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Lemaitre-Tolman-Bondi models as specific spherically symmetric solutions of general relativity

simplify in their reduced form some of the mathematical ingredients of black hole or cosmological

applications. The conditions imposed in addition to spherical symmetry turn out to take a simple form at

the kinematical level of loop quantum gravity, which allows a discussion of their implications at the

quantum level. Moreover, the spherically symmetric setting of inhomogeneity illustrates several nontrivial

properties of lattice refinements of discrete quantum gravity. Nevertheless, the situation at the dynamical

level is quite nontrivial and thus provides insights to the anomaly problem. At an effective level, consistent

versions of the dynamics are presented which implement the conditions together with the dynamical

constraints of gravity in an anomaly-free manner. These are then used for analytical as well as numerical

investigations of the fate of classical singularities, including nonspacelike ones, as they generically

develop in these models. None of the corrections used here resolve those singularities by regular effective

geometries. However, there are numerical indications that the collapse ends in a tamer shell-crossing

singularity prior to the formation of central singularities for mass functions giving a regular conserved

mass density. Moreover, we find quantum gravitational obstructions to the existence of exactly homoge-

neous solutions within this class of models. This indicates that homogeneous models must be seen in a

wider context of inhomogeneous solutions and their reduction in order to provide reliable dynamical

conclusions.

DOI: 10.1103/PhysRevD.78.064057 PACS numbers: 04.60.Pp, 04.70.Dy

I. INTRODUCTION

Black holes provide one of the most active areas of
gravitational research and a prime testing ground for quan-
tum gravity. Many aspects can already be analyzed under
the assumption of spherical symmetry, which is sufficient
to describe nonrotating black holes. In vacuum, for in-
stance, a reduced quantization is possible [1–3]. This re-
duction has thus often been used in diverse approaches to
quantum gravity, and loop quantum gravity [4–6] has
provided its own formulation [7–11]. This allows one to
use the loop representation constructed in the full theory in
a simpler setting in which, as one hopes, one can find and
analyze physical solutions. The result is a set of many
coupled partial difference equations for a wave function
on midisuperspace, which reflects the discreteness of spa-
tial geometry realized in a loop quantization. As a conse-
quence, spacelike classical singularities as they occur e.g.
in the best-known case of the Schwarzschild solution are
removed because their high curvature regimes no longer
present boundaries to quantum evolution [12,13]. So far,
these present the only inhomogeneous singularities ana-
lyzed by the methods of loop quantum gravity, and the
situation appears much more nontrivial than in homoge-

neous models. Because of this complexity, several ques-
tions remain open. In particular, inhomogeneous models
allow not only spacelike singularities but also null or time-
like ones, which may even be naked; see e.g. [14–16] and
references therein. Their fate presents additional problems
of high interest which can be studied in spherical
symmetry.
Unfortunately, even the spherically symmetric equations

in loop quantum gravity are difficult to tackle, and so it
becomes interesting to look at further reductions which can
preserve the physical setting but provide mathematical
simplifications. Some of the possible effects have been
introduced in a more ad hoc manner in the models of
[17–20], and were used mainly to understand implications
on the horizon dynamics. A drawback of such an approach
is that quantum corrections are not clearly linked to key
ingredients of a loop quantization or any quantization one
could apply to the full, unrestricted theory. We thus intend
to introduce new models which, starting from the spheri-
cally symmetric reduction along the general lines of [8],
provide further simplifications. Moreover, we will pay
special attention to the anomaly problem which is required
for full consistency. The possibility followed here is a
reformulation of the spherically symmetric constrained
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system as it is used in the canonical definition of Lemaitre-
Tolman-Bondi (LTB) models [21–23]. In this classical
reduction, one solves the diffeomorphism constraint and,
inserting the solutions into the Hamiltonian constraint,
simplifies the set of equations. This eliminates some of
the equations and removes several gauge issues. The re-
maining equations are then easier to quantize and solve.

The imposed conditions make the constrained system
partially second class and thus are not straightforward to
implement at the quantum level. Symmetry reduction,
which is also partially second class and can be done at
the kinematical quantum level [7,24–27], provides some
guidelines, but the gauge-fixing conditions required for
LTB models are more complicated. While these issues
are discussed here, we postpone a direct implementation
at the dynamical quantum level and rather perform in this
article an analysis of the quantum correction terms one can
expect for the classical equations. Nevertheless, we will be
able to highlight several important issues at the quantum
level, such as the role of dynamical lattice refinements of
discrete states [28,29]. In particular, we will see that not all
refinement schemes discussed so far in anisotropic homo-
geneous models can be embedded in spherically symmetric
ones. But a large class still remains because only the
direction dependence, not the size dependence, of refine-
ments is determined.

What we provide in the main part of this paper is an
analysis of consistent sets of quantum corrected equations
of motion for a type of nonperturbative inhomogeneities,
which has not yet been available in other models studied in
the framework of loop quantum gravity. Previous equations
either refer to homogeneous models [30–33], where strict
effective equations can be derived as analyzed in a canoni-
cal setting in [34–36], but the consistency issue trivializes,
or to perturbative inhomogeneities as in [37–44]. In our
case, inhomogeneities can be nonperturbative but their
equations are arrived at only after performing a partial
gauge fixing.

We will thus be able to restrict the form of possible
quantum corrections by the condition that they provide
consistent deformations of the classical equations. Thus,
we will discuss how quantum corrections due to loop
quantum gravity should occur in order to guarantee con-
sistent LTB-like solutions. We will not be deriving strict
effective equations, but we will determine consistent
anomaly-free consequences of different types of quantum
corrections. For several of the consistent choices we study
consequences for inhomogeneous spherically symmetric
systems based on analytical as well as numerical consid-
erations. Our main interest here, as often in this context, is
the fate of classical singularities. Compared to other mod-
els which by now have been studied extensively in loop
quantum cosmology [45], a new feature is the possibility of
nonspacelike singularities in LTB systems. Interestingly,
none of the corrections studied here resolve such singular-

ities directly (nor spacelike ones in these models), in con-
trast to what their analogs do so easily in homogeneous
models. However, numerically we find indications that
shell-crossing singularities generically occur in the pres-
ence of the corrections, where only shell-focusing singu-
larities would do in classical theory. The shell-crossing
singularities are expected to be weakly extendable or to
be avoidable by realistic matter. This is one example for
new effects in inhomogeneous models, which not surpris-
ingly prove themselves much more nontrivial than homo-
geneous ones.

II. SPHERICALLY SYMMETRIC SPACETIMES
AND LTB VARIABLES

The line element in a general spherically symmetric
space-time with polar coordinates ðx; #; ’Þ can be written
as

d s2 ¼ �e2�dt2 þ e2�dx2 þ R2ðd#2 þ sin2#d’2Þ; (1)

where � ¼ �ðt; xÞ, � ¼ �ðt; xÞ, and R ¼ Rðt; xÞ are func-
tions of the time and radial coordinates t and x.
Alternatively, the form suitable for a canonical analysis,
as done below, is

d s2 ¼ �Nðx; tÞ2dt2 þ Lðx; tÞ2ðdxþ Nxðx; tÞdtÞ2
þ Rðx; tÞ2ðd#2 þ sin2#d’2Þ; (2)

whereN,Nx, L, and R are again free functions of the radial
coordinate x and time t only. In a canonical quantization,
the lapse function N and the shift vector Nx appear as
Lagrange multipliers of the Hamiltonian and diffeomor-
phism constraints, respectively. They are thus not dynami-
cal, unlike the remaining functions L and R which have
nontrivial momenta PL and PR, together forming the kine-
matical phase space of spherically symmetric gravity. In
(1), the shift vector has already been chosen to vanish,
while � and � are related to N and L in obvious ways.

A. Matter source

We start with a spherically symmetric matter source
whose stress-energy tensor T

�
� is diagonalized in the form

T
�
� ¼

�� 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

0BBB@
1CCCA; (3)

where � ¼ �ðt; xÞ, � ¼ �ðt; xÞ, and � ¼ �ðt; xÞ are the
energy density, the radial pressure, and the tangential
pressure, respectively. Einstein’s equation and the conser-
vation law then reduce to a set of partial differential
equations given by

m0 ¼ 4�G�R2R0; (4)

_m ¼ �4�G�R2 _R; (5)
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_R 0 ¼ _R�0 þ R0 _�; (6)

�0 ¼ �ð�þ �Þ�0 � 2ð���ÞR
0

R
;

e�2�ð €R� _� _RÞ � e�2��0R0 ¼ � m

R2
� 4�G�R;

(7)

where we have introduced

m ¼ R

2
ð1� R02e�2� þ _R2e�2�Þ; (8)

called the Misner-Sharp mass. Five of the above six equa-
tions are independent.

The Misner-Sharp mass m is generally defined as

m ¼ 1
2Rð1�rARrARÞ; (9)

where A takes values 0 and 1 corresponding to the 2-
manifold coordinatized by t and x. At spherical trapping
horizons [46] we have R ¼ 2m. (To see this, one can use
the simple criterion for the spherically symmetric trapping
horizon as the place where constant area radius surfaces
become null [47]. This is the boundary of the region of
spherical trapped surfaces; there may be nonspherical
trapped surfaces outside that region [48,49].) In an asymp-
totically flat space-time, the asymptotic value of the
Misner-Sharp mass at spatial infinity equals the
Arnowitt-Deser-Misner (ADM) mass MADM. We can de-
fine a conserved current from the Misner-Sharp mass,
which is called the Kodama current and given by

jA ¼ �ABrBm; (10)

where �AB is the antisymmetric tensor satisfying �AB�
B
C ¼

gAC. By definition, the current j
A satisfies the conservation

law rAj
A ¼ 0. The Kodama current provides the energy

density

� ¼ m0

4�GR2R0 (11)

in agreement with (4).

B. Classical LTB spacetimes

In classical Einstein gravity, there is an exact solution
which describes a spherically symmetric collapse system
sourced by inhomogeneous dust: the Lemaitre-Tolman-
Bondi solution [21–23]. For dust, we have � ¼ � ¼ 0
such that Eq. (5) implies that

m ¼ 1
2FðxÞ (12)

is an arbitrary function of the radial coordinate only. From
Eq. (4), we then have

� ¼ F0

8�GR2R0 (13)

for the dust density. Then, Eq. (7) implies that � ¼ �ðtÞ can
be made to vanish by rescaling the time coordinate t such

that it becomes the dust proper time. Equation (6) can be
integrated to give

ðR0e��Þ2 ¼ 1þ �ðxÞ; (14)

where �ðxÞ>�1 is another arbitrary function. The result-
ing line element can be written as

d s2 ¼ �dt2 þ R02

1þ �ðxÞ dx
2 þ R2ðd#2 þ sin2#d’2Þ;

(15)

where the only dynamical function left satisfies, from
Eq. (8),

_R 2 ¼ �ðxÞ þ FðxÞ
R

: (16)

Here we concentrate on the special case where �ðxÞ ¼ 0,
called the marginally bound LTB solution, such that

d s2 ¼ �dt2 þ R02dx2 þ R2ðd#2 þ sin2#d’2Þ (17)

and Eq. (16) becomes

_R 2 ¼ FðxÞ
R

: (18)

At a trapping horizon, this expression equals one. We can
integrate the equation of motion to

t� tsðxÞ ¼ � 2R3=2

3FðxÞ1=2 ; (19)

where tsðxÞ is an arbitrary function specifying initial values
at t ¼ 0. Its freedom can be absorbed by defining the
function R in terms of the coordinate x at t ¼ 0. For
instance, requiring Rjt¼0 ¼ x and choosing the lower

sign in (19) for a collapsing model, we have tsðxÞ ¼
2
3 x

3=2FðxÞ�1=2 and thus

Rðx; tÞ ¼ ðx3=2 � 3
2

ffiffiffiffiffiffiffiffiffiffi
FðxÞ

p
tÞ2=3: (20)

(An example is the self-similar solution R ¼ xð1�
at=xÞ2=3 obtained for FðxÞ ¼ �x as studied in [50].) Of
special interest in those solutions is the small-x behavior of
R which may be regular or singular. In particular, the
energy density (13) can be divergent where R0 ¼ 0, giving
rise to shell-crossing singularities. While solutions are no
longer valid beyond this point, shell-crossing singularities
are deemed avoidable by more realistic matter models; see
e.g. [51]. Moreover, solutions are extendable through shell-
crossing singularities in a distributional sense [52,53]. In
addition to this, energy density as well as the Ricci scalar
can diverge when R ¼ 0, giving rise to a shell-focusing or
central singularity which is the main interest here. The
properties of shell-focusing singularities in LTB models
have been extensively studied [54–57]. In particular, it was
proven that naked singularities form generically in this
system [55,58,59].
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This provides a new arena for effects of quantum gravity,
which we will come back to in more detail in Sec. V. We
will be using loop quantum gravity which requires
Hamiltonian techniques. In the canonical formulation of
spherically symmetric Einstein gravity, the Hamiltonians
of the gravitational sector, Hgrav, and of the matter sector,

Hdust, for the LTB system provide the expressions

Hgrav ¼ � _R2R0 þ Rð _R2Þ0
2G

¼ �ð _R2RÞ0
2G

; Hdust ¼ F0

2G
(21)

after replacing the momentum in terms of _R. The total
Hamiltonian constraint Hgrav þHdust ¼ 0 then yields

Eq. (18). Below, we will provide a detailed canonical
analysis based on Ashtekar variables, which will allow us
to incorporate some corrections as they are expected from
loop quantum gravity. (See [60–62] for a canonical analy-
sis in ADM variables, and [63,64] for an analysis in
arbitrary dimensions.)

C. Connection variables

For a canonical formulation only the spatial part of the
metric provides the dynamical degrees of freedom.
Moreover, the most successful canonical quantization of
gravity, loop quantum gravity, is based on a densitized triad
Ea
i rather than a spatial metric qab, which are related by

Ea
i E

b
i ¼ detðqcdÞqab. (We use tangent space indices

a; b; . . . and internal gauge indices i; j; . . . .) The spatial
metric for a spherically symmetric system in components
of this variable is given by

d s2 ¼ E’ðxÞ2
jExðxÞj dx

2 þ jExðxÞjðd#2 þ sin2#d’2Þ; (22)

where instead of the spherically symmetric spatial metric

components L (which equals E’=
ffiffiffiffiffiffiffiffiffijExjp

) and R (which

equals
ffiffiffiffiffiffiffiffiffijExjp

) the spherically symmetric triad components
Ex and E’ appear. Written as a densitized vector field
taking values in su(2) with basis �i, these components
define the spherically symmetric densitized triad by

E ¼ ExðxÞ�3 sin# @

@x
þ ðE1ðxÞ�1 þ E2ðxÞ�2Þ sin# @

@#

þ ðE1ðxÞ�2 � E2ðxÞ�1Þ @

@’
(23)

such that ðE’Þ2 ¼ ðE1Þ2 þ ðE2Þ2. (For more details on this
decomposition, see [7,8]. Notice that the sign of Ex is not
restricted to be positive, while E’ is defined to be non-
negative. The sign of Ex thus determines the orientation of
the triad since sgn detðEa

i Þ ¼ sgnEx; it plays an important
role for fundamental singularity resolution [13], but not for
most of the analysis done in this article.) The remaining
freedom of the three functions Ex, E1, and E2 not contained
in the components Ex and E’ is pure gauge since it does
not affect the metric. It can be parametrized by an angle

� ¼ arctanðE2=E1Þ which is subject to U(1)-gauge trans-
formations. The corresponding Gauss constraint is G½�� ¼R
dx�ðxÞððExÞ0 þ P�Þ where P� is the momentum of �.
Fields canonically conjugate to the original triad com-

ponents EI are Ashtekar connection components of

A ¼ AxðxÞ�3dxþ ðA1ðxÞ�1 þ A2ðxÞ�2Þd#
þ ðA1ðxÞ�2 � A2ðxÞ�1Þ sin#d’þ �3 cos#d’: (24)

Also here we introduce the U(1)-gauge invariant quantity
A2
’ ¼ A2

1 þ A2
2 and the gauge angle 	 ¼ arctanðA2=A1Þ.

Only the difference 
 :¼ �� 	 of the angles is gauge
invariant, while each of them can be changed by the same
amount with a gauge transformation. However, the new
parameter A’ is not canonically conjugate to E’; see [8]

for details. In terms of the U(1)-gauge invariant triad
component E’, its conjugate variable is rather given by
A’ cos
 ¼ �K’ which happens to be proportional to an

extrinsic curvature component [9]. (The constant of pro-
portionality is given by the Barbero-Immirzi parameter �
[65,66].) The canonical pairs we will be dealing with are
thus ðAx; E

xÞ, ð�K’; E
’Þ for which

fAxðxÞ; ExðyÞg ¼ 2�G�ðx; yÞ; (25)

f�K’ðxÞ; E’ðyÞg ¼ �G�ðx; yÞ; (26)

and another pair ð�;P�Þ for the gauge angle. The relation
between the remaining Ashtekar connection component Ax

and extrinsic curvature is Ax ¼ �Kx � �0 where the spatial
derivative �0 of the angle is the (negative) x-component of
the spin connection. Its angular components are given in
terms of

�’ ¼ �ðExÞ0
2E’ (27)

which determines the relation between A’ and K’ as A2
’ ¼

�2
’ þ �2K2

’ without reference to 
.

Solving the Gauss constraint removes the gauge angle
and its momentum and implies that invariant objects can
depend on the x-component of the Ashtekar connection
only through the extrinsic curvature quantity Ax þ �0 ¼
�Kx. We are then left with only two canonical pairs
ðKx; E

xÞ and ðK’; E
’Þ. A further reduction can be imple-

mented by using the LTB form of the variables correspond-
ing to the metric (17). Comparing the spatial parts of the
metrics (17) and (22) one obtains the LTB relation

E’ðxÞ ¼ 1
2jExðxÞj0: (28)

In particular, we have �’ ¼ �sgnEx everywhere. For a

complete reduction of canonical degrees of freedom, this is
to be accompanied by a condition between Kx and K’. We

will determine this by consistency with the constraints,
such that (28) is preserved in time.
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D. Constraints

Constraints in real Ashtekar variables as used here have
been derived in [8,9]. The diffeomorphism constraint is
given by

D½Nx� ¼
Z

dxNxð2A0
1E

1 þ 2A0
2E

2 � AxðExÞ0Þ; (29)

where A1 ¼ A’ sin	, A2 ¼ �A’ cos	, E1 ¼ E’ sin�,

E2 ¼ �E’ cos�. Using these definitions in the above
equation one obtains

D½Nx� ¼
Z

dxNxð2ðA’ cos
Þ0E’

þ 2ð
0 þ 	0ÞE’A’ sin
� AxðExÞ0Þ: (30)

Using the relations A’ cos
 ¼ �K’, A’ sin
 ¼ �’, 
þ
	 ¼ �, Ax ¼ ��0 þ �Kx, and �’ ¼ �ðExÞ0=2E’, this

can be expressed solely in terms of U(1)-gauge invariant
quantities as

D½Nx� ¼
Z

dxNxð2�K0
’E

’ � �KxðExÞ0Þ: (31)

We can consider the marginally bound LTB condition, as
given by (28), as a gauge-fixing condition of the diffeo-
morphism constraint to form a second class pair. On the
gauge-fixing surface, the diffeomorphism constraint can be
replaced by

D½Nx� ¼
Z

dxNx�ðExÞ0ðsgnðExÞK0
’ � KxÞ: (32)

Thus, for the diffeomorphism constraint to be satisfied one
must have

K0
’ ¼ KxsgnE

x: (33)

This provides the LTB condition for the conjugate varia-
bles to EI analogous to (28). Having solved the second
class constraints resulting from gauge-fixing D½Nx�, we
proceed to the Hamiltonian constraint and insert the
solutions.

In spherical symmetry, the gravitational part of the
Hamiltonian constraint is

Hgrav½N� ¼ � 1

2G

Z
dxNðxÞjExj�1=2ðð1� �2

’ þ K2
’ÞE’

þ 2��1K’E
xðAx þ �0Þ þ 2Ex�0

’Þ: (34)

With �’ ¼ �1 under the LTB condition in (28), we have

Hgrav½N� ¼ � 1

2G

Z
dxNðxÞjExj�1=2ðK2

’E
’ þ 2K’E

xKxÞ
(35)

or, in unsmeared form,

Hgrav ¼ � 1

2G

�
K2

’E
’ffiffiffiffiffiffiffiffiffijExjp þ 2K’Kx

ffiffiffiffiffiffiffiffiffi
jExj

p �
; (36)

where E’ and K’ are to be understood as functionals of Ex

and Kx, respectively, via the LTB conditions, or as func-
tions of R and its momentum PR. Thus, Hgrav is left as the

sole constraint to restrict initial values and generate equa-
tions of motion for LTBmodels. In fact, the conditions (28)
and (33) can be seen to be consistent with the classical
equations of motion for Ex, E’, Kx, and K’ generated by

(36) (in addition to solving the diffeomorphism constraint
identically). Thus, the reduction to LTB form is dynami-
cally consistent and provides correct space-time solutions.
Maintaining this consistency will be our main guideline in
the analysis of quantum effects.

III. EFFECTS OF A LOOP QUANTIZATION

Like any quantization of an interacting system, quantum
gravity implies corrections to classical equations of motion
and thus forces us to readdress consistency issues of clas-
sical reductions. As we will see explicitly, for a loop
quantization this provides valuable feedback on the con-
sistency or possible anomalies of the overall framework. In
LTB systems, once a consistent reduction has been found,
it can be used for applications to black hole singularity
issues. We focus on loop specific issues which do not arise
in Wheeler-DeWitt type quantizations of [60–62] which
have for instance been applied to Hawking radiation
[64,67,68].

A. Basics of spherically symmetric loop quantum
gravity

A loop quantization [69] of spherically symmetric grav-
ity is based on holonomies

heðAxÞ ¼ exp

�
1

2
i
Z
e
Axdx

�
; (37)

hvðK’Þ ¼ expði�K’ðvÞÞ; (38)

hvð�Þ ¼ expði�ðvÞÞ (39)

for the configuration variables instead of linear expressions
in connection or extrinsic curvature components. Here, we
have used edges e and vertices v in the radial line. The use
of these variables is strongly motivated by general results
of loop quantum gravity [4–6]: Background independence,
i.e. quantization in the absence of a metric other than the
physical one determined by Ea

i , is realized in a well-
defined representation of smeared basic variables for hol-
onomies together with fluxes as 2-dimensionally integrated
densitized triads. But operators for connection or extrinsic
curvature components themselves do not exist.
An orthonormal basis of gauge invariant states in the

connection representation is given by [8]

Tg;k;� ¼ Y
e2g

exp

�
1

2
ike

Z
e
ðAxþ�0Þdx

�Y
v2g

expði�v�K’ðvÞÞ

(40)
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with integer labels ke and positive real labels�v on edges e
and vertices v, respectively, forming a finite graph g in the
1-dimensional radial line. The labels determine the con-
nection dependence by irreducible representations of the
groups spanned by the holonomies. (These groups are U(1)

for Ax-holonomies and the Bohr compactification �RBohr of
the real line for K’-holonomies; see [8] for details.) The

densitized triad, i.e. momenta conjugate to the connection
components, will be derivative operators which are quan-
tized in the full theory in the form of fluxes

R
S E

a
i �

inad
2y

as integrals over surfaces S with conormals na. Their
explicit action in spherical symmetry is

Ê xðxÞTg;k;� ¼ �‘2P
keþðxÞ þ ke�ðxÞ

2
Tg;k;�; (41)

Z
I
Ê’Tg;k;� ¼ �‘2P

X
v2I

�vTg;k;�; (42)

where ‘2P ¼ G@ is the Planck length squared and e�ðxÞ
denote the neighboring edges to a point x, distinguished
from each other using a given orientation of the radial line.
(We have keþðxÞ ¼ ke�ðxÞ if x is not a vertex of the graph.)

The Ê’-operators only exist in smeared form after integrat-
ing over arbitrary radial intervals I . All flux operators have
discrete spectra: eigenstates as seen in (41) and (42) are

normalizable. But only Êx has a discrete set of eigenvalues,

while Ê’-eigenvalues fill the real line. (Their eigenstates
are elements of the nonseparable Hilbert space of square
integrable functions on the Bohr compactification of the
real line.)

These basic operators can be used for composite opera-
tors as well, providing well-defined but rather complicated
constraint operators. Instead of dealing directly with these
operators, we will extract some typical effects as phenome-
nological corrections to the classical equations and analyze
their potential implications with more ease. This has been
done in quite some detail in cosmological applications
[37,39–44,70–73], and we start the same in this paper for
inhomogeneous models in the spherically symmetric con-
text. In this way, we provide the first examples where full
inhomogeneities, rather than perturbative ones as in cos-
mology, are studied in this way. But we emphasize that we
do not derive complete effective equations as per [34–36]
in this paper, which is rather an exploration of possible
effects. Nevertheless, restrictions by consistency already
provide interesting lessons. The general consistency issue
is similar to that studied after partial gauge fixings in
spherical symmetry in [11], where it was analyzed based
on the general ideas of [74,75], and in [76]. Our analysis
here provides complementary results in a different setting,
where we make sure that potential anomalies arising from
different correction terms cancel each other. Moreover, the
effective treatment allows us to arrive more directly at
properties of physical solutions.

B. Implementing the LTB conditions

The LTB conditions (28) and (33) in terms of densitized
triad and extrinsic curvature variables are well suited to an
implementation at the level of spin networks. They refer
directly to basic expressions of the quantization (provided
that one just exponentiates the relation (33) to result in
holonomies) and can thus easily be formulated as condi-
tions for kinematical states. In this way, the LTB reduction
can be performed at the quantum level. However, consis-
tency issues of the dynamics are not easy to deal with at the
complete quantum level. We will therefore describe the
kinematical constructions here, proceed to a phenomeno-
logical effective level in Sec. IV, and then study its con-
sistency. By the link to the initial loop quantization, this
indirect route will nevertheless provide feedback on the
full theory.
From the triad relation (28) we derive a condition for

fluxes simply by integrating over arbitrary radial intervals
I : Z

I
E’ ¼ 1

2
jExj@I ; (43)

where @I is the boundary of I at which Ex is evaluated,
taking into account orientation to have the correct signs.
This relation can be imposed on triad eigenstates (40),
where (41) and (42) imply

�v ¼ 1
2ðjkeþðvÞj � jke�ðvÞjÞ (44)

for any vertex v. This directly eliminates all vertex labels
in favor of the edge labels which remain free, analogously
to the function jExj ¼ R2 which classically determines a
LTB metric completely.
On these reduced states, it turns out, the LTB condition

for holonomy operators is already implemented. Upon
integration and exponentiation, we have

exp

�
1

2
isgnðExÞ

Z v2

v1

ðAx þ �0Þdx
�

¼ exp

�
1

2
i�K’ðv1Þ

�
exp

�
� 1

2
i�K’ðv2Þ

�
(45)

expressed solely in terms of elementary holonomy opera-
tors. This condition is realized in the sense that the left and
right-hand sides, as multiplication operators, have the same
action on solutions to the LTB condition satisfying (44). In
fact, the left-hand side simply increases the label of the
edge between v1 and v2 (which we assume to be two
adjacent vertices) by one. Thus, it changes both keþðv1Þ
and ke�ðv2Þ by �1 depending on their sign. The two opera-

tors on the right-hand side, on the other hand, change the
vertex label �v1

by 1
2 and �v2

by � 1
2 in the right way to

respect the condition (44) if it was realized for the original
state. (If there are vertices v between v1 and v2, keþðvÞ and
ke�ðvÞ change by the same value such that (44) remains

implemented without changing �v.)
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Notice that, unlike conditions for a symmetry reduction,
the two LTB conditions for densitized triads and extrinsic
curvature have vanishing Poisson brackets with each other
(but not with the constraints). Thus, the curvature condition
can indeed be implemented on the solution space of the
triad condition. It does not add further conditions for states
because they are written in a specific polarization. LTB
states are thus simply represented by a chain of integer
labels kn for n ¼ 0; 1; . . . which represents spatial
discreteness (a 1-dimensional lattice of independent sites)
as well as the discreteness of quantum geometry (integer
kn as eigenvalues of the area radius squared). In a connec-

tion representation, they can be written as T~kðz0; z1; . . .Þ ¼Q
nz

kn
n where the assignment n � zn :¼ expð12 i

R
en
�KxdxÞ

is a generalized LTB connection.
While states can be reduced immediately to implement

the LTB conditions, further conditions do result for com-
posite operators because (45) must be used if the action of
any operator is to be written on the LTB states where (44)
has eliminated vertex labels. This provides reductions, e.g.
of constraint operators, such that characteristic quantum
gravity effects in loop operators can be carried over to
constraints for a LTB model.

C. Inverse triad effects

The first effect we turn to arises from the required
quantization of inverse powers of the densitized triad,
such as Ex in (36). There is no direct quantization of

such an inverse since Êx in a loop quantization (41) has a
discrete spectrum containing zero, and thus lacks an in-
verse operator. Nevertheless, one can use general tech-
niques to arrive at a well-defined operator which
reproduces ðExÞ�1 in a classical limit. This quantization
is based on the Poisson relation between a holonomy and
the volume, which one can identify with an expression for

1ffiffiffiffiffiffi
jExj

p . More precisely, we have 4��GsgnðExÞE’=
ffiffiffiffiffiffiffiffiffijExjp ¼

fAx; Vg for the combination of triad components appearing

in the first term of (36), where V ¼ 4�
R
dx

ffiffiffiffiffiffiffiffiffijExjp
E’ is the

classical expression for volume in a spherically symmetric
setting. In these expressions, we follow general construc-
tions of the full theory [77].

When quantized, the connection component is expressed
through a holonomy, and the Poisson bracket becomes a
commutator. In order to stay as close to the full theory as
possible, we use SU(2) holonomies

hxðAÞ ¼ exp

�
�3

Z
Ax

�
¼ cos

�
1

2

Z
Ax

�
þ 2�3 sin

�
1

2

Z
Ax

�
; (46)

which in their matrix elements provide the basic quantities
(37). (Generators of SU(2) are �j ¼ � 1

2 i
j in terms of

Pauli matrices 
j; path ordering is not necessary for radial

holonomies thanks to the symmetry reduction, which re-
duces the gauge group to an Abelian one [7].) The com-
mutator for these holonomies becomes

hx½h�1
x ; V̂� ¼ V̂ � cos

�
1

2

Z
Ax

�
V̂ cos

�
1

2

Z
Ax

�
� sin

�
1

2

Z
Ax

�
V̂ sin

�
1

2

Z
Ax

�
þ 2�3

�
cos

�
1

2

Z
Ax

�
V̂ sin

�
1

2

Z
Ax

�
� sin

�
1

2

Z
Ax

�
V̂ cos

�
1

2

Z
Ax

��
(47)

and appears in the constraint in the form trð�3hx½h�1
x ; V̂�Þ.

This can be used in a quantization of

tr ð�3hxfh�1
x ; VgÞ ¼ �tr

�
�23

�Z
Ax; V

��
¼ 1

2

Z
e
fAx; Vg � 1

2
‘0fAx; Vg;

where ‘0 is the coordinate length of the edge used. When
inserted in the Hamiltonian constraint, ‘0 for all edges
discretizes the integration measure dx. Eigenvalues can
be computed easily from the basic action of holonomies
and fluxes: for the operator

dZ
I

E’sgnðExÞffiffiffiffiffiffiffiffiffijExjp ¼ �i

2��G@
trð�3hx½h�1

x ; V̂�Þ

¼ �i

2��G@

�
sin

�
1

2

Z
Ax

�
V̂ cos

�
1

2

Z
Ax

�
� cos

�
1

2

Z
Ax

�
V̂ sin

�
1

2

Z
Ax

��
(48)

we have eigenvalues� dZ
I

E’sgnðExÞffiffiffiffiffiffiffiffiffijExjp �
k;�

¼ 2
ffiffiffiffi
�

p
‘Pj�vjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkeþðvÞ þ ke�ðvÞ þ 1j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkeþðvÞ þ ke�ðvÞ � 1j

q
Þ; (49)

where v is the starting point of the interval I used as the
edge in the holonomy.
Looked at for all values of Ex, eigenvalues of the result-

ing operator do not agree exactly with the classical func-

tion E’=
ffiffiffiffiffiffiffiffiffijExjp

but show deviations especially at small Ex.
We can parametrize this by a correction function 
ðExÞ as


ðExÞ :¼
� d1ffiffiffiffiffiffiffiffiffijExjp �

kðExÞ
ð

ffiffiffiffiffiffiffiffiffi
jÊxj

q
ÞkðExÞ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEx þ �‘2P=2j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEx � �‘2P=2j

q
�‘2P

ffiffiffiffiffiffiffiffiffi
jExj

p
;

(50)

where the subscript kðExÞ means that the eigenvalue of the
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operator is taken at label keþðvÞ þ ke�ðvÞ ¼ 2Ex=�‘2P as it

follows from (41). Classically, i.e. for ‘P ! 0, we have

ðExÞ ¼ 1, and this limit is approached by 
 for large Ex.
With the correction, the expression for the inverse power of
the triad component Ex is finite, just as in the isotropic case
[78]. The general behavior of the correction function is
illustrated in Fig. 1. Similar constructions have been used
before in spherical symmetry, see e.g. [17]. (While finite-
ness of inverse triad operators is realized in isotropic and
spherically symmetric models, this is not expected to be a
general property [79,80]. Nevertheless, inverse triad op-
erators are well defined in general situations of loop quan-
tum gravity [81].)

One should note thatEx refers to the total area of a whole
orbit at radius x, which can have macroscopic values. In
this case, 
 only slightly differs from one. However, a fully
inhomogeneous quantization would refer to flux values of
individual microscopic patches, where Ex ¼ P

npn is a
large sum of microscopic contributions pn, together giving
the whole orbit area. The single fluxes pn are much smaller
and closer to the Planck scale, which makes 
 differ from
one more noticeably if these fundamental fluxes are used.
This is an illustration of the fact that symmetric models
often artificially suppress corrections from inverse triad
operators, as first noted in [82]. Inverse triad corrections
analogous to 
 have thus occasionally been underesti-
mated, especially in isotropic models of macroscopic uni-
verses with large matter content. One can model the
enhancements of corrections in fully inhomogeneous states
even in symmetric models by using higher SU(2)-
representations of holonomies in operators, not just the
fundamental one as understood in (48). Then, the expres-
sion for 
 changes essentially by replacing �‘2P in (50) by
j�‘2P if j is the spin of the representation. (See [83,84] for
precise formulas in those cases.) For our qualitative analy-
sis here we can focus on the expression (50). In fact, later
applications mainly use the small-Ex behavior near a cen-
ter or a central singularity where corrections are strong for
any j.

Because classically, for ‘P ! 0, the function 
ðExÞ
approaches one, the classical limit is correct if this function

is inserted as a multiplier of 1=
ffiffiffiffiffiffi
Ex

p
in the Hamiltonian

constraint. We can thus write (36) as

HðIÞ
grav ¼ � 1

G

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEx þ �‘2P=2j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEx � �‘2P=2j

q
�‘2P

� K2
’E

’ þ K’Kx

ffiffiffiffiffiffiffiffiffi
jExj

p 1A
¼ � 1

2G

�

ðExÞffiffiffiffiffiffiffiffiffijExjp K2

’E
’ þ 2K’Kx

ffiffiffiffiffiffiffiffiffi
jExj

p �
: (51)

The form of corrections is usually not fully unique due to
the presence of quantization ambiguities. Sometimes, how-
ever, they can be restricted more strongly by relating,
whenever possible, reduced expressions to what one ex-
pects in the full theory. This provides different options for
specific corrections which can be analyzed for robustness
and the phenomenology they imply. In the present case,
the full theory may suggest an alternative corrected
Hamiltonian

HðIIÞ
grav ¼ � 1

2G


ðExÞffiffiffiffiffiffiffiffiffijExjp ðK2
’E

’ þ 2K’KxE
xÞ: (52)

Here, also the second term carries a correction function,

which is motivated if one takes into account that the
ffiffiffiffiffiffiffiffiffijExjp

in the second term of (36) arises from a cancellation in

Ex=
ffiffiffiffiffiffiffiffiffijExjp

after inserting spherically symmetric variables
into the full constraint. Thus, the second term could also be
expected to have a correction by 
. We will analyze both
cases below and describe their differences. (More gener-
ally, one could analyze a Hamiltonian where the two terms
in (52) are corrected by different powers of 
, or by two
independent correction functions which would have to be
related to each other by making contact with a specific
constraint operator. In the cosmological context, a similar
possibility has been used in [85].)

D. Holonomy effects and lattice refinements

Another characteristic, and in fact eponymous, feature
of loop quantum gravity is that not components of the
connection but rather its holonomies are represented as
operators. Since these are nonlinear objects, additional
corrections by higher order terms of the connection (or
extrinsic curvature) will be present which again can be
evaluated by including them as correction terms in phe-
nomenological equations. This may appear as higher cur-
vature corrections as they involve higher powers of
extrinsic curvature, but we emphasize that this procedure
will not give a complete picture since higher derivative
terms are missing. These can be computed at an effective

1
R/R*

0

1

α(
R

/R
*)

, f
(R

/R
*)

FIG. 1. The correction functions 
ðRÞ (solid line) and fðRÞ
(dashed line) where R is taken relative to R� :¼

ffiffiffiffiffiffiffiffiffi
�=2

p
‘P.
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level [34–36], which would require much more work not
pursued here.

We can correct for the holonomy effects in the
Hamiltonian constraint (36) as follows. We assume Kx to
be fairly constant over a given edge (or part of an edge for
graph-changing operators) of the graph whose holonomies
appear as basic loop variables, so that

R
vþ
v� Kx � ‘0Kx

where ‘0 is the coordinate length of the edge lying between
the vertices v� and vþ. Rather than using a precise loop
quantization of (36) and computing its expectation value in
terms of holonomies, we make the following replacements
in the Hamiltonian constraint: K’ ! ð��Þ�1 sinð��K’Þ
and Kx ! ð�‘0Þ�1 sinð�Kx‘0Þ. In addition to ‘0, � is a
dimensionless parameter whose role is discussed below.
With these corrections, the constraint becomes

HðIIIÞ
grav ¼ � 1

2G

�
sin2ð��K’Þ

�2�2

E’ffiffiffiffiffiffiffiffiffijExjp þ 2
sinð��K’Þ

��

� sinð�Kx‘0Þ
�‘0

ffiffiffiffiffiffiffiffiffi
jExj

p �
: (53)

While this may not be the precise result from a complete
effective constraint, it captures the main effects of using
holonomies as periodic, rather than linear, functions in the
curvature components. Moreover, this simplest choice
guarantees that also here the classical limit, which involves
a continuum limit � ! 0 and ‘0 ! 0, is satisfied. Note,
however, that one should not take the full functional form
too seriously but rather view the sine functions as a con-
venient placeholder for a perturbative expansion in higher
powers of the K-components. Since there will be other
corrections as mentioned above, they could easily domi-
nate most of the expansion terms.

Although the parameters � and ‘0 appear in similar
forms, their origins and roles are quite different. The
parameter ‘0 arises as the coordinate length of a radial
edge along which we compute a holonomy. Its size is
determined by the embedded graph we act on, as well as
the precise form of the Hamiltonian constraint operator
understood in the construction. While a Hamiltonian op-
erator does not depend on the embedding and thus ‘0, that
dependence would arise in the cause of computing an
effective Hamiltonian as the expectation value in a state
peaked on a classical geometry. Specifying the classical
geometry requires one to partially fix the diffeomorphism
gauge; the size of ‘0 is then a direct measure for the
discreteness of the state in this setting. Also � measures
the discreteness, but it does not refer to the length of any
edge. It is associated with curvature components K’ along

spherical symmetry orbits, and there is no room for orbital
edges in this reduced model. To understand the meaning of
�, we again have to look at what it should correspond to in
a full, unreduced setting as we did in Sec. III C to discuss
the size of inverse triad corrections 
. In a fully inhomoge-
neous setting, there would now be edges along spherical
orbits whose lengths correspond to �. For a configuration

which is nearly spherical, there should be a regular distri-
bution of edges forming a lattice on each symmetry orbit.
The length of each edge, and thus �, would decrease with

an increasing number of lattice plaquettes N : � /
N �1=2. In particular, for finer lattices we have � ! 0
just as ‘0 ! 0, approaching the continuum limit.
The precise form of � depends on the exact state which

is approximated by a spherically symmetric one. In par-
ticular, the argument shows that �, unlike ‘0, may be
phase-space dependent if geometrical growth is accompa-
nied by a refinement of the lattice such that N ðExÞ de-
pends on Ex, e.g. by a power-law form N ðExÞ / jExjk.
(Note that 4�jExðxÞj is the area of a sphere at radius x, and
thus coordinate independent. In fact, a densitized triad Ex

in one dimension behaves like a scalar.)
In this way, we are naturally led to a refinement scheme

of phase-space dependent holonomies where point holon-
omies associated with K’ depend on Ex, while

Kx-holonomies along the inhomogeneous direction are
triad independent. In a reduction to anisotropic but homo-
geneous models as in [82], this specific form has been
shown to imply a dynamical law given by a fundamental
difference equation which cannot be implemented equidis-
tantly in minisuperspace variables. Equidistant versions of
the difference equation, which would result if holonomies
for a connection or extrinsic curvature component depend
only on its conjugate triad component, i.e. E’ for
K’-holonomies, are not embeddable in a spherically sym-

metric model. In this way, inhomogeneous models can
reduce some of the freedom involved in choosing a refine-
ment scheme for a homogeneous model. Nevertheless, at
least a 1-parameter freedom of N ðExÞ / jExjk, or even a
different functional behavior, is left. It is only the direction
dependence of N which is restricted, not the size depen-
dence. In particular, it is impossible to restrict the corre-
sponding freedom in isotropic models. What we can also
see is the fact that spherically symmetric refinement
schemes which do not depend on any auxiliary scales can
give rise to apparently scale dependent equations in a
homogeneous reduction: when reduced to isotropy, a non-
trivial refinement scheme can always be expressed by a
function N ðaÞ of the scale factor a. In contrast to Ex, a is
coordinate dependent since it rescales if spatial coordinates
are multiplied by a constant. The reduction from spherical
symmetry thus must automatically introduce a scaling
dependent parameter f0 such that N ðaÞ depends only on
the coordinate independent combination f0a. This results
in a well-defined way of nontrivial refinement schemes
with all the freedom as it is realized in spherical symmetry.
Moreover, since the scaling dependence arises only in the
reduction to homogeneity, it cannot be used as a reliable
criterion to rule out refinement schemes if it is applied
purely in homogeneous situations.
The lattice refinement behavior is to be expected in any

model on general grounds [28,29]; while a direct derivation
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of the behavior ofN ðExÞ from a full Hamiltonian operator
is difficult, one can arrive at some properties and analyze
their consequences phenomenologically. For cosmology,
such work has been done in [42,44,71,72] and is initiated
here for black hole physics. (The interior of the
Schwarzschild black hole, which can be formulated as a
homogeneous model, has been studied from this perspec-
tive in [82,86,87].)

IV. CORRECTED LTB MODELS

A LTB reduction at the dynamical quantum level of
spherically symmetric systems is difficult because the
combined algebra of LTB conditions and constraints,
when seen as an extended constrained system, is not purely
first class. Although, as mentioned, the classical LTB con-
ditions are preserved by the equations of motion generated
by the spherically symmetric Hamiltonian constraint, there
is no simple off-shell algebra between these functionals
which one could represent on the Hilbert space generated
by spherically symmetric spin network states. The various
versions of quantum corrected Hamiltonians we have pro-
vided so far are thus not yet LTB reduced, although we
have already removed the spin connection terms as they
drop out in the classical LTB reduction. Moreover,
although we did see that the classical LTB conditions can
directly be taken over to the kinematical quantum level,
such a step is much more complicated when combined with
the quantum constraint algebra. If overall consistency with
the constraints is required, the LTB conditions themselves
may well require quantum corrections, too. In this section,
we will be exploring the possibility of LTB-like solutions
at a phenomenological effective level, allowing for correc-
tions to constraints as well as the classical LTB conditions.

At this stage, we still have two canonical pairs and two
smeared constraints (the diffeomorphism and corrected
Hamiltonian constraint). The corrected constraints in this
form are automatically consistent (i.e. first class) since the
absence of the spin connection terms implies the absence
of spatial derivatives in Hgrav; the Hamiltonian constraints

thus commute with themselves. Even if we add the non-
dynamical dust contributionHdust ¼ F0=2G in terms of the
mass function FðxÞ, the system remains consistent. We
have dropped the spin connection terms in anticipation of
the imposition of LTB conditions, which solve the diffeo-
morphism constraint identically and thus show that the
Abelian Poisson bracket fH½N�; H½M�g ¼ 0, realized
even in the quantum corrected case, is correct. With such
an algebra, the LTB form allows us to discuss the anomaly
issue more easily. However, there is still a potential anom-
aly problem, whose solution allows us to draw feedback for
quantizations of the Hamiltonian constraint: the reduction
to constraints of LTB form is consistent only if there are
LTB-like conditions, relating E’ to ðExÞ0 and K0

’ to Kx,

which are preserved by the quantum corrected spherically
symmetric constraints. The requirement of preserved LTB

conditions will, as we will see, restrict the form of quantum
corrections in different terms of the constraints.

A. Consistent LTB reductions

To derive equations of motion for the metric component
R left as the only degree of freedom in an LTB metric, we
eliminate K’ and Kx in favor of _E’ and _Ex using the

equations of motion _EI ¼ fEI;Hg where I 2 f’; xg. To
evaluate these expressions we make use of the canonical
Poisson bracket relations fKxðxÞ; ExðyÞg ¼ 2G�ðx� yÞ
and fK’ðxÞ; E’ðyÞg ¼ G�ðx� yÞ as they follow from

(25), such that

K’ ¼ _Ex

2
ffiffiffiffiffiffiffiffiffijExjp ; Kx ¼ 1ffiffiffiffiffiffiffiffiffijExjp �

_E’ � _ExE’

2Ex

�
(54)

for the classical constraint.
The key problem now is that (28) combined with (33) is

no longer preserved by the evolution equations generated
by (51) or (52) for 
 � 1, as can directly be checked. If
these equations were consistent, one could eliminate the
variable E’ in favor of Ex in all equations of motion, which
is then expressed as Ex ¼ R2. (From now on we assume
Ex > 0 without loss of generality for the applications we
are interested in.) Thus, a complete set of equations given
by the Hamiltonian constraint for _R and the second-order
evolution equation for Rwould be obtained. When the LTB
conditions are not preserved, however, the Hamiltonian
constraint equation for R will not be preserved by the
evolution equation.
Before deriving quantum corrected equations for R, we

thus have to find LTB conditions suitable for the quantum
corrected dynamics. The main conditions are (i) that they
reduce to the classical LTB conditions when quantum
corrections vanish, (ii) that they still solve the uncorrected
diffeomorphism constraint identically as this is necessary
for a consistent constraint algebra, and (iii) that they be
preserved by the quantum corrected evolution equations.
Condition (ii) is also motivated by the fact that finite
diffeomorphisms are represented in loop quantum gravity
directly by the action they generate on phase-space func-
tions without requiring any quantum corrections.

1. Inverse triad corrections: first version

In agreement with the diffeomorphism constraint, we
make the ansatz

ðExÞ0 ¼ 2fðExÞE’; K0
’ ¼ fðExÞKx; (55)

where, as indicated, fðExÞ is assumed to depend only on Ex

in algebraic form. This function will be determined by
demanding that the new LTB conditions are preserved in
time by (51). Writing the first constraint in the smeared
form CLTB ¼ R

dx�ðxÞð2fðExÞE’ � ðExÞ0Þ, we require

that the Poisson bracket fCLTB;
R
dyHðIÞ

gravg, which evaluates
to
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Z
dz�ðzÞ

�
�4K’E

’
ffiffiffiffiffiffi
Ex

p df

dEx þ 2K0
’

ffiffiffiffiffiffi
Ex

p þ K’ðExÞ0ffiffiffiffiffiffi
Ex

p

� 2f
K’E
’ffiffiffiffiffiffi

Ex
p � 2fKx

ffiffiffiffiffiffi
Ex

p �
; (56)

vanishes for all �ðxÞ. Using (55) to remove the derivative
terms we getZ

dz�ðzÞ
�
�4K’E

’
ffiffiffiffiffiffi
Ex

p df

dEx þ
2fK’E

’ffiffiffiffiffiffi
Ex

p � 2f
K’E
’ffiffiffiffiffiffi

Ex
p

�
:

(57)

For this to vanish for all �, the integrand must vanish
which therefore gives the differential equation

fð1� 
Þ ¼ 2Ex df

dEx (58)

for fðExÞ which, for 
 as in (50), is solved by

fðExÞ ¼ c1
ffiffiffiffiffiffi
Ex

p
e�
=2

ð ffiffiffiffiffiffi
Ex

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex � �‘2P=2

q
Þ1=2ð ffiffiffiffiffiffi

Ex
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex þ �‘2P=2

q
Þ1=2

: (59)

for Ex > �‘2P=2 and

fðExÞ ¼ c2
ffiffiffiffiffiffi
Ex

p
expð� 1

2
þ 1
2 arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=ð�‘2P=2� ExÞ

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex þ �‘2P=2

qr (60)

for Ex < �‘2P=2. The constant c1 is fixed by demanding
that in the limit Ex ! 1 the corrected LTB con-
ditions should go to their classical form. To ensure
fðExÞ ! 1 in the classical limit we have c1 ¼ 2

ffiffiffi
e

p
. The

functions f and 
 then have similar fall-off behaviors at
large Ex: fðExÞ � 1þ 2�7�2‘4PðExÞ�2 þ � � � while

ðExÞ � 1þ 2�5�2‘4PðExÞ�2 þ � � � . The second constant
c2 is determined by continuity at Ex ¼ �‘2P=2, which gives
c2 ¼ 25=4e1=2��=4��1=4‘�1=2

P . It is easy to check that with
this form for fðExÞ the other LTB condition, K0

’ ¼
fðExÞKx, is also preserved in time.

We now eliminate the connection components from the
Hamiltonian in favor of the triad components Ex and E’

using the equations of motion which give

K’ ¼ _Ex

2
ffiffiffiffiffiffi
Ex

p ; Kx ¼ 1ffiffiffiffiffiffi
Ex

p
�
_E’ � 


_ExE’

2Ex

�
: (61)

We then further eliminate E’ using the new LTB condi-
tions to obtain

HðIÞ
grav ¼ � 1

2G

�

ð _ExÞ2ðExÞ0
8fðExÞ3=2 þ _Exð _ExÞ0

2f
ffiffiffiffiffiffi
Ex

p � ð _ExÞ2ðExÞ0
4fðExÞ3=2

�
:

(62)

The total Hamiltonian constraint HðIÞ
grav þHdust ¼ 0 then

becomes


ð _ExÞ2ðExÞ0
8fðExÞ3=2 þ _Exð _ExÞ0

2f
ffiffiffiffiffiffi
Ex

p � ð _ExÞ2ðExÞ0
4fðExÞ3=2 � F0 ¼ 0 (63)

with the given Ex dependence of f and 
.
To obtain the evolution equation we take a time deriva-

tive of the first equation in (61) to obtain

_K ’ ¼ 2Ex €Ex � ð _ExÞ2
4jExj3=2 : (64)

Since _K’ is also determined by _K’ ¼ fK’;H
ðIÞ
gravg ¼

�
K2
’=2

ffiffiffiffiffiffi
Ex

p
we have

4Ex €Ex � ð2� 
Þð _ExÞ2 ¼ 0: (65)

We note that in this derivation of the evolution equation,
fðExÞ does not appear anywhere. Nevertheless, its form is
important for the mutual consistency of the evolution
equation (65) and the Hamiltonian constraint equation (63).
We can now write everything in terms of R using the

relation Ex ¼ R2:


ðRÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 þ �‘2P=2j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 � �‘2P=2j

q
�‘2P

R; (66)

fðRÞ ¼

8>><>>:
2R expð12ð1�
ðRÞÞÞ

ðRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2��‘2P=2

p
Þ1=2ðRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ�‘2P=2

p
Þ1=2 forR>

ffiffiffiffiffiffiffiffiffi
�=2

p
‘P

25=4R expð12ð1�
ðRÞÞþ1
2 arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=ð�‘2P=2�R2Þ

p
Þ��=4Þ

�1=4
ffiffiffiffi
‘P

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ�‘2P=2

pp forR<
ffiffiffiffiffiffiffiffiffi
�=2

p
‘P

: (67)
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These functions are shown in Fig. 1. The first order equa-
tion (63) can be written as

_R 2R0ð
ðRÞ � 1Þ þ 2R _R _R0 þ _R2R0 ¼ fðRÞF0 (68)

and the evolution equation is

2R €Rþ _R2 þ ð
ðRÞ � 1Þ _R2 ¼ 0: (69)

These equations can explicitly be seen to be consistent
upon using the differential relation (58) between f and 
.

2. Inverse triad corrections: second version

Starting from (52), which gives equations of motion

_E x ¼ 2
K’

ffiffiffiffiffiffi
Ex

p
; _E’ ¼ 
K’

E’ffiffiffiffiffiffi
Ex

p þ 
Kx

ffiffiffiffiffiffi
Ex

p
;

(70)

_K x ¼ 
K2
’

E’

2ðExÞ3=2 � 
K’

Kxffiffiffiffiffiffi
Ex

p � d


dEx K
2
’

E’ffiffiffiffiffiffi
Ex

p

� 2
d


dEx K’Kx

ffiffiffiffiffiffi
Ex

p
; (71)

_K ’ ¼ �

K2

’

2
ffiffiffiffiffiffi
Ex

p ; (72)

we can proceed similarly. Also with these equations, the
classical LTB conditions will not be preserved such that the
reduction would be inconsistent. However, one can verify
that the corrected LTB conditions

E’ ¼ 1

2

ðExÞ0; 
Kx ¼ K0

’ (73)

are preserved as before.
Proceeding with these equations of motion and LTB

conditions, we obtain� _R2R


2

�0 � F0 ¼ 0 (74)

as the Hamiltonian constraint equation in the presence of
dust. Thus, the corrected equation for R is

_R 2R ¼ 
2ðFðrÞ þ cðtÞÞ: (75)

The evolution equation derived via _K’ is

2R €Rþ _R2 ¼ 2
d log


d logR
_R2 (76)

with a quantum correction on the right-hand side. Taking a
time derivative of (75), using _F ¼ 0 and eliminating F
from the resulting equation via (75) indeed produces (76)
provided cðtÞ ¼ c ¼ const. Thus, the system is consistent,
and the freedom of cðtÞ in (75) is reduced to a constant
which can be absorbed in the mass function.

3. Holonomy corrections

We now look for a consistent formulation with correc-
tions due to holonomy effects. It turns out that the
Hamiltonian (53) leads to equations which are algebrai-
cally complicated to handle. To avoid technical difficulties,
we first look at a Hamiltonian where K’ appears via the

function ð��Þ�1 sinð��K’Þ but Kx has its classical appear-

ance (i.e. the continuum limit ‘0 ! 0 has been taken):

HðIIIaÞ
grav ¼ � 1

2G

�
sin2ð��K’Þ

�2�2

E’ffiffiffiffiffiffi
Ex

p

þ 2
sinð��K’Þ

��
Kx

ffiffiffiffiffiffi
Ex

p �
: (77)

This describes holonomy corrections in regions where K’

is large but Kx remains small, or for states with a dense
radial lattice such that ‘0 is small. Again, the classical LTB
conditions would not be preserved, and therefore we look
for an alternative of the form

ðExÞ0 ¼ 2gðK’ÞE’; K0
’ ¼ gðK’ÞKx (78)

compatible with the diffeomorphism constraint, where
gðK’Þ is assumed to depend only on K’. As before, this

dependence will be self-consistently verified by demand-
ing that the new LTB conditions are preserved in time:

fR dx�ðxÞð2gE’ � ðExÞ0Þ;R dyHðIIIaÞ
grav g ¼ 0 for all �ðxÞ.

This Poisson bracket evaluates toZ
dz�ðzÞ

�
sin2ð��K’Þ

�2�2

E’ffiffiffiffiffiffi
Ex

p dg

dK’

� 2g
sinð��K’Þ cosð��K’Þ

��

E’ffiffiffiffiffiffi
Ex

p

� 2g cosð��K’ÞKx

ffiffiffiffiffiffi
Ex

p þ 2 cosð��K’ÞK0
’

ffiffiffiffiffiffi
Ex

p

þ sinð��K’Þ
��

ðExÞ0ffiffiffiffiffiffi
Ex

p
�
: (79)

Substituting for ðExÞ0 and K0
’ from the corrected LTB

conditions, we haveZ
dz�ðzÞ

�
sin2ð��K’Þ

�2�2

E’ffiffiffiffiffiffi
Ex

p dg

dK’

� 2g
sinð��K’Þ cosð��K’Þ

��

E’ffiffiffiffiffiffi
Ex

p

þ 2g sinð��K’Þ
��

E’ffiffiffiffiffiffi
Ex

p
�
: (80)

For this to be zero for all �, the integrand must vanish
which implies the differential equation

sinð��K’Þ
��

dg

dK’

¼ 2ðcosð��K’Þ � 1Þg (81)

solved by
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gðK’Þ ¼ ccos4ð��K’=2Þ: (82)

The classical limit g ! 1 for � ! 0 fixes the constant of
integration c ¼ 1. One can check that the other LTB con-
dition is consistent with this choice for gðK’Þ.

As before we now eliminate the connection components
in favor of the triad components. The equations of motion
give

_E x ¼ 2 sinð��K’Þ
��

ffiffiffiffiffiffi
Ex

p
; (83)

_E’ ¼ sinð��K’Þ cosð��K’Þ
��

E’ffiffiffiffiffiffi
Ex

p þ cosð��K’ÞKx

ffiffiffiffiffiffi
Ex

p
:

(84)

We use (83) to express the (co)sine function in terms of Ex:

sinð��K’Þ ¼ ��

2

_Exffiffiffiffiffiffi
Ex

p ;

cosð��K’Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2

4

ð _ExÞ2
Ex

s
;

(85)

and solve (84) for

Kx ¼ 1

cosð��K’Þ
ffiffiffiffiffiffi
Ex

p
�
_E’ þ sinð��K’Þ cosð��K’Þ

��

E’ffiffiffiffiffiffi
Ex

p
�
:

(86)

After substituting for the sine and the cosine (choosing the
plus sign in the cosine), this can be written as

Kx ¼
�
_E’ � _ExE’

2Ex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2

4

ð _ExÞ2
Ex

s �
�

�
Ex � �2�2

4
ð _ExÞ2

��1=2
: (87)

Substituting for Kx and sinð��K’Þ back in the expression

for the Hamiltonian (77) we have

HðIIIaÞ
grav ¼ � 1

2G

� _Ex _E’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex � 1

4�
2�2ð _ExÞ2

q � ð _ExÞ2E’

4ðExÞ3=2
�
: (88)

The new LTB condition E’ ¼ ðExÞ0=2g ¼
ðExÞ0=2cos4ð��K’=2Þ allows us to eliminate E’ using

(85):

cos 4ð��K’=2Þ ¼ 1

4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2

4

ð _ExÞ2
Ex

s �
2

(89)

which gives

E’ ¼ 2ðExÞ0

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4�
2�2 ð _ExÞ2

Ex

q
Þ2
: (90)

Substituting for E’ and its time derivative in (88) implies

�2GHðIIIaÞ
grav ¼ 2 _Exð _ExÞ0

ðExÞ1=2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4�
2�2 ð _ExÞ2

Ex

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4�
2�2 ð _ExÞ2

Ex

q � ð _ExÞ2ðExÞ0

2ðExÞ3=2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4�
2�2 _Ex2

Ex

q
Þ2

þ �2�2 _ExðExÞ0ð2Ex _Ex €Ex � ð _ExÞ3Þ
2ðExÞ5=2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4�
2�2 ð _ExÞ2

Ex

q
Þ3ð1� 1

4�
2�2 ð _ExÞ2

Ex Þ
:

We now derive the evolution equation consistent with
(88). On the one hand, we have the equation of motion

_K ’ ¼ fK’;H
ðIIIaÞ
grav g ¼ � sin2ð��K’Þ

2�2�2

1ffiffiffiffiffiffi
Ex

p (91)

and, on the other hand, differentiating (83) with respect to
time gives

_K ’ ¼ 1

2 cosð��K’Þ
� €Exffiffiffiffiffiffi

Ex
p � ð _ExÞ2

2ðExÞ3=2
�
: (92)

Combining these two equations and writing everything in
terms of R, we have

2R €Rþ _R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

q
¼ 0: (93)

The evolution equation can now be used to eliminate the

second time derivative of Ex from HðIIIaÞ
grav , which together

with Ex ¼ R2 and in combination with the matter part
provides the Hamiltonian constraint equation

4 _R2R0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

q
þ 8R _R _R0

¼ F0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

q
Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

q
: (94)

We note that in the limit � ! 0 we recover the classical
equation which also justifies the choice of plus sign in (85).
Finally, we could use a Hamiltonian where only Kx has

been replaced by periodic functions,

HðIIIbÞ
grav ¼ � 1

2G

�
K2

’E
’ffiffiffiffiffiffi

Ex
p þ 2K’

sinð�Kx‘0Þ
�‘0

ffiffiffiffiffiffi
Ex

p �
: (95)

In this case, however, the corrected LTB conditions will
take a more complicated form because correction functions
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will have to depend on all the phase-space variables, as one
can check by making an ansatz as before. We leave this
complicated case open for future work and proceed with a
general discussion and applications of the consistent ver-
sions found.

B. Discussion

We have provided several cases of consistent equations
of motion for the variables of a metric of LTB form, but
with dynamics carrying corrections as they are expected
from loop quantum gravity. While we have discussed
inverse triad and one form of holonomy corrections sepa-
rately, they can be seen to be combined consistently simply
in a multiplicative form of the correction functions in the
LTB conditions. For instance, the first version of inverse
triad corrections and the holonomy correction we used can
be consistently combined in this way to result in a
Hamiltonian constraint equation


 _R2R0 þ 2R _R _R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

p ¼ f�F
0; (96)

where f�½R� ¼ fðRÞð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

p Þ2 together with
the evolution equation

2R €R ¼ �
 _R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2

q
: (97)

With the second version of inverse triad corrections, we
have

� 4
2 _R2R0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s
� 4
2 _R2R0 � 4�2�2 _R4R0

þ 8
2R _R _R0
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s �

þ 8
2R2 _R2R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � ð�l2p=2Þ2

q �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s �

¼ F0
4

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s �
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s
(98)

and

2R €R ¼ 2 _R2 � 2R2 _R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � ð�‘2P=2Þ2

q � _R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2�2 _R2


2

s
:

(99)

While general properties of an LTB reduction allowed us
to keep the constraints consistent without severe limita-
tions on quantum correction functions, consistency condi-

tions did remain. The remaining constraints automatically
form a first class system provided that the Hamiltonian
constraint is free of spatial derivatives, which is realized if
spin connection terms (or the 3-dimensional Ricci curva-
ture) drop out as it happens under the classical LTB con-
ditions. The consistency conditions arose at the level of
formulating the LTB conditions, because the classical ones
are no longer preserved under evolution corresponding to
quantum corrected constraints. We thus corrected the LTB
conditions, too, such that in their new form they were
preserved under the quantum corrected equations of mo-
tion as they are generated by a Hamiltonian whose spin
connection contribution vanishes.
With these conditions we are still identically satisfying

the classical diffeomorphism constraint and thus no new
anomalies in the constraint algebra can arise. However, the
corrected LTB conditions do not make the classical spin
connection �’ equal �1, which was assumed in the sim-

plified classical Hamiltonians such as (51). Thus, to be
fully consistent we must assume that the expressions con-
taining the spin connection themselves carry quantum

corrections and read fðExÞ�ðIÞ
’ ¼ �ðExÞ0=2E’ for the

equations in Sec. IVA1, 
ðExÞ�ðIIÞ
’ ¼ �ðExÞ0=2E’ for

Sec. IVA 2, and gðK’Þ�ðIIIaÞ
’ ¼ �ðExÞ0=2E’ in

Sec. IVA3. Thus, for consistency additional corrections
of this form must arise in the terms of the Hamiltonian
constraint containing the spin connection in such a way
that they vanish after imposing the quantum corrected LTB
conditions.
That the spin connection terms carry their own correc-

tions is a reasonable expectation: There are inverse triad
components and, in a loop quantization, the spin connec-

tion is rather indirectly expressed via Ai
a and �Ki

a ¼ Ai
a �

�i
a / fAi

a; fHðEÞ; Vgg using the Euclidean part HðEÞ of the
Hamiltonian constraint [77]. Corrections are thus expected
from the inverse triad as well as from holonomies. The
specific form is difficult to determine because the full
theory does not provide operators for the noncovariant
spin connection components, but as demonstrated here it
can be derived and justified by the production of a con-
sistent set of equations. In fact, if such corrections occur,
our equations provide a fully consistent LTB system. In
this way, consistency determines what further quantum
corrections must be entailed by a primary correction such
as 
. Since not all corrections in a Hamiltonian can equally
easily be computed, independent consistency considera-
tions provide useful relations between different terms. For
instance, the spin connection is more difficult to quantize
than 1=Ex, and its corrections can thus more easily be
found via consistency.
An important physical implication is that this suggests

additional effects because the space-time metric (17) is no
longer just corrected by different solutions for RðtÞ solving
the corrected constraint and evolution equations, but also
by an additional prefactor in terms of 
, f, or g in front of
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L2 / ðR0Þ2 which is no longer exactly ðR0Þ2. This would,
for instance, affect the appearance of horizons.

V. APPLICATIONS

Our focus in this paper for applications of the above
equations is the fate of the classical singularity which
appears at R ¼ 0. There are two possibilities for how
such a singularity could be avoided in effective equations.
Dynamically, Rðt; xÞ may be bounded away from zero for
all x, in which case the behavior shown would be compa-
rable to a cosmological bounce. This can sometimes occur
if isotropic cosmological models exhibiting a bounce are
matched to a spherically symmetric outside region in a
generalized Oppenheimer-Snyder manner [88]. The out-
right spherically symmetric situation studied here is, how-
ever, subject to different corrected equations and so one has
to provide a new analysis.

The second possibility is that the value R ¼ 0 is as-
sumed, but that this does not result in a singular space-
time just as Minkowski space in polar coordinates has R ¼
0 at x ¼ 0. If R ¼ 0 occurs, one thus has to proceed with a
more detailed analysis to understand the space-time neigh-
borhood of the region where R ¼ 0.

Compared to homogeneous equations, this problem is of
a new quality. As we have seen, there is a nontrivial
anomaly problem which we were able to resolve in differ-
ent versions of quantum corrected LTB models. The pres-
ence of consistency conditions, which do not arise in
homogeneous models because they are subject to just a
single constraint, makes the form of quantum corrections
more restricted. Thus, several different terms in the con-
straints must receive quantum corrections in a way closely
related to each other. Still, we have explicitly shown that
nontrivial quantum corrections are allowed.

In addition to the anomaly issue, spatial inhomogeneity
allows different types of singularities in classical general
relativity. In particular, not just spacelike singularities can
occur as in homogeneous models, but also null [55,58] or
timelike ones [89]. This has interesting general ramifica-
tions concerning the consistency of quantum gravity in the
sense of allowing stable ground states, as discussed in [90],
and it underlines the interest in inhomogeneous models. In
what follows, we present an initial analysis based on
analytical as well as numerical methods.

A. Analytical properties

If there is a ‘‘bounce’’ where the area radius R attains a
nonzero minimum value, we have _R ¼ 0 which can be
substituted in the above equations to check the possibility
for this to happen in quantum gravity. From Eq. (68) (for
the first version of inverse triad corrections) or Eq. (94) (for
holonomy corrections) as well as the two combinations
(96) and (98) we can immediately see that this is not
possible unless we drop the condition F0 > 0 which clas-
sically avoids shell-crossing singularities. Thus, we either

have to drop this condition, possibly taking into account
quantum geometry corrections in the matter sector, or
retain the nonbouncing behavior of the classical models.
For the second version of inverse triad corrections,
Eq. (75), we would require F ¼ 0 at the bounce, which
looks difficult to achieve in a generic collapse model.
(Conditions on Fmay be avoided if _R0 diverges where _R ¼
0, but this does not appear generic.)
There does not appear to be a simple conclusion about

bounces as they occur, e.g., in homogeneous models. We
are looking at specific regimes and certain types of quan-
tum corrections which, by themselves, may make a bounce
difficult to occur. Moreover, we have restricted the analysis
to marginal models, which classically includes spatially
flat Friedmann-Robertson-Walker models as the interior
region of Oppenheimer-Snyder collapse, but not isotropic
models with positive spatial curvature. The latter (or scalar
matter with negative potential [91]) would be required for a
bounce based on inverse triad corrections [92]. There is
thus no contradiction with known matching results based
on isotropic interiors [88], but the fact that a bounce does
not follow straightforwardly, compared to the relative ease
by which this can be obtained in isotropic models, may also
be taken as a warning sign concerning the robustness of
homogeneous bounces.
Similarly, we have considered holonomy corrections

only of a special form which made the analysis more
manageable. Holonomy corrections give rise to bounces
more generally than inverse triad corrections
[30,33,93,94]. One could thus expect that a full treatment
of holonomy corrections should give rise to general boun-
ces also in LTB models. However, even though we did not
do such an analysis, such a bounce cannot be generic for
the following reason: simply choosing a fine spatial graph
and thus small enough ‘0 makes the holonomy corrections
studied here the relevant ones. Since these corrections do
not provide an automatic bounce, a bounce cannot be
generic in this inhomogeneous system. Finally, there is a
third effect due to the coupling to quantum variables such
as fluctuations and correlations, which provides correc-
tions in effective equations [34–36]. This effect is generic
for any interacting quantum system and does not refer only
to loop quantized models as the inverse triad and holonomy
corrections do. Also this has not been included here, but it
is unlikely to result in a general bounce given that it does
not do so in isotropic models (where it could even prevent a
bounce which would otherwise occur based on holonomy
corrections [32,33]). We thus conclude that singularities in
LTB systems do not appear to be resolved by bounces.

1. Corrected LTB equations as cosmological models

As the simplest case, we first consider a vacuum solution
where, in the absence of dust, F0 ¼ 0 must be satisfied. If
R0 � 0 holds, R ¼ RðxÞ, i.e. a static configuration, is a
trivial solution to any of the corrected Eqs. (68), (75),
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and (94). While this corresponds to the classical
Minkowski space solution, since RðxÞ can then easily be
introduced as a coordinate instead of x, there are quantum
corrections for small R: Our corrected LTB metric, using
L ¼ R0=fðRÞ for (68) to be specific, reads

d s2 ¼ �dt2 þ dR2

fðRÞ2 þ R2ðd#2 þ sin2#d’2Þ (100)

which asymptotically presents Minkowski space. As we
will discuss in more detail below, the appearance of fðRÞ
shows that quantum effects originating in the spatial dis-
creteness of loop quantum gravity spoil some of the exact
symmetries such as spatial homogeneity known to exist in
classical solutions.

If there is dust, it is of interest to see whether we can
have a Friedmann solution in this system. For this we
choose x such that it coincides with the circumferential
radius at t ¼ 0, and make an ansatz of the form Rðt; xÞ ¼
aðtÞx. If such a solution exists, as it does in the classical
case, the LTB metric reduces to a Friedmann-Robertson-
Walker one where a is identified with the scale factor. The
dust density profile then becomes

fðxÞF0 ¼ 8�G�0x
2; (101)

where �0 is the initial uniform density. (According to our
general choice of Rð0; xÞ ¼ x, the scale factor is normal-
ized to a0 ¼ 1 at t ¼ 0 in the cosmological context.)
Substituting this into Eq. (68), we have

_a 2a ¼ 8�G�0
3þ ð
ðaxÞ � 1Þ

fðaxÞ
fðxÞ : (102)

The left-hand side depends only on t (unless a is constant,
in which case the left-hand side vanishes) while the right-
hand side depends nontrivially on x and is nonzero. Hence,
the corrected LTB system does not admit a solution of
Friedmann form.

There is an additional effect which prevents Friedmann
solutions for the corrected equations, because our LTB
form of the metric receives quantum corrections, too, as
a consequence of consistency. The corrected LTB metrics

have coefficient L ¼ R0=fðRÞ in the case of HðIÞ, and L ¼
R0=
ðRÞ in the case of HðIIÞ. This changes the metric in
addition to the corrected dynamics of the metric compo-
nent R. In particular, the metrics are no longer homoge-
neous because of the nontrivial R dependence. If we were
interested in spatial volumes of finite regions in constant t
slices, for an approximate solution of the form R ¼ aðtÞx
they would become V ¼ 4�a3

R
dxx2=fðaxÞ and V ¼

4�a3
R
dxx2=
ðaxÞ, respectively. This illustrates an inter-

esting difference between these two cases which both come
from inverse triad corrections: for fðaxÞ, we have the
small-x expansion fðaxÞ / axþOða2x2Þ, while for 
 it
reads 
ðaxÞ / a3x3 þOða4x4Þ. Thus, in the first case the
spatial volumes vanish at a ¼ 0 as in the classical case,
while the second case implies diverging volumes V �

R
x�1dx even of finite regions near a ¼ 0. This suggests

further implications of the behavior near a classical singu-
larity, which due to the required inhomogeneity do not
appear easy to discern.

2. Effective densities

As a further consequence of corrections, we note that the
mass function FðxÞ is no longer directly related to the
Misner-Sharp mass. We need to distinguish the latter
from the dust mass which can be defined as

MðxÞ ¼ FðxÞ
2G

: (103)

The asymptotic valueMdust ¼ limx!1MðxÞ corresponds to
the total mass of dust. The Misner-Sharp mass, on the other
hand, now takes the form

m ¼ R

2

�
1�

�
R0

L

�
2 þ _R2

�
(104)

whose expression changes for the corrected LTB condi-
tions because this affects the relation between R0 and L.
From the corrected mass, we can then derive an effective
density � ¼ m0=4�GR2R0. For instance, for the condition

consistent with HðIÞ
grav we have a Misner-Sharp mass

mðIÞ ¼ 1
2Rð1� f2 þ _R2Þ ¼ mclass � 1

2Rðf2 � 1Þ; (105)

which, upon using (68), leads to an effective density

�ðIÞ ¼ 1

8�GR2

�
fðRÞF0

R0 � ð
ðRÞ � 1Þð _R2 � 2fðRÞ2Þ

� ðfðRÞ2 � 1Þ
�
: (106)

Similarly, for the equations following from HðIIÞ
grav, we

have m ¼ 1
2Rð1� 
2 þ _R2Þ and thus

�ðIIÞ ¼ 1

8�G

�

2F0

R2R0 �

2 � 1

R2
þ 2




d


dR

_R2

R
� 2




R

d


dR

�
:

(107)

In particular, in this case the horizon condition 2m ¼ R
reads _R2 ¼ 
2, which by the Hamiltonian constraint equa-
tion agrees with 
2F=R. Thus, in terms of F the horizon
condition F ¼ R is uncorrected in this case, although R as
a function of time is corrected compared to the classical
behavior.
The correction terms to the effective densities may be

nonzero even in vacuum regions devoid of dust. Depending
on the regime, they can be positive or negative according to
the signs of 
ðRÞ � 1, fðRÞ � 1, and their derivatives
involved.

3. Existence of self-similar solutions?

The classical equation can rather easily be analyzed
using self-similar solutions; see e.g. [50]. One can first
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write the classical constraint equation as _R2 ¼ FðxÞ=R and
then, for the special case of a linear mass function FðxÞ ¼
�x, find an explicit solution for Rðx; tÞ of self-similar form
which depends on t only via the function 1� at=x with a

constant a ¼ 3
2

ffiffiffiffi
�

p
. For such a self-similar solution, the

structure of the singularity has been analyzed in [95].
If we use the second version of inverse triad corrections,

this equation is simply changed by multiplying the mass
function with 
ðRÞ2. Thus, for a linear mass function there
is no longer a self-similar solution. One would have to
incorporate the new factor by changing the mass function,
if a self-similar solution is to be obtained. But this is not
straightforward since 
 depends not on x but on the un-
known function R which is to be solved for.

For the first version of inverse triad corrections the
equation changes more radically. In this case, we can bring
the constraint equation to the form of an integro-
differential equation for R,�
dR

dt

�
2 ¼ 1

R

Z
dxf½RðxÞ�F0ðxÞ � 1

R

Z
dRð
� 1Þ

�
dR

dt

�
2
:

(108)

If 
� 1 is small, one can solve this iteratively by inserting
the equation for ðdR=dtÞ2 in the integral:�

dR

dt

�
2 ¼ FðxÞ

R
þ 1

R

Z
dxðf� 1ÞF0ðxÞ

� 1

R

Z
dRð
� 1ÞFðxÞ=Rþ � � � :

The difficulty in solving this is that FðxÞ depends on x
rather than R, so we have to know RðxÞ as a solution and
invert it before doing the integration. But this equation
already shows qualitatively that the quantum correction
makes the solution more nonlocal, which may prevent
the existence of self-similar solutions. Moreover, there
will be additional time-dependent effects which do not
occur classically. This is so because Rðt; xÞ, which we
need to know in order to replace x by R in the integrand,
also depends on t. Thus, the integrals are really time
dependent, which one can understand as replacing the
classical FðxÞ by a new function

F ðx; tÞ ¼ FðxÞ þ
Z

dxðf� 1ÞF0ðxÞ

�
Z

dRð
� 1ÞFðxðR; tÞÞ=R�
Z

dRð
� 1Þ=R

�
Z

dxðf� 1ÞF0ðxÞ þ
Z

dRð
� 1Þ=R

�
Z R

d ~Rð
� 1ÞFðxð ~R; tÞÞ= ~Rþ � � � (109)

appearing on the right-hand side of ðdR=dtÞ2 ¼ F ðx; tÞ=R.
This refers only to the case where 
� 1 is small, i.e. we

have perturbative corrections to the inverse triad effects. It
would not allow one to analyze the deeper quantum regime

where 
 differs significantly from one. For this regime we
would have to use other techniques, such as the expansions
of the following subsection.
However, generally speaking, since the characteristic

length scale ‘P is explicitly introduced into the corrections,
we cannot expect this kind of self-similar solutions, which
are called complete self-similar solutions or self-similar
solutions of the first kind. With the characteristic length
scale, we can only expect incomplete self-similar solu-
tions, e.g. kinematic self-similar solutions in this context;
see [96–98].

4. Small-x expansion

For R 	 ffiffiffiffi
�

p
lP, 
 ! 1 and the classical limit is recov-

ered. However, for R &
ffiffiffiffi
�

p
lP, the deviation from classical

theory becomes of order unity. Here, deep quantum effects
might be revealed by a closer analysis. We point out that
such a deep quantum regime is less reliable if only one type
of quantum effect is considered. Nevertheless, an analysis
of single effects can provide various possibilities and guide
further developments. Moreover, the corrections studied
here, based on inverse triad and holonomy corrections, can
be combined without changing the conclusions.
To have a regular center in an inhomogeneous case we

assume that F and R admit the following expansions at the
center:

FðxÞ ¼ F3x
3 þ F4x

4 þ � � � ; (110)

Rðt; xÞ ¼ R1ðtÞxþ R2ðtÞx2 þ � � � ; (111)

where the dots denote higher order terms with respect to x,
andFi are constants but Ri may be t dependent. In this way,
the classical expression for energy density gives an expan-
sion of the form

�ðt; xÞ ¼ �0ðtÞ þ �1ðtÞxþ �2ðtÞx2 þ � � � (112)

from FðxÞ and Rðt; xÞ, where �0 ¼ 3F3=8�GR
3
1.

Classically, the lowest order then gives _R2
1 ¼ F3=R1 with

solution

R1 ¼
�
C� 3

ffiffiffiffiffiffi
F3

p
2

t

�
2=3

; (113)

where C is an arbitrary constant. Hence, for the collapsing
case, R1 monotonically decreases and becomes zero in a
finite proper time—the central singularity develops where
�0 ! 1. When we choose the radial coordinate x so that
R ¼ x at t ¼ t0, we find

R1 ¼
�
1� 3

ffiffiffiffiffiffi
F3

p
2

ðt� t0Þ
�
2=3

; (114)

and hence, R1 vanishes at t ¼ ts, where

ts ¼ t0 
 2

3
ffiffiffiffiffiffi
F3

p : (115)

LEMAITRE-TOLMAN-BONDI COLLAPSE FROM THE . . . PHYSICAL REVIEW D 78, 064057 (2008)

064057-17



This behavior can be checked also in the presence of
quantum corrections to see if anything of the singularity
changes. For the first version of inverse triad corrections,
we use the small-x behavior


 ¼
�

2

�‘2P

�
3=2

R3
1x

3; f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8e1��=2

�‘2P

vuut R1x (116)

of the correction functions. As a result, if FðxÞ has a cubic
term F3x

3 as the lowest order, we find _R1 ¼ 0. However,
the additional factor of x in the dust energy density pro-
portional to fðRÞF0=R2R0 then shows that we can allow a
quadratic term F2x

2 in the mass function to produce the
desired regular expansion for energy density, although the
total effective energy density is still diverging at the center
because of the ‘‘vacuum’’ contributions in (106).

Using the various series expansions in (68), to lowest
order in x we get

_R 2
1 ¼

23=2e1=2��=4F2

ð�‘2PÞ1=2
; (117)

which is solved by

R1ðtÞ ¼ 1�
�
23=2e1=2��=4F2

ð�‘2PÞ1=2
�
1=2ðt0 � tÞ; (118)

where the plus sign corresponds to a collapsing dust cloud
and where we have chosen the initial condition R1ðt0Þ ¼ 1.
From here we see that the central singularity, correspond-
ing to R1ðtÞ ¼ 0 is formed at

t ¼ t0 þ
�
23=2e1=2��=4F2

ð�‘2PÞ1=2
��1

: (119)

For the sake of comparison we note that classically the
central singularity forms at t ¼ t0 þ 2=3

ffiffiffiffiffiffi
F3

p
. In terms of

the initial density profile, F3 ¼ 8�G�0ð0Þ=3 (note that
�0ð0Þ is not the complete dust density profile at the initial
time but a coefficient in the series expansion for the dust
density) and therefore in terms of the initial density the
time for singularity formation is t ¼ t0 þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G�0

p
. For

the quantum corrected case a similar consideration gives

F2 ¼ 4�G�0ð�‘2PÞ1=2=23=2e1=2��=4 which implies that the
central singularity forms at t ¼ t0 þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�0

p
.

For the second version of inverse triad corrections, the
equation to be solved is _R2R ¼ 
2F from (75). For small
R, (116) implies that the lowest order term on the right-
hand side goes as x9 if we use the same form of the
expansion of FðxÞ as classically. In this case, we can
show _R1 ¼ 0 as in the first version. However, now our
density is � / ð
2F0Þ=R2R0 if the divergent vacuum con-
tribution is subtracted, which means that 
2F should be
required to have a leading term cubic in x, such that F itself
can have lower order terms. In this case, the singularity is
not prevented either. Nevertheless, a finite neighborhood
may look different from the classical space-time near a

central singularity which, however, would require a more
detailed analysis.
For our version of holonomy corrections, the equation to

be solved is (94). After expanding in powers of x and
equating the coefficients on the two sides we obtain (to
order x2) R1

_R2
1 ¼ F3 which is the same as in the classical

case and gives

R1ðtÞ ¼ ð1� 3
2

ffiffiffiffiffiffi
F3

p ðt� t0ÞÞ2=3 (120)

implying that the singularity occurs at time t ¼
t0 þ 2=3

ffiffiffiffiffiffi
F3

p
(the same as in the classical case). At order

x3 we have the equation for R2 which also does not have
any quantum corrections. Effects of the �2�2 factor occur
only at order x4 and higher. Thus the small-x behavior with
this correction is the same as for the classical LTB model.
The combinations of inverse triad and holonomy correc-
tions in (96) and (98) lead to the same conclusions.
We conclude that there is no indication that the correc-

tions implemented here prevent the LTB singularity from
forming. In particular, naked singularities as they appear in
these models do not seem resolved automatically by a loop
quantization. Whether they are indeed naked singularities
in the presence of quantum effects requires further analysis
of the effective space-time: the surroundings of the singu-
larity may be sufficiently different from the classical naked
case such that the singularity becomes spacelike. However,
we have shown that a situation which gives rise to a naked
singularity classically also gives rise to a singularity (of
some form) under the quantum effects considered here. An
analysis whether naked singularities remain naked may be
of interest in the context of cosmic censorship, which we
will come back to in the numerical analysis.
A correction not considered here is the effect of

Kx-holonomies which are computationally more compli-
cated and may be crucial in some regimes. In fact, taking
the general form (20) of classical solutions indicates that

K’ ¼ _R ¼ ffiffiffiffiffiffiffiffiffiffi
F=R

p
is subdominant to

Kx ¼ _R0 ¼ ffiffiffiffiffiffiffiffiffiffi
F=R

p �
F0

2F
� 1

2

ffiffiffi
x

p � tF0=F
R3=2

�

near x ¼ 0. This may present a chance for holonomy
corrections to remove the singularity after all. However,
the size of holonomy corrections is also state dependent: a
small ‘0 suppresses Kx-corrections even if Kx is large.
Thus, as already noted these corrections cannot result in
generic avoidance of singularities. (Note that also in [76]
only K’-corrections were included, although the conclu-

sion was that the Schwarzschild singularity could be re-
solved in this way.) This clearly shows the nontrivial
behavior of inhomogeneous situations compared to homo-
geneous ones.
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B. Numerical analysis

Although some analytical results are available, the re-
gion of intermediate values for R not in the asymptotic
regimes R � ffiffiffiffi

�
p

‘P or R 	 ffiffiffiffi
�

p
‘P is difficult to analyze.

We thus complement the preceding analysis by numerical
studies of inverse triad corrections.

For the first version, we transform the constraint equa-
tion with

K � _R2 � F

R
; (121)

to

K0 ¼ � 1

2R2

�
K þ

�
K þ F

R

�
ð
ðRÞ � 1Þ

�
ðR2Þ0 þ ðf� 1ÞF0;

(122)

_R ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ F

R

s
: (123)

We spatially integrate the constraint equation at each time
step and evolve R using (123). The constraint is always
satisfied within 10�4 accuracy. The spatial integration is
done using a fourth-order scheme while the time evolution
uses a second-order scheme.

The second version is given by a set of equations which
is first integrated by R _R2 ¼ 
2F. The numerical imple-
mentation of this equation is easy because we no longer
need spatial integration. Our numerical scheme is second
order, which is sufficiently accurate and stable for the
present purpose.

It should be noted that there is scale invariance in both
sets of equations which are invariant under scaling Rðt; xÞ,
FðxÞ, and t as Rðt=	; xÞ, 	2FðxÞ, and t=	, where 	 is a
positive constant. This scale invariance greatly simplifies
the analysis. If the functional form of FðxÞ is the same up to
a constant factor, the evolution is similar up to the scaling
of time. We thus do not need to investigate the full pa-
rameter space. Through this scaling, the classical Misner-
Sharp mass mclass scales as 	2mclass, while the corrected
mass m does not. For holonomy corrections, the scaling
behavior is lost. Here, a dedicated analysis of the whole
parameter freedom is required to draw reliable conclu-
sions, which we postpone to future work.

1. Initial condition

The function FðxÞ corresponds to the conserved mass
because it is constant for a comoving observer. Then,

�cons � F0

8�GR2R0 (124)

is regarded as the conserved mass density. Note that this
differs from effective energy densities which incorporate
quantum effects.

We choose the radial coordinate x so that

x ¼ R0ðxÞ
R0ðxmaxÞ ; (125)

i.e. 0 
 x 
 1 for the region of computation, where
R0ðxÞ � Rð0; xÞ. As matter models, it is useful to consider
two different cases: (i) uniform models where

FðxÞ ¼
�
F0x

3 for 0 
 x 
 xs
F1 for xs < x

(126)

and with

xs ¼ Rs

R0ðxmaxÞ ; F0 ¼ 2GM

x3s
; F1 ¼ 2GM (127)

in terms of the physical parameters given by the initial
radius Rs and the total conserved mass M; and (ii) qua-
dratic models where

FðxÞ ¼
�
F0ðx33 � x5

5x2s
Þ for 0 
 x 
 xs

F1 for xs < x
(128)

and

xs ¼ Rs

R0ðxmaxÞ ; F0 ¼ 15
GM

x3s
; F1 ¼ 2GM:

(129)

Although we restrict ourselves to these two density
profiles, there still are many possible sets of values for Rs

and M. We choose Rs ¼ 1 and 0.1 and M ¼ 0:01, where
the Planck length ‘P is chosen to be unity. In units used for

the numerical analysis, we have a critical radius R� ¼ffiffiffiffiffiffiffiffiffi
�=2

p
‘P � 0:25‘P. So, Rs ¼ 1 and 0.1 represent the cases

where the initial size of the dust cloud is above and below
the critical one, respectively. As we have already seen, we
can recover the general mass scale by rescaling FðxÞ and t
as 	2FðxÞ and t=	. In other words, the dynamics of the
dust cloud follows this scaling relation. However, it should
be noted that as the corrected Misner-Sharp mass will not
scale in such a simple way, the kinematics of null geodesics
on the corrected space-time will not follow this scaling.
This means that the condition for horizon formation may
depend on the mass scale, i.e. 	. Because of our choice for
the mass parameter M ¼ 0:01, we can see the correction
effect on the null expansions very clearly. The outer bound-
ary of the calculated region is chosen to be R0ðxmaxÞ ¼ 2.
Our calculation region covers both the classical and effec-
tive regimes.
We have implemented a convergence test to the exact

solution for time integration: For 
 ¼ 1 and f ¼ 1, we
have the marginally bound Lemaitre-Tolman-Bondi solu-
tion

Rexðt; xÞ ¼ ðRð0; xÞ3=2 � 3
2

ffiffiffiffiffiffiffiffiffiffi
FðxÞp

tÞ2=3: (130)

Figure 2 shows the residual of the numerical solution Rn;i

from the exact solution Rexðt; xÞ
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jRn;i � Rexðtn; xiÞj (131)

for R0;i ¼ 10 and Rexð0; xiÞ ¼ 10, where n and i label the
time step and the spatial grid point, respectively. The dust
parameters are set toM ¼ 1 and Rs ¼ 10. One can see that
as we decrease the time step �t while fixing �x ¼ 0:05,
the residual decreases as ð�tÞ2.

In the following we fix �x ¼ 10�4, where x ¼ 1 corre-
sponds to the outer boundary of the calculated region. We
have confirmed that the numerical solution will not quali-

tatively change if we double�x. The time step�t is chosen
so that the physical quantities on each grid point will
change their values within 1% at each time step.

2. Classical collapse

Since there is no characteristic scale in classical theory,
we have two independent scalings of Rðt; xÞ, FðxÞ, and t to
�Rðt=	; xÞ, 	2�3FðxÞ, and t=	, where 	 and � are con-
stants. Hence, we can recover the results for general radius
and mass parameters from a simulation done with only one
set of parameters.
Figure 3 shows the collapse of an initially homogeneous

ball in classical general relativity. The total conserved mass
M is set to be 0.01 and the initial radius of the cloud surface
Rs is set to be 0.1. Figure 3(a) shows the evolution of the
density profile, where the conserved mass density and the
effective density coincide with each other in the classical
case. Figure 3(b) shows the evolution of the velocity pro-
file. Figure 3(c) shows the evolution of the mass profile,
where also the conserved mass and the Misner-Sharp mass
coincide with each other in this classical case. Figure 3(d)
shows the evolution of the ratio between the Misner-Sharp
mass m and the area radius R. This ratio becomes one-half
at trapping horizons. From Fig. 3(a), we can see that the
density profile in the ball remains uniform during the
collapse. The solution is given by the marginally bound
Oppenheimer-Snyder solution [99] where the singularity is
massive and spacelike. In this exact solution, the singular-
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FIG. 3. The collapse of a homogeneous dust ball with Rs ¼ 0:1 and M ¼ 0:01 in classical general relativity: the snapshots at t ¼ 0,
0.088 79, 0.1251, 0.1395, 0.1453, and 0.1476 are plotted.
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ity appears at t ¼ ffiffiffi
2

p
=3ð0:13=0:01Þ1=2 ’ 0:1491 � � � . Not

only an event horizon but also a trapping horizon always
appear in this solution. The singularity is always hidden
within the event horizon as well as the trapping horizon.
Cosmic censorship holds in this collapse model.

Figure 4 shows the collapse of an initially inhomoge-
neous ball withRs ¼ 0:1 andM ¼ 0:01 in classical general
relativity. From Fig. 4(a), we can see that the central
density grows very rapidly while the surrounding region
falls into the central region more slowly. This induces
strong inhomogeneity near the center and finally the cal-
culation breaks down soon after t ¼ 0:094 24. In fact, the
solution is exactly given by the marginally bound
Lemaitre-Tolman-Bondi solution [21–23]. The peculiar
behavior at the center seen in the numerical solution
presents a shell-focusing singularity. In the present class
of the Lemaitre-Tolman-Bondi solutions, the shell-
focusing singularity has been shown to be massless, ge-
neric, and locally naked [55], and moreover curvature
strong [58,59]. It can be globally naked depending on the
values for Rs andM. We can determine whether a trapping
horizon forms or not before the singularity formation by
looking at the value of m=R shown in Fig. 4(d), which
gives a maximum of about 0.30 achieved at t ¼ 0:094 24.
Although this might be slightly larger if we go closer to the
singularity, the real value is not so different from 0.30.
Since this ratio is one-half at a trapping horizon, the present
result means that no trapping horizon is formed in this case
before the singularity is formed. The existence of a trap-

ping horizon implies an event horizon outside or coincid-
ing with it (but not vice versa) in classical general relativity
[100].

3. Inverse triad corrections: First version

Figure 5 shows the collapse of an initially homogeneous
ball in the first version of consistent inverse triad correc-
tions from loop quantum gravity with Rs ¼ 1 and M ¼
0:01. Besides the conserved mass density �cons, we can
naturally define the effective density by

�eff ¼ m0

4�GR2R0 : (132)

This is defined so that when we integrate this with the
invariant 3-dimensional volume element on the constant t
spacelike hypersurface we recover the Misner-Sharp mass.
This is directly related to the ðt; tÞ-component of the
Einstein curvature tensor and not necessarily positive
definite.
Figure 5(a) shows the evolution of the profiles of both

the conserved mass density (dashed line) and the effective
density (solid line). We can see that the cloud becomes
inhomogeneous in spite of its initial homogeneity. From
Figs. 5(a) and 5(b), we can see that the collapse is strongly
slowed down in the central region R & 0:05, while the
collapse continues to take place as in the classical case
for the outer region R * 0:2. As a result, as we can see in
Fig. 5(a), the conserved mass density at the central region
remains almost unchanged, while it increases almost ho-
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FIG. 4. The collapse of an inhomogeneous dust ball with Rs ¼ 0:1 and M ¼ 0:01 in classical general relativity: the snapshots at
t ¼ 0, 0.073 65, 0.089 84, 0.093 32, 0.094 07, and 0.094 24 are plotted.
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mogeneously in the outer region. We can also see in the
same figure that the effective density is diverging at the
center. As the cloud surface falls inside R ’ 0:2, the effec-
tive density is still nonzero even outside the cloud surface.
Moreover, for 0:11 & R & 0:24 the effective density be-
comes negative, which is not shown in Fig. 5(a). A spike
develops also in the conserved mass density field at R ’
0:06 and then the calculation breaks down soon after t ¼
4:564. The spike in the conserved mass density field should
be identified with a curvature singularity, which we can
identify with the shell-crossing singularity as it also ap-
pears in the classical Lemaitre-Tolman-Bondi solution.
Shell-crossing singularities can be naked but gravitation-
ally weak [101,102]. This singularity is so weak in curva-
ture strength that it is generally believed to be extendible in
a distributional sense [52,53]. Figure 5(c) shows the evo-
lution of the Misner-Sharp mass and the conserved mass as
a function of R. Although their total values are both 0.01,
their distributions are quite different for R & 1. The
Misner-Sharp mass dominates the conserved mass for R &
0:2. It takes a maximum ’ 0:04 at R ’ 0:11. The Misner-
Sharp mass is a decreasing function of R for 0:11 & R &
0:24, which implies the effective density is negative there.
Figure 5(d) shows that the center is always marginally
trapped. This is actually seen from the definition of the

Misner-Sharp mass mðIÞ in Eq. (105). Except at the center
the ratio m=R is less than one-half, implying that the shell-
crossing singularity is not covered by a trapping horizon.

Figure 6 shows the collapse of an initially inhomoge-
neous ball with Rs ¼ 1 andM ¼ 0:01 in the first version of
inverse triad corrections in loop quantum gravity. The
qualitative properties are the same as in the initially uni-
form case. Also here, the collapse of the central region R &
0:05 is strongly slowed down, while the outer dust falls
onto the slowly collapsing central region. Again, a spike
develops both in the effective density field and the con-
served mass density field at R ’ 0:06 and then the calcu-
lation breaks down soon after t ¼ 3:003. The maximum
value of m=R is one-half attained at the center during this
simulation as seen in Fig. 6(d). This means that for this
case, no trapping horizon is formed before the spike or
shell-crossing singularity is formed.
Without loop quantum effects, the collapse generically

ends in the formation of a shell-focusing singularity.
Hence, in regard of singularity formation, the collapse
ends in a tamer shell-crossing singularity prior to the
possible shell-focusing singularity due to the present loop
quantum effects.
If the initial radius of the cloud is smaller than the

critical radius R� ’ 0:25, the situation becomes slightly
different. Figure 7 shows the collapse of a homogeneous
dust ball with Rs ¼ 0:1 andM ¼ 0:01. As seen in Fig. 7(a),
the conserved mass density has its maximum at the cloud
surface. Then a spike develops at R ’ 0:046 and the cal-
culation breaks down soon after t ¼ 0:1567. The effective
density outside the cloud is positive for R & 0:11 but

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.2  0.4  0.6  0.8  1  1.2

D
en

si
ty

Areal Radius
(a)Density profile

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.2  0.4  0.6  0.8  1  1.2

C
oo

rd
in

at
e 

V
el

oc
ity

Areal Radius
(b)Velocity profile

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  0.2  0.4  0.6  0.8  1  1.2

M
as

s

Areal Radius

(c)Quasi-local mass

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2

M
S

 M
as

s/
A

re
al

 R
ad

iu
s

Areal Radius

(d)Mass-radius ratio

FIG. 5. The collapse of a homogeneous dust ball with Rs ¼ 1 and M ¼ 0:01 in the first version of loop quantum gravity: the
snapshots at t ¼ 0, 3.069, 4.046, 4.393, 4.519, and 4.564 are plotted. In (a), the solid and dashed lines denote the effective density and
the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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FIG. 6. The collapse of an inhomogeneous dust ball with Rs ¼ 1 and M ¼ 0:01 in the first version of loop quantum gravity: the
snapshots at t ¼ 0, 2.008, 2.658, 2.889, 2.973, and 3.003 are plotted. In (a), the solid and dashed lines denote the effective density and
the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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FIG. 7. The collapse of a homogeneous dust ball with Rs ¼ 0:1 and M ¼ 0:01 in the first version of loop quantum gravity: the
snapshots at t ¼ 0, 0.1051, 0.1394, 0.1511, 0.1552, and 0.1567 are plotted. In (a), the solid and dashed lines denote the effective density
and the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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negative for 0:11 & R & 0:24. The Misner-Sharp mass
takes its maximum value at R ’ 0:11. Outside the cloud,
the profile of the Misner-Sharp mass and therefore the
effective density are almost unchanged compared to the
classical behavior as seen in Fig. 7(c). In fact, this feature is
also seen for the cases where the initial radius is larger
than the critical radius. Figure 7(d) shows that the maxi-
mum value of the ratio m=R greater than one-half and this
is attained at R ’ 0:046, which implies that the shell-
crossing singularity is covered by a trapping horizon in
this case.

For the collapse of an initially inhomogeneous ball,
which is shown in Fig. 8, the qualitative feature is almost
the same. However, the central region where the collapse is
strongly slowed down is much smaller than in the case
where the initial radius is larger than the critical radius. As
a result, a spike develops at the radius R ’ 0:012. The
shell-crossing singularity is covered by a trapping horizon
in this case.

4. Inverse triad corrections: Second version

Figure 9 shows the collapse of an initially homogeneous
ball with Rs ¼ 1 and M ¼ 0:01 in the second version of
consistent inverse triad corrections in loop quantum grav-
ity. We can easily see that in spite of the very different
formulation, the key feature that the collapse of the central

region is strongly slowed down is the same as in the first
version. The radius of this almost stopped central region is
’ 0:2, which is much larger than in the first version.
In the conserved mass density profile a spike develops at

R ’ 0:19, t ¼ 3:391. There is a dip in the profile of the
conserved mass density at R ’ 0:25, which corresponds to
the critical radius R ¼ R�. For R * R�, the collapse pro-
ceeds as it does classically. As in the first version, the
effective density is diverging at the center. If we go further
outside, it decreases very rapidly to negative values and
then turns to increase to positive values. The velocity
profile shows two minimum values at the cloud surface
and at R ’ R� as seen in Fig. 9(b). The Misner-Sharp mass
dominates the conserved mass for R & 0:2 and it has a
maximum about 0.08 at R ’ 0:18 as seen in Fig. 9(c). The
center is always marginally trapped and the surrounding
region is untrapped. Hence, the shell-crossing singularity is
not covered by a trapping horizon.
Figure 10 shows the evolution of an initially inhomoge-

neous dust ball with Rs ¼ 1 and M ¼ 0:01 in the second
version of loop quantum gravity. The qualitative features
are common with the homogeneous case except that the
velocity profile has only one minimum during the late stage
of collapse. A spike develops in the density fields at R ’
0:19, t ¼ 2:245. The spike or shell-crossing singularity is
not covered by a trapping horizon.
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FIG. 8. The collapse of an inhomogeneous dust ball Rs ¼ 0:1 and M ¼ 0:01 in the first version of loop quantum gravity: the
snapshots at t ¼ 0, 0.1349, 0.1845, 0.2024, 0.2089, and 0.2113 are plotted. In (a), the solid and dashed lines denote the effective density
and the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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FIG. 9. The collapse of a homogeneous dust ball with Rs ¼ 1 and M ¼ 0:01 in the second version of loop quantum gravity: the
snapshots at t ¼ 0, 1.433, 2.347, 2.954, 3.364, and 3.391 are plotted. In (a), the solid and dashed lines denote the effective density and
the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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FIG. 10. The collapse of an inhomogeneous dust ball with Rs ¼ 1 and M ¼ 0:01 in the second version of loop quantum gravity: the
snapshots at t ¼ 0, 0.9379, 1.557, 2.004, 2.245, and 2.246 are plotted. In (a), the solid and dashed lines denote the effective density and
the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved mass,
respectively.
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FIG. 11. The collapse of a homogeneous dust ball with Rs ¼ 0:1 and M ¼ 0:01 in the second version formulation of loop quantum
gravity: the snapshots at t ¼ 0, 0.5509, 1.173, 1.836, and 2.395 are plotted. In (a), the solid and dashed lines denote the effective
density and the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved
mass, respectively.
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FIG. 12. The collapse of an inhomogeneous dust ball with Rs ¼ 0:1 and M ¼ 0:01 in the second version formulation of loop
quantum gravity: the snapshots at t ¼ 0, 1.501, 3.239, 5.121, 6.444 are plotted. In (a), the solid and dashed lines denote the effective
density and the conserved mass density, respectively. In (c), the solid and dashed lines denote the Misner-Sharp mass and the conserved
mass, respectively.

BOJOWALD, HARADA, AND TIBREWALA PHYSICAL REVIEW D 78, 064057 (2008)

064057-26



Figure 11 shows the evolution of an initially homoge-
neous dust ball with Rs ¼ 0:1 and M ¼ 0:01. In this case,
the collapse proceeds very slowly in comparison to the
classical evolution. It should be noted that in classical
general relativity, the collapse ends in singularity forma-

tion at t ¼ ffiffiffi
2

p
=3� ð0:13=0:01Þ1=2 ’ 0:1491 � � � . In the

second version of loop quantum gravity, the velocity field
is kept very small within the whole cloud as seen in
Fig. 11(b). The profile of the conserved mass density shows
a spike developing at the cloud surface at R ’ 0:062 as
seen in Fig. 11(a). The simulation breaks down due to this
spike soon after t ¼ 2:395. The profile of the effective
density is very different from that of the conserved mass
density. The effective density becomes negative for 0:18 &
R & 0:25. This is seen better in Fig. 11(c). The maximum
value of the Misner-Sharp mass is about 0.08. The maxi-
mum value of the ratio m=R is one-half, which is attained
at the center. Hence, the spike or shell-crossing singularity
is not covered by a trapping horizon.

Finally, Fig. 12 shows the collapse of an initially inho-
mogeneous dust cloud with Rs ¼ 0:1 and M ¼ 0:01 in the
second version of loop quantum gravity. Also in this case,
the evolution is strongly slowed down. As seen in Fig. 12 a
spike develops in the density fields inside the cloud at R ’
0:04, t ¼ 6:444. The evolution outside the cloud is identi-
cal to that in the homogeneous case. The Misner-Sharp
mass profile and therefore the effective density profile are
almost constant in time. The maximum value of the
Misner-Sharp mass is about 0.08 attained at R ’ 0:18.
The maximum value of the ratio m=R is one-half attained
at the center, which implies the spike or shell-crossing
singularity is not covered by a trapping horizon.

C. Summary of the numerical analysis

In summary, the numerical results show that the loop
quantum effects significantly slow down the collapse of the
central region which is as large as

ffiffiffiffi
�

p
lP, while in the outer

region these effects are not important. (There are, however,
quantitative differences between the different versions of
consistent equations. In the second version the collapse of
the central region is more strongly slowed down and the
radius of this central ‘‘core’’ is larger than in the first
version.) As a result, the density spike develops at around
the radius

ffiffiffiffi
�

p
lP, which results in the formation of a shell-

crossing singularity. Another key feature is that the center
is always marginally trapped due to the inverse triad cor-
rection to the metric. This suggests that the shell-focusing
singularity appearing at the center might be covered by a
horizon.

Since the collapse of an inhomogeneous dust cloud in
classical general relativity generically ends in shell-
focusing naked singularities, this means that although the
singularity formed in the generic spherical dust collapse in
the present formulation of loop quantum gravity is still
locally naked, the shell-crossing singularity appears prior

to the shell-focusing singularity and hence the curvature
strength of locally naked singularities formed in the gravi-
tational collapse is weakened due to the loop quantum
effects. In a naive sense, this seems to favor the cosmic
censorship hypothesis in effective loop quantum gravity
because shell-crossing singularities are generally believed
to be extendible in a distributional sense. Moreover, since
the shell-crossing singularity will appear near the center, it
is likely to be trapped due to the inverse triad correction to
the metric. We have seen that this is the case for some
collapse models in the first version.
However, one should be careful with any definite con-

clusion because the present work can only provide insights
into some of the quantum effects in gravitational collapse
and space-time singularities. (For instance, as mentioned
earlier we have not included holonomy effects in the
numerical analysis because that would require a more de-
tailed analysis of the parameter space.) The slow-down of
the collapse indicates that repulsive forces of quantum
gravity are indeed at work, similar to those that resolve
big bang singularities in homogeneous models. But in our
inhomogeneous context this does not appear sufficient to
provide a uniform bound on energy densities. The more
complicated nature of the problem is indicated by the
formation of shell-crossing singularities which may be a
consequence of the still present spherical symmetry and
the dust idealization used for matter.

VI. CONCLUSIONS

We have analyzed the existence of LTB-type models in
the framework of loop quantum gravity, starting with an
implementation of the corresponding class of spatial met-
rics at the kinematical Hilbert space level. We first dis-
cussed the spherically symmetric setting and, in particular,
noted the role of lattice refinements in Sec. III D. The
discussion turned out to be much cleaner than in purely
homogeneous settings, especially regarding the scale de-
pendence of quantum equations. As an immediate conse-
quence, not all refinement models used so far for
anisotropic homogeneous models can be embedded in
spherically symmetric models. In particular, nontrivial
refinement schemes which would give rise to equidistant
difference equations (where point holonomies are of the
form expði�ðpIÞcIÞ with only the variable pI conjugate to
a connection component cI entering) do not seem realiz-
able in spherical symmetry. It is thus important to improve
the analysis of nonequidistant difference equations, for
instance along the lines of [103,104]. Despite some re-
strictions on the refinement scheme, a whole class of
refinements varying with the spatial size remains allowed.
All these schemes have the correct scaling behavior under
coordinate changes, even though further reduction to ho-
mogeneous models may suggest improper scalings for
some of these models. This shows that it is only the
reduction to homogeneity which may suggest improper
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scalings because scaling-dependent parameters arising in
the reduction are overlooked. The restriction of refinement
models based solely on their rescaling behavior in homo-
geneous models is thus too strict.

We then turned to the LTB conditions and showed that
the classical conditions translate easily to the kinematical
quantum level, which allows further studies of quantum
reduction mechanisms of loop quantum gravity along the
lines of [7]. However, the constraint algebra makes a
discussion difficult at the dynamical level where the con-
sistency issue of the operator algebra of constraints to-
gether with LTB conditions would have to be analyzed.
At this stage, further progress is possible based on an
effective treatment of correction terms. While we have
not derived complete effective equations which would
contain all relevant correction terms at once, the inclusion
of individual correction terms of certain types can already
be used to see how quantum effects can be realized
consistently.

Indeed, we have found consistent formulations of the
LTB reduction for different types of corrections: the con-
straint equations (68), (75), and (94) with the evolution
equations (69), (76), and (93), respectively. Moreover, the
effects can be combined in consistent equations summa-
rized in Sec. IVB. The consistency of an anomaly-free
formulation relates corrections in different terms of the
Hamiltonian to each other, but also to required corrections
of the classical LTB conditions. Here, our general under-
standing of a LTB-type reduction is that metric coefficients
in (2) are related to each other by a proportionality L / R0.
Classically, the factor is one, but consistent quantum cor-
rections require a nontrivial dependence on R or _R which
would be important in some regimes. Thus, while we have
the same type of reduction of degrees of freedom, explicit
dynamical implications for the metric may change. In
particular, the relation between L and R affects, for in-
stance, the position and behavior of horizons in addition to
what a change in the dynamical behavior of Rwould imply.
Also the behavior near classical singularities changes due
to correction factors in the metric which may even diverge
right at a classical singularity. A complete space-time
analysis of the resulting effective metrics remains to be
done.

The change in the form of the metric had unexpected
implications: Further reductions which are possible classi-
cally, such as Friedmann-Robertson-Walker solutions, no
longer exist, although on large scales there are approximate
such solutions. This is quite unexpected and suggests that

caution is necessary regarding the dynamical realization of
homogeneous models. Moreover, in combination with cor-
rections to the classical equations of motion, we have seen
new terms in effective densities which can become nega-
tive even where mass densities remain positive. Also nu-
merical simulations suggest that repulsive forces of
quantum gravity are active on small scales. All this can
affect the horizon behavior as well as singularities if nega-
tive energies and corresponding repulsive forces become
strong enough. However, our analysis of central singular-
ities, which may be spacelike or nonspacelike, did not
reveal any indication that they would be prevented com-
pletely. While spherically symmetric loop quantum gravity
is singularity-free at a fundamental level of difference
equations [12] (see also [105,106] for Gowdy models),
the development of intuitive geometrical pictures requires
nonsingular equations for an effective geometry. We have
not analyzed full effective equations and did not yet con-
sider all possible correction terms; it may be that some of
the corrections which are more complicated to include can
avoid singularities more generally. Nevertheless, the diffi-
culties in avoiding inhomogeneous singularities, in con-
trast to the fact that several spacelike singularities have
been shown to be prevented based on homogeneous models
of loop quantum gravity, suggest that general singularities
present a qualitatively different issue compared to what has
been realized so far. From our numerical simulations we
might speculate a possible resolution mechanism more
subtle than the analog of a cosmological bounce: Strong
curvature singularities seem to be replaced by weak singu-
larities which may be extendable by distributional solu-
tions or with more realistic matter models.
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