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We elaborate the problem of energy-momentum in general relativity by energy-momentum prescrip-

tions theory. In this regard, we calculate Møller, Landau-Lifshitz, Papapetrou, Einstein, Bergmann,

Tolman, and Weinberg’s energy-momentum complexes in static and nonstatic cosmic string space-times.

We obtain strong coincidences between the results. These coincidences can be considered an extension of

Virbhadra’s viewpoint that different energy-momentum prescriptions may provide some basis to define a

unique quantity. In addition, our results disagree with Lessner’s belief about Møller’s prescription and

support the Virbhadra’s conclusion about the power of Einstein’s prescription.
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I. INTRODUCTION

In classical mechanics and even in special relativity, we
can always introduce a two-indice, symmetric tensorial
quantity, i.e. Tb

a , which is called the energy-momentum
tensor and represents the energy and momentum of matter
and nongravitational fields sources. Besides the mentioned
properties (being tensorial and symmetric), it has an im-
portant special characteristic: it is localized. This means
that in every point of the manifold the quantity of energy-
momentum is conserved. In other words, the energy-
momentum tensor is a divergenceless quantity. In fact, in
any local point of manifold no contribution of this quantity
produces and none eliminates. We have

Tb
a;b ¼ 0: (1)

Equation (1) is the definition of energy-momentum con-
servation—known as conservation laws. Since the energy
and momentum are two important, conserved quantities in
physics, people are interested to keep them (as usual form
of conservation laws) unchanged in all fields of physics,
especially in the theory of general relativity (GR). But in
GR, ordinary derivatives transform to covariant deriva-
tives. So we have [1]

Tb
a;b ¼

1ffiffiffiffiffiffiffi�g
p ð ffiffiffiffiffiffiffi�g

p
Tb
a Þ;b � �b

acT
c
b ¼ 0: (2)

It is obvious from Eq. (2) that Tb
a no longer satisfies Tb

a;b ¼
0, but as noted before, we are interested in having a similar
equation in GR. We add an additional term to Tb

a , e.g. t
b
a, so

that the summation of these two terms remains divergence-
less. In reality, the quantity that is actually conserved in the
sense of Eq. (1) is some effective quantity which is given

(in one variant) by Eq. (20.18) of MTW [2] as effT
b
a ¼

ðTb
a þ tbaÞ. In other variants, we obtain

effT
b
a ¼ ð�gÞn=2ðTb

a þ tbaÞ; (3)

where g ¼ detðgabÞ and n is a positive integer that indi-
cates the weight. For each of these effT

b
a , Eq. (2) can be

rewritten as

effT
b
a;b ¼ 0: (4)

Conserved quantity effT
b
a refers to the flux and density of

energy and momentum of gravitational systems. In fact,
coming from special relativity to GR, we add a contribu-
tion of gravitational fields, tba, to the contribution of matter
and all nongravitational fields, Tb

a . Einstein, himself, pro-
posed the first prescription for effT

b
a just after GR’s for-

mulation in 1916. Then, many other persons such as Møller
[3], Landau-Lifshitz [4], Papapetrou [5], Bergmann [6],
Tolman [7], and Weinberg [1] gave different prescriptions.
All proposed expressions are called energy-momentum
complexes, because they can be expressed as a combina-
tion of a tensor, Tb

a , and a pseudotensor, tba. However, by
using this (adding tba to Tb

a) we could solve the problem of
having nonzero divergence of an energy-momentum ten-
sor, but some serious problems arise. Actually, it can be
shown that tba does not obey tensor transformations. This
nontensorial property of effT

b
a has caused these complexes

not to satisfy the required covariance and be coordinate
dependent; it is the main problem of using energy-
momentum complexes. Some authors tried to introduce
new coordinate independent prescriptions. In fact, with
the exception of a few prescriptions, including Penrose
[8], Møller [3], and Komar’s [9] prescriptions, for other
energy-momentum complexes one gets physically mean-
ingful results only in the Cartesian coordinate system. The
next problem is that it is not necessary for effT

b
a to be

symmetric in all prescriptions. We can define conserved
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angular momentum quantity only for symmetric prescrip-
tions [1]. In this regard, the antisymmetric characteristic of
Einstein’s prescription was the main motivation for Landau
and Lifshitz to look for an alternative prescription for
energy-momentum which is symmetric. We have listed
some prevalent and well-known prescriptions (that we
have used in the next sections) and their properties in
Table I.

For making the subject clearer, it should be noted that

effT
b
a can be written as the divergence of some superpoten-

tialH½bc�
a that is antisymmetric in its two upper indices [10]

as

effT
b
a ¼ H½bc�

a;c : (5)

In addition, a new function like Ubc
a can also play the role

of H½bc�
a if it has the following conditions:

Ubc
a ¼ H½bc�

a þ�bc
a ð�bc

a;c � 0; or �bc
a;cbÞ: (6)

Then, the quantity �b
a which is defined by this new super-

potential remains conserved locally:

�b
a ¼ Ubc

a;c ) �b
a;b ¼ 0: (7)

Using this freedom on the choice of the superpotential,
authors like Einstein and Tolman arrived through different
methods at the following superpotentials [11]:

H½bc�
a ¼ 1

2�
~gaeð~geb~gdc � ~gec~gdbÞ;d ðEinsteinÞ; (8)

�bca ¼ H½bc�
a þ 1

2�
ð�c

a~g
db � �d

a~g
cbÞ;d ðTolmanÞ; (9)

where ~gab ¼ ffiffiffiffiffiffiffi�g
p

gab.
Considering the above discussion, there are many pre-

scriptions for new energy-momentum density (effT
b
a ) [1,3–

9] in which their differences are in a curl term. Each of
them has its own advantages and disadvantages and there

has not been proven any preferences between them.
However, Palmer [12] and Virbhadra [13] discussed the
importance of Einstein’s energy-momentum prescription
and Lessner [14] believed that Møller’s prescription is a
powerful tool for calculating the energy-momentum in GR.
The problems associated with the concept of energy-

momentum complexes resulted in some researchers even
doubting the concept of energy-momentum localization.
Misner et al. [2] argued that to look for a local energy-
momentum is looking for the right answer to the wrong
question. He showed that the energy can be localized only
in systems which have spherical symmetry. Cooperstock
and Sarracino [15] proved that if energy is localizable for
spherical systems, then it can be localized in any system. In
1990, Bondi [16] argued that a nonlocalizable form of
energy is not allowed in GR. Recently, besides energy-
momentum prescriptions theories, it was suggested that
another solution for the energy problem in GR is in agree-
ment with energy-momentum prescriptions theoriers about
the localization of energy, i.e. tele-parallel gravity (for
example see [17]). On the other hand, some people do
not believe in localization of energy and momentum in
GR. In addition, some physicists propose a new concept in
this regard: quasilocalization (for example see [18]).
Unlike energy-momentum prescriptions theories, quasiloc-
alization theory does not restrict one to use a particular
coordinate system, but this theory also has its drawbacks
[19,20]. In general, there has been no generally accepted
definition for energy and momentum in GR until now.
Chang et al. in Ref. [21] showed that every energy-
momentum complex can be associated with a distinct
boundary term which gives the quasilocal energy-
momentum. By this way, he dispels doubts expressed about
the physical meaning of energy-momentum complexes.
For a long time, there has been an uncertainty that

different energy-momentum complexes would give differ-
ent results for a given space-time. Many researchers con-
sidered different prescriptions and obtained interesting
results. Virbhadra et al. [13,22–25] investigated several
examples of the space-times and showed that different
prescriptions could provide exactly the same results for a
given space-time. Aguirregabiria et al. [26] proved the
consistency of the results obtained by using the different
energy-momentum complexes for any Kerr-Schild class
metric and revived the energy-momentum prescriptions
theory after a long period of time.
In this paper we extend the previous works by calculat-

ing the energy of static and nonstatic cosmic string space-
times in a specific region by seven well-known energy-
momentum prescriptions: Møller, Landau-Lifshitz,
Papapetrou, Einstein, Bergmann, Tolman, and Weinberg.
We obtain encouraging results which show interesting
coincidences among the results calculated by different
prescriptions. Our results about Møller’s prescription dis-
agree with Lessner’s viewpoint but support Virbhadra’s

TABLE I. Comparison of the differences between energy-
momentum prescriptions in symmetry and suitable coordinate
systems needed.

Prescription Coordinate System Symmetry

Møller any coordinate system antisymmetric

Landau-Lifshitz Cartesian symmetric

Papapetrou Cartesian symmetric

Einstein Cartesian antisymmetric

Bergmann Cartesian nonsymmetric

Tolman Cartesian nonsymmetric

Weinberg Cartesian symmetric
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conclusion that Einstein’s prescription is the best available
method for computing energy-momentum in a given space-
time. The rest of the paper is organized as follows. In
Sec. II we introduce energy-momentum complexes which
we use in the following sections. Section III contains an
introduction to static and nonstatic cosmic string space-
times. The method and results of calculations are written in
Sec. IV. In Sec. V we summarize and conclude with some
remarks and discussions.

The conventions we use are geometrized units in which
the speed of light in vacuum c is taken to be equal to 1 and
the metric has signature ðþ ���Þ. Latin indices take
values 0 . . . 3.

II. ENERGY-MOMENTUM PRESCRIPTIONS

Among many different forms proposed for energy-
momentum pseudotensors, in this article we shall
use Møller, Landau-Lifshitz, Papapetrou, Einstein,
Bergmann, Tolman, and Weinberg’s prescriptions. As in
the previous works in the literature, here we try to show the
compatibilities and to find out any existing discrepancies
between predictions of these prescriptions when applying
to static and nonstatic cosmic string space-times. Specific
forms of each energy-momentum pseudotensor, conserva-
tion laws, and energy-momentum 4-vectors are listed in
Table II briefly. Interested readers can refer to the men-
tioned references for details. In the last column of Table II,
Gauss’s theorem is used. In the surface integrals na repre-
sents the components of a normal one form over an infini-
tesimal surface element ds. The results of calculations

according to each of the individual forms will be shown
in the following sections.

III. COSMIC STRING SPACE-TIMES

The structure of the very early universe is one of the
most interesting subjects of theoretical physics, as it re-
mains a mystery. Cosmologists have generally assumed
that at very early stages of its evolution, the Universe
went through a number of phase transitions. One of the
immediate consequences of these phase transitions is the
formation of defects or mismatches in the orientation of the
Higgs field in causally disconnected regions [27]. Cosmic
strings are one of remarkable topological defects that have
received particular attention because of their cosmological
implications. The double quasar problem can be explained
by strings and galaxy formation might also be generated by
density fluctuation in the early universe due to strings [28].
Suppose an infinitely long, thin, straight, static string

lying along the z axis with the following stress-energy
tensor

Tb
a ¼ ��ðxÞ�ðyÞdiagð1; 0; 0; 1Þ; (10)

where � is the mass per unit length of the string in the z
direction. Considering space-time symmetries, Einstein’s
field equations lead to a well-known solution for case � ¼
0 in a polar cylindrical coordinate system ðt; �;�; zÞ [29–
31]:

ds2 ¼ dt2 � dz2 � d�2 � ð1� 4G�Þ2�2d�2: (11)

For � � 0 Einstein’s field equations lead to general form

TABLE II. Energy-momentum prescriptions.

Prescription

Energy-momentum

pseudotensor

Conservation

laws

Energy-momentum

4-vector

Møller [3] Mk
i ¼ 1

8��
kl
i;l

�kl
i ¼ ffiffiffiffiffiffiffi�g

p ð@gip@xq � @giq
@xp Þgkqglp

@Mk
i

@xk
¼ 0 Pi ¼

RRR
M0

i dx
1dx2dx3

¼ 1
8�

RR
�0a
i nads

Landau-Lifshitz [4] Lik ¼ 1
16� 	

iklm
;lm

	iklm ¼ �gðgikglm � gilgkmÞ;m
@Lik

@xk
¼ 0 Pi ¼ RRR

Li0dx1dx2dx3

¼ 1
16�

RR
	i0
m
;m nads

Papapetrou [5] �ik ¼ 1
16�N

iklm
;lm

Niklm ¼ ffiffiffiffiffiffiffi�g
p ðgik�lm � gil�km þ glm�ik � glk�imÞ

�ik ¼ diagð1;�1;�1;�1Þ

@�ik

@xk
¼ 0 Pi ¼ RRR

�i0dx1dx2dx3

¼ 1
16�

RR
Ni0
m

;m nads

Einstein [3] �k
i ¼ 1

16�H
kl
i;l

Hkl
i ¼ �Hlk

i ¼ ginffiffiffiffiffi�g
p ½�gðgknglm � glngkmÞ�;m

@�k
i

@xk
¼ 0 Pi ¼

RRR
�0

i dx
1dx2dx3

¼ 1
16�

RR
H0a

i nads

Bergman [6] Bik ¼ 1
16��

ikm
;m

�ikm ¼ gir
km
r


kl
i ¼ �
lk

i ¼ ginffiffiffiffiffi�g
p ½�gðgknglm � glngkmÞ�;m

@Bik

@xk
¼ 0 Pi ¼ RRR

Bi0dx1dx2dx3

¼ 1
16�

RR
�i0
m

;m nads

Tolman [7] Tk
i ¼ 1

8�U
kl
i;l

Ukl
i ¼ ffiffiffiffiffiffiffi�g

p ð�gpkVl
ip þ 1

2g
k
i g

pmVl
pmÞ

Vi
jk ¼ ��i

jk þ 1
2g

i
j�

m
mk þ 1

2g
i
k�

m
mj

@Tk
i

@xk
¼ 0 Pi ¼

RRR
T0
i dx

1dx2dx3

¼ 1
8�

RR
U0a

i nads

Weinberg [1] Wik ¼ 1
16�D

ikl
;l

Dijk ¼ @haa
@xi

�jk � @haa
@xj

�ik � @hai

@xa �
jk þ @haj

@xa �
ik þ partialhik

@xj
� @hjk

@xi
hik ¼ gik � �ik

@Wik

@xk
¼ 0 Pi ¼ RRR

Wi0dx1dx2dx3

¼ 1
16�

RR
Di0anads
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of static cosmic string space-time with the following line
element in a polar cylindrical coordinate system ðt; �;�; zÞ
[32]:

ds2 ¼ cos4=3
� ffiffiffiffiffiffiffi

3�
p
2

�

�
ðdt2 � dz2Þ � d�2

� 4ð1� 4G�Þ
3�

cos4=3
� ffiffiffiffiffiffiffi

3�
p
2

�

�
tan2

� ffiffiffiffiffiffiffi
3�

p
2

�

�
d�2;

(12)

where � ! 0 reduces to the previous metric, Eq. (11).
Investigating the nonstatic solution of the cosmic strings,
Einstein’s field equations lead to nonstatic cosmic string
space-time with the following line element in a polar
cylindrical coordinate system ðt; �;�; zÞ [32]:

ds2 ¼ dt2 � e2
ffiffiffiffiffiffiffiffiffi
ð�=3Þ

p
t½d�2 þ ð1� 4G�Þ2�2d�2 þ dz2�;

(13)

where � ! 0 or t ¼ 0 reduces to Eq. (11). In the next
section we calculate the energy of these space-times by
different energy-momentum prescriptions.

IV. CALCULATIONS

A. Method

As mentioned in Sec. II, for calculating the energy of a
given space-time in a specific region by energy-momentum
prescriptions we should integrate energy-momentum
superpotentials over a suitable surface in space-time. So,
we should calculate the superpotential components and
then indicate the normal vector over the infinitesimal sur-
face element. In the two next subsections integrations are
over a cylindrical surface surrounding the length L from
the string symmetrically with radius �.

It should be noted that in the Cartesian coordinate

system [considering � ¼ arctanðyxÞ, and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
]

Eqs. (12) and (13) transform to the following line elements
[Eq. (14) and (15)], respectively:

ds2 ¼ cos4=3
dt2

� 1

3

3�x2ðx2 þ y2Þcos2=3
þ 4a2y2sin2


�ðx2 þ y2Þcos2=3
 dx2

� 2

3

3�ðx2 þ y2Þcos2=3
� 4a2sin2


�ðx2 þ y2Þ2cos2=3
 xydxdy

� 1

3

3�x2ðx2 þ y2Þcos2=3
þ 4a2x2sin2


�ðx2 þ y2Þcos2=3
 dy2

� cos4=3
dz2; (14)

where a ¼ ð1� 4G�Þ and 
 ¼
ffiffiffiffiffi
3�

p
2 �, and

ds2 ¼ dt2 � e
t
x2 þ a2y2

x2 þ y2
dx2 þ 2e
t

a2 � 1

x2 þ y2
xydxdy

� e
t
y2 þ a2x2

x2 þ y2
dy2 � e
tdz2; (15)

where a ¼ ð1� 4G�Þ and 
 ¼ 2
ffiffiffi
�
3

q
[remember that 
 in

Eq. (14) is different from that defined in Eq. (15)].
Everywhere we use ds ¼ �d�dz as the infinitesimal

surface element. In a polar cylindrical coordinate system
(allowed in Møller’s prescription) we have na ¼
ð0; 1; 0; 0Þ, and in the Cartesian coordinate system (all
prescriptions) we have na ¼ ð0; x� ; y� ; 0Þ. Summarizing all

of the above, for calculating the energy, after extracting the
needed superpotential components, we must calculate sur-
face integrals over a cylindrical surface with a suitable
normal vector na that depends on the used coordinate
system. Following this method, in the next subsections
we bring needed nonzero components of superpotentials
and final energy results (i.e. P0 or P0) which are calculated
by different energy-momentum prescriptions. Exact ex-
pressions of energy (except for the Møller prescription)
are very well defined but long and complicated. So, we
restricted ourselves to study the manner of energy around
� ¼ 0. Calculations for static (� � 0) and nonstatic cos-
mic string space-times are classified in two separate sub-
sections. Meanwhile, it should be noted that we have done
similar calculations by using static (� ¼ 0) cosmic string
space-time [line element Eq. (11)] and that these results are
presented in Table III directly.

B. Static cosmic string (� � 0)

Defining 
 ¼
ffiffiffiffiffi
3�

p
2 � and a ¼ 1� 4G� energy can be

calculated by different energy-momentum prescriptions as
follows:

1. Møller prescription

Using Table II and Eq. (12) we find that nonzero needed
components of �kl

i are

�tx
t ¼ � 4

3

asin2


x2 þ y2
x; (16)

�ty
t ¼ � 4

3

asin2


x2 þ y2
y: (17)

Using the surface integral (Table II) energy can be obtained
as

ME ¼ �1
3aLsin

2
: (18)

After Taylor expansion around � ¼ 0 we have

ME ¼ �1
4a�

2L�þ 1
16a�

4L�2 � 1
160a�

6L�3 þ . . . ;

(19)
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that for � ¼ 0 vanishes immediately. In addition, as we
expect, the same energy expression [Eq. (18)] is obtained
by using the Møller energy-momentum prescription with
this metric in a polar cylindrical coordinate system instead
of a Cartesian coordinate system.

2. Landau-Lifshitz prescription

Using Table II and Eq. (14) we find that nonzero needed
components of 	iklm are

	ttxx ¼ � 1

3
cos2=3


3y2�cos2=3
ðx2 þ y2Þ þ 4a2x2sin2


�ðx2 þ y2Þ2 ;

(20)

	ttyy ¼ � 1

3
cos2=3


3x2�cos2=3
ðx2 þ y2Þ þ 4a2y2sin2


�ðx2 þ y2Þ2 ;

(21)

	ttzz ¼ � 4

3

a2sin2


�ðx2 þ y2Þcos2=3
 ; (22)

	ttxy ¼ 	ttyx

¼ 1

3
cos2=3


3�cos2=3
ðx2 þ y2Þ � 4a2sin2


�ðx2 þ y2Þ2 : (23)

After surface integration (Table II) and Taylor expansion
around � ¼ 0, we obtain

LLE ¼ ð1� a2Þ
8

Lþ ð3a2 � 1Þ
16

L�2�

� ð7a2 � 1Þ
128

L�4�2 þ . . . (24)

3. Papapetrou prescription

Using Table II and Eq. (14) we find that nonzero needed
components of Niklm are

Nttxx ¼ � 1

6

ffiffiffiffi
3

�

s
1

a cos
 sin
ðx2 þ y2Þ3=2 ½cos
8=3ðx2 þ y2Þ

� ð3�y2 � 4a2Þ þ 4a2x2sin2
cos2


þ 4a2cos2=3
ðx2 þ y2Þ�; (25)

Nttyy ¼ � 1

6

ffiffiffiffi
3

�

s
1

a cos
 sin
ðx2 þ y2Þ3=2 ½cos
8=3ðx2 þ y2Þ

� ð3�x2 � 4a2Þ þ 4a2y2sin2
cos2


þ 4a2cos2=3
ðx2 þ y2Þ�; (26)

Nttzz ¼ � 4
ffiffiffi
3

p
3

a sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx2 þ y2Þp

cos1=3

; (27)

Nttxy ¼ Nttyx

¼ �
ffiffiffi
3

p
6

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx2 þ y2Þp

� 3�cos2=3
ðx2 þ y2Þ � 4a2sin2


aðx2 þ y2Þ sin
 : (28)

After surface integration (Table II) and Taylor expansion
around � ¼ 0 we obtain

PE ¼ ð1� a2Þ
8a

Lþ ð3a2 � 1Þ
16a

L�2�

� ð17a2 � 2Þ
320a

L�4�2 þ . . . (29)

4. Einstein prescription

Using Table II and Eq. (14), we find that complicated

quantities of Htx
t and Hty

t are only nonzero needed compo-
nents of superpotential. After surface integration (Table II)
and Taylor expansion around � ¼ 0 we obtain

TABLE III. Energy of three different cosmic string space-times in a cylinder with length L and radius � surrounding symmetrically

the string (
 ¼ 2
ffiffiffi
�
3

q
and a ¼ 1� 4G�).

Prescriptions Static (� ¼ 0) Static (� � 0) Nonstatic (� � 0)

Møller 0 � 1
4 a�

2L�þ 1
16a�

4L�2 � 1
160 a�

6L�3 þ . . . 0

Landau-Lifshitz Lð1�a2Þ
8

ð1�a2Þ
8 Lþ ð3a2�1Þ

16 L�2�� ð7a2�1Þ
128 L�4�2 þ . . . ð1�a2Þ

8 e2
tL

Papapetrou Lð1�a2Þ
8a

ð1�a2Þ
8a Lþ ð3a2�1Þ

16a L�2�� ð17a2�2Þ
320a L�4�2 þ . . . ð1�a2Þ

8a eð1=2Þ
tL

Einstein Lð1�a2Þ
8a

ð1�a2Þ
8a Lþ ð3a2�1Þ

16a L�2�� ð17a2�2Þ
320a L�4�2 þ . . . ð1�a2Þ

8a eð1=2Þ
tL

Bergmann Lð1�a2Þ
8a

ð1�a2Þ
8a Lþ a

8L�
2�þ 1

640
ð11a2�1Þ

a L�4�2 þ . . . ð1�a2Þ
8a eð1=2Þ
tL

Tolman Lð1�a2Þ
8a

ð1�a2Þ
8a Lþ ð3a2�1Þ

16a L�2�� ð17a2�2Þ
320a L�4�2 þ . . . ð1�a2Þ

8a eð1=2Þ
tL

Weinberg Lð1�a2Þ
4a2

ð1�a2Þ
4a2

Lþ 1
4L�

2�þ ð34a4�7a2�2Þ
160a4

L�4�2 þ . . . ð1�a2Þ
4a2

ð�e
ta2 þ 1þ a2Þe�2
tL
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EE ¼ ð1� a2Þ
8a

Lþ ð3a2 � 1Þ
16a

L�2�

� ð17a2 � 2Þ
320a

L�4�2 þ . . . (30)

5. Bergmann prescription

Using Table II, and Eq. (14), we find that complicated
quantities of Bttx and Btty are only nonzero needed com-
ponents of the superpotential. After surface integration
(Table II) and Taylor expansion around � ¼ 0 we obtain

BE ¼ ð1� a2Þ
8a

Lþ 1

8
L�2a�þ ð11a2 � 1Þ

640a
L�4�2 þ . . .

(31)

6. Tolman prescription

Using Table II and Eq. (14), we find that complicated

quantities of Utx
t and Uty

t are only nonzero needed compo-
nents of the superpotential. After surface integration
(Table II) and Taylor expansion around � ¼ 0 we obtain

TE ¼ ð1� a2Þ
8a

Lþ ð3a2 � 1Þ
16a

L�2�

� ð17a2 � 2Þ
320a

L�4�2 þ . . . (32)

7. Weinberg prescription

Using Table II and Eq. (14), we find that complicated
quantities of Dxtt and Dytt are only nonzero needed com-
ponents of the superpotential. After surface integration
(Table II) and Taylor expansion around � ¼ 0 we obtain

WE ¼ ð1� a2Þ
4a2

Lþ 1

4
L�2�þ ð34a4 � 7a2 � 2Þ

160a4
L�4�2

þ . . . (33)

C. Nonstatic cosmic string

With 
 ¼ 2
ffiffiffi
�
3

q
and a ¼ 1� 4G� different energy-

momentum prescriptions can be evaluated as follows.

1. Møller prescription

Using Table II and Eq. (15) we find that nonzero com-
ponents of �kl

i are

�xy
x ¼ ��yx

x ¼ ða� 1Þeð1=2Þ
t
aðx2 þ y2Þ y; (34)

�yx
y ¼ ��xy

y ¼ ða� 1Þeð1=2Þ
t
aðx2 þ y2Þ x: (35)

After surface integration, we find that the integral of
energy vanishes. As we expect, in a polar cylindrical
coordinate system we obtain the same result for the energy
integral as we have obtained in the Cartesian coordinate
system i.e. M�llerE ¼ 0.

2. Landau-Lifshitz prescription

Using Table II and Eq. (15) we find that nonzero needed
components of 	iklm are

	ttxx ¼ �e2
t
y2 þ a2x2

x2 þ y2
; (36)

	ttyy ¼ �e2
t
x2 þ a2y2

x2 þ y2
; (37)

	ttzz ¼ �e2
ta2; (38)

	ttxy ¼ 	ttyx ¼ e2
t
ð1� a2Þ
x2 þ y2

xy: (39)

After surface integration (Table II) we obtain

LLE ¼ ð1� a2Þ
8

e2
tL: (40)

3. Papapetrou prescription

Using Table II and Eq. (15) we find that nonzero needed
components of Niklm are

Nttxx ¼ �ðy2 þ a2x2Þ þ e
ta2ðx2 þ y2Þ
aðx2 þ y2Þ eð1=2Þ
t; (41)

Nttyy ¼ �ðy2 þ a2y2Þ þ e
ta2ðx2 þ y2Þ
aðx2 þ y2Þ eð1=2Þ
t; (42)

Nttzz ¼ �ð1þ e
tÞaeð1=2Þ
t; (43)

ð1� a2Þ
aðx2 þ y2Þ xye

ð1=2Þ
t: (44)

After surface integration (Table II) we obtain

PE ¼ ð1� a2Þ
8a

eð1=2Þ
tL: (45)

4. Einstein prescription

Using Table II and Eq. (15) we obtain nonzero needed
components of Hkl

i

Htx
t ¼ ð1� a2Þe1=2

aðx2 þ y2Þ x; (46)
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Hty
t ¼ ð1� a2Þe1=2

aðx2 þ y2Þ y: (47)

After surface integration (Table II) we obtain

EE ¼ ð1� a2Þ
8a

eð1=2Þ
tL: (48)

5. Bergmann prescription

Using Table II and Eqs. (15) and (32) we find nonzero
needed components of Bikl as

Bttx ¼ ð1� a2Þe1=2
aðx2 þ y2Þ x; (49)

Btty ¼ ð1� a2Þe1=2
aðx2 þ y2Þ y: (50)

After surface integration (Table II) we obtain

BE ¼ ð1� a2Þ
8a

eð1=2Þ
tL: (51)

6. Tolman prescription

Using Table II and Eq. (15) we find that nonzero needed
components of Ukl

i are

Utx
t ¼ ð1� a2Þe1=2

2aðx2 þ y2Þ x; (52)

Uty
t ¼ ð1� a2Þe1=2

2aðx2 þ y2Þ y: (53)

After surface integration (Table II) we obtain

TE ¼ ð1� a2Þ
8a

eð1=2Þ
tL: (54)

7. Weinberg prescription

Using Table II and Eq. (15) we obtain that nonzero
needed components of Dikl are

Dxtt ¼ ð1� a2Þðe
ta2 � 1� a2Þ
a4ðx2 þ y2Þ e�2
tx; (55)

Dytt ¼ ð1� a2Þðe
ta2 � 1� a2Þ
a4ðx2 þ y2Þ e�2
ty: (56)

After surface integration (Table II) we obtain

WE ¼ ð1� a2Þð�e
ta2 þ 1þ a2Þ
4a2

e�2
tL: (57)

V. CONCLUSIONS AND REMARKS

In the previous section we calculated the energy of static
and nonstatic cosmic string space-times in a cylinder with
length L and radius � surrounding the string symmetri-
cally. We have summarized all obtained results in Table III.
Regarding the contents of Table III:
(i) It is concluded that the energy turns out to be finite

and well defined in all prescriptions for these space-
times.

(ii) Substituting a ¼ 1 in the first column, all prescrip-
tions give energy equal to zero that is completely
consistent. Because, if a ¼ 1, Eq. (11) reduces to the
Minkowski line element of which its energy is equal
to zero in any arbitrary region.

(iii) For static (� � 0) cosmic string space-time
Einstein, Tolman, and Papapetrou’s prescriptions
lead to the same results. In addition, when � ! 0,
the Bergmann prescription is added to this list. For
the nonstatic case Einstein, Papapetrou, Tolman, and
Bergmann prescriptions have the same result. This
coincidence supports and extends Virbhadra’s view-
point [26] that different energy-momentum prescrip-
tions may provide some basis to defining a unique
quantity. However, the remaining prescriptions give
different energy densities (because of a noncovariant
property of pseudotensors).

(iv) As we expect, for � ! 0 energy expressions in the
second and third columns reduce to their correspond-
ing expressions in the first column. It should be noted
that we calculated the components of the second
column separately, by using line element Eq. (11)
in energy-momentum prescriptions.

(v) Unlike other prescriptions, Møller’s prescription
leads to a zero quantity for energy. This shortcoming
is in contradiction with Lessner’s viewpoint and
supports Virbhadra’s conclusion. Lessner [14] be-
lieved that Møller’s prescription is a powerful tool
for calculating the energy-momentum pseudotensors
in GR, and Virbhadra [13] concluded that Einstein’s
energy-momentum prescription is still the best avail-
able method for computing energy-momentum in a
given space-time.

(vi) Reviewing the results shows that adding a factor a in
denominators of Landau-Lifshitz’s results causes
this prescription to also give equivalent results (in
comparison with Einstein, Tolman, and Papapetrou’s
prescriptions). In other words Landau-Lifshetz’s re-
sults are different with other similar results (Einstein,
Tolman, and Papapetrou) just in a factor a in the
denominator. This dilemma is due to the fact that the
conserved quantity in the Landau-Lifshitz prescrip-
tion is effT

b
a ¼ ð�gÞðTb

a þ tbaÞ (weightþ 2) instead
of effT

b
a ¼ ffiffiffiffiffiffiffi�g

p ðTb
a þ tbaÞ (see Eq. (3) and Ref. [4])

in which its weight is þ1. So, we should be careful
about using this expression with weight þ2 in our
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integration (see [33], chapter 7). Calculating energy
by using a correction to Landau-Lifshitz prescription
i.e. 	iklm ¼ ffiffiffiffiffiffiffi�g

p ðgikglm � gilgkmÞ;m instead of

	iklm ¼ ð�gÞðgikglm � gilgkmÞ;m (Table II) leads to

consistent results.
(vii) In the final remark we would like to raise some

points on the validity of the metric (12).
Equation (12) with� ! 0 faces with some problems
to represent de Sitter space-time (dss). It has intrinsic
singularities at � ¼ n�ffiffiffiffiffi

3�
p , n ¼ odd [34], while dss is

free of them. The standard form of dss is

ds2 ¼ dt2 � 3

�
cosh2

� ffiffiffiffi
3

�

s
t

�
ðd�2 þ sin2�

� ðd�2 þ sin2�d�2ÞÞ; (58)

where �1< t <þ1, 0 � � � �, 0 � � � �,
0 � � � 2�. By the following transformations,

t̂ ¼
ffiffiffiffi
3

�

s
log

�
sinh

� ffiffiffiffi
3

�

s
t

�
þ cosh

� ffiffiffiffi
3

�

s
t

�
þ cos�

�
;

(59)

x̂ ¼ coshð
ffiffiffi
3
�

q
tÞ sin� cos�

sinhð
ffiffiffi
3
�

q
tÞ þ coshð

ffiffiffi
3
�

q
tÞ þ cos�

; (60)

ŷ ¼ coshð
ffiffiffi
3
�

q
tÞ sin� cos�

sinhð
ffiffiffi
3
�

q
tÞ þ coshð

ffiffiffi
3
�

q
tÞ þ cos�

; (61)

ẑ ¼
coshð

ffiffiffi
3
�

q
tÞ sin� sin�

sinhð
ffiffiffi
3
�

q
tÞ þ coshð

ffiffiffi
3
�

q
tÞ þ cos�

: (62)

The metric (58) transforms to the steady state form
or the so-called half de Sitter metric:

ds2 ¼ dt̂2 � exp

�
2

ffiffiffiffi
3

�

s
t

�
ðdx̂2 þ dŷ2 þ dẑ2Þ: (63)

In a polar coordinate system, it takes the form

ds2 ¼ dt̂2 � exp

�
2

ffiffiffiffi
3

�

s
t

�
ðdr̂2 þ r̂2

� ðd�2 þ sin2�d�2ÞÞ: (64)

Then by transformation,

r ¼ exp

� ffiffiffiffi
3

�

s
t

�
r̂; (65)

t ¼ t̂� 1

2

ffiffiffiffi
3

�

s
ln

�
1��

3
r2
�
: (66)

The metric (64) can be transformed to the static form

ds2 ¼
�
1��

3
r2
�
dt2 � 1

ð1� �
3 r

2Þ dr
2

� r2ðd�2 þ sin2�d�2Þ: (67)

Writing the metric (67) in a cylindrical coordinate
system ðt; �; ’; zÞ, we have

ds2 ¼
�
1��

3
r2
�
dt2 � 1� �

3 z
2

1� �
3 r

2
d�2

� 2
�
3 �z

1� �
3 r

2
d�dz� 1� �

3 �
2

1� �
3 r

2
dz2 � �2d’2:

(68)

Now the difference between Eqs. (12) and (68) when
� ! 0 is quite evident. This means although the
static metric (12) is an exact solution for Einstein
equations, there is some doubt as to whether it ac-
tually fulfills precisely the requirements of the space-
time associated with a cylindrical cosmic string lo-
cated in a cosmological constant background.
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