane cosmol-
ogy has been discussed in [9].
The paper is organized as follows. In Sec. II, we analyze

the phantom energy accretion onto black holes in the cyclic
model of [4]. Section III contains conclusions and a
discussion.

II. ACCRETION OF PHANTOM FLUID IN CYCLIC
MODELS

Here, we consider that the dark energy fluid covers the
whole space in the homogeneous and isotropic forms with
dark energy density � and pressure p. For an asymptotic
observer, the black hole mass M changes at the rate [6]

_M ¼ 4�AM2ð�þ pÞ=M4
p: (1)

Here and below, the dot denotes the derivative with respect

to the cosmic time and c ¼ 1, Mp ¼ G�1=2. Assuming the

universe is dominated by dark energy, the expansion of the
universe is governed by the Friedmann equation

H2 ¼ 8�

3M2
p

� (2)

and the local energy conservation law of dark energy*cysun@mails.gucas.ac.cn; ddscy@163.com
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_�þ 3Hð�þ pÞ ¼ 0; (3)

where H � _a=a is the Hubble parameter. For phantom

dark energy with equation of state w ¼ p=� <�1, � /
a�3ð1þwÞ increases as the universe expands. In order to
avoid the big rip [10], we use the modified Friedmann
equation

H2 ¼ 8�

3M2
p

�

�
1� �

�c

�
; (4)

where �c is the critical energy density of the order of the
Planck density. The modified Friedmann equation (4) has
been suggested with different setups [11–13]. Then, in the
expanding phase of the universe, the phantom energy
density � increases. When � ¼ �c, due to Eq. (4), a
turnaround occurs. After turnaround, the universe begins
to contract. In the contracting phase, the energy densities of
other nonphantom components in the universe increase,
and eventually dominate the evolution of the universe.
When the dominant energy density reaches the critical
energy density �c again, a bounce occurs. Roughly, this
is the scenario of oscillating cosmology in [4]. Now let us
study the evolution of black hole masses due to the phan-
tom energy accretion in the scenario.

A. Before turnaround

Using Eqs. (1) and (3), we get

dM

M2
¼ � 4�A

3HM4
p

d�: (5)

Before turnaround, we have

H ¼
ffiffiffiffiffiffiffiffiffiffi
8�G

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
1� �

�c

�s
: (6)

Substituting this equation into Eq. (5), we get

dM

M2
¼ � Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �=�cÞ
p d�; (7)

with D �
ffiffiffiffiffi
2�
3

q
A
M3

p
. The integration of (7) gives

M ¼ Mi

1þ 2DMi
ffiffiffiffiffiffi
�c

p ðarcsin ffiffiffiffiffiffiffiffiffiffiffi
�=�c

p � arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�i=�c

p Þ ; (8)

with �i � � � �c. Here Mi and �i denote, respectively,
the black hole mass and the phantom energy density at the
moment when the phantom energy begins to dominate the
evolution of the universe. Generally, �i � �c. Then we
obtain

M ’ Mi

1þ 2MiD
ffiffiffiffiffiffi
�c

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
�=�c

p : (9)

So the black hole mass at turnaround is

Mc ’ Mi

1þ �MiD
ffiffiffiffiffiffi
�c

p : (10)

This result means that black holes, by accreting phantom
energy, do not disappear before turnaround. But our result
is different from the result of [7]. In [7], it is claimed that,
through phantom accretion, the black hole mass will de-
crease first, and then increase until restoring its initial mass
at turnaround. Here, our result, Eq. (8), indicates that,
through phantom accretion, the black hole mass always
decreases as the universe expands and, at turnaround,
reaches the minimum Mc in the expanding phase. For

Mi � Mp ¼ G�1=2, Mc becomes independent of Mi,

Mc ’ 1

�D
ffiffiffiffiffiffi
�c

p : (11)

B. After turnaround

After turnaround, the universe begins to contract and the
phantom energy density � decreases. Equation (8) cannot
be used directly because H is negative in the contracting
phase of the universe. Substituting the equation

H ¼ �
ffiffiffiffiffiffiffiffiffiffi
8�G

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�
1� �

�c

�s
(12)

into Eq. (5), we obtain

dM

M2
¼ � Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �=�cÞ
p d�: (13)

The integration of the equation gives

M ¼ Mc

1þDMc
ffiffiffiffiffiffi
�c

p ð�� 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffi
�=�c

p Þ ; (14)

with � � �c. Then Eq. (14) shows that, after turnaround,
as the universe contracts the phantom energy density de-
creases and the black hole masses continue to decrease.
When � � �c, the black hole mass is

Mf ’ Mc

1þ �DMc
ffiffiffiffiffiffi
�c

p : (15)

ForMi � Mp, using Eq. (11), we find that the final mass of

the black holes is

Mf ’ Mc

2
’ 1

2�D
ffiffiffiffiffiffi
�c

p : (16)

C. Destruction of black holes

The analysis above shows that, by accreting phantom
energy, a black hole in the cyclic universe with phantom
turnaround does not disappear, but has a remanent massMc

at turnaround. This means that, through phantom energy
accretion, black holes in the cyclic model of [4] cannot be
pulled apart before turnaround. Then it seems that the
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argument of destruction of black holes in [4] is wrong and
the problem of black holes remains.

However, it has been argued in [4] that for a black hole
with mass M ¼ 105Mp, it Hawking evaporates in a time

�� ð25�M3=M4
pÞ � 10�27 sec and causes no problems.

Let us estimate the value of Mc. Defining a dimensionless

constant ~D �
ffiffiffiffiffi
2�
3

q
A, we can rewrite Eq. (10) as

Mc ’ Mi

1þ �Mi
~D

ffiffiffiffiffiffi
�c

p
=M3

p

: (17)

~Dmay be taken as a constant of order unity and �c �Mp
4.

Then we haveMc � Mi

1þMi=Mp
. This implies that, for a black

hole withMi � Mp, the remanent massMc is about at the

order of the Planck mass Mp and the remanent black hole

Hawking evaporates in a time �� 10�43 sec of the order
of the Planck time. Then, fortunately, the remanent black
holes do not cause problems. Now we know that, in the
cyclic model with phantom energy turnarounds, black hole
masses decrease due to the phantom energy accretion.
Before turnaround, black holes cannot be torn apart, but
the remanent black holes with masses Mc �Mp remain at

turnaround. However, the remanents do not cause problems
in the cyclic model because of Hawking evaporation.

III. CONCLUSION AND DISCUSSION

In cyclic or oscillating cosmology, black holes pose a
serious problem. In [4], an oscillating cosmology with
phantom energy turnaround is suggested, and it is argued
roughly that black holes are torn apart before turnaround.
In [6], a successful mechanism in which the black hole
masses decrease due to phantom energy accretion is ob-
tained. In this paper, by using the result of [6], we have
surveyed the destruction of black holes in cyclic cosmol-
ogy with phantom energy turnaround.

Similar work has been done in [7]. The author’s con-
clusion is that, through phantom accretion, the black hole
mass will decrease first, and then increase until restoring its
initial mass at turnaround. Then the author claimed that the
problem of black holes remains in the cyclic model with
phantom turnaround. However, this conclusion is obtained
by using the effective energy density and pressure which
are unphysical variables [8], rather than the energy density

and pressure. Using the energy density and pressure, we
find that, due to phantom energy accretion, the mass of a
black hole always decreases before turnaround, and at
turnaround it reaches the remanent mass Mc. After turn-
around the remanent black hole mass continues to de-
crease. For black holes with mass much more massive
than the Planck mass, the black hole masses approach
Mc=2 asymptotically. Of course, our evaluation after turn-
around is not very rigid, because, as the universe contracts,
phantom energy will eventually become subdominant in
the universe.
So the remanent massMc implies that black holes in the

cyclic model cannot be pulled apart by phantom energy
before turnaround. Here, we note that, if the Friedmann
equation (2) is used, no turnaround occurs, but the big rip
does occur. Then we get

M ¼ Mi

1þ 2DMið ffiffiffiffi
�

p � ffiffiffiffiffi
�i

p Þ :

So, in this case, as � ! 1, black holes disappear, M ! 0.
But, in cyclic cosmology, the modified Friedmann equa-
tion (4) is used. The big rip is avoided, and then, through
phantom accretion, black holes cannot be eliminated. This
result can be obtained in another way. Using only Eq. (1),
we can obtain

1

M
� 1

Mi

¼ �
Z t

ti

4�Að�þ pÞdt:

The black hole mass M will not be zero unless the inte-
gration on the right-hand side is divergent. However, a key
property of cyclic cosmology is that the energy density and
pressure are always well defined. So, it is impossible for
black holes in the cyclic model to be eliminated by accret-
ing the phantom energy.
However, fortunately, we find that the remanent masses

of black holes at turnaround do not cause problems. The
reason is that these remanent black holes Hawking evapo-
rate in a time �� 10�43.
So our analysis indicates that, although through phantom

energy accretion black holes do not disappear before turn-
around, they do not cause problems in the cyclic models
with phantom turnarounds.
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