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The Dirac equation for the electron around a five-dimensional rotating black hole with two different

angular momenta is separated into purely radial and purely angular equations. The general solution is

expressed as a superposition of solutions derived from these two decoupled ordinary differential

equations. By separating variables for the massive Klein-Gordon equation in the same spacetime

background, I derive a simple and elegant form for the Stäckel-Killing tensor, which can be easily

written as the square of a rank-three Killing-Yano tensor. I have also explicitly constructed a symmetry

operator that commutes with the scalar Laplacian by using the Stäckel-Killing tensor, and the one with the

Dirac operator by the Killing-Yano tensor admitted by the five-dimensional Myers-Perry metric,

respectively.

DOI: 10.1103/PhysRevD.78.064052 PACS numbers: 04.50.Gh, 03.65.Pm, 04.62.+v, 11.10.Kk

I. INTRODUCTION

It is well known that the four-dimensional Kerr geome-
try [1] possesses a lot of miraculous properties that not only
can the geodesic Hamilton-Jacobi equation [2] and the
Klein-Gordon scalar field equation [2] be separated and
decoupled into purely radial and purely angular parts, but
also the massless nonzero-spin field equations [3] as well
as the equilibrium equation for a stationary cosmic string
[4]. These separability properties are shown to be closely
connected with the existence of an additional integral of
motion associated with the second order symmetric
Stäckel-Killing tensor discovered in the Kerr metric by
Carter [2]. The separation of the variables of Dirac’s equa-
tion for massive fields in the Kerr geometry using the
Newman-Penrose formalism [5], however, had only suc-
ceeded since Chandrasekhar’s remarkable work [6].
Shortly after that, this result was extended by Page and
other people [7] to the four-dimensional rotating charged
Kerr-Newman black hole background.

As has been remarked by Chandrasekhar [8], the most
striking feature of the Kerr metric is the separability of all
the standard wave equations in it. For some of these
equations, their separability has been understood as a con-
sequence of the existence of certain tensor fields, which
have been found to be associated with a Killing spinor.
Walker and Penrose [9] demonstrated that the Carter’s
fourth constant can be constructed out of the Weyl spinor.
Subsequently, the separability of Dirac’s equation has been
explained by Carter and McLenaghan [10] in terms of the
existence of a Killing-Yano tensor, whose spinorial image
is a two-index Killing spinor. Physically, Killing-Yano
tensors and operators constructed from them have been
associated with angular momentum. It has also been shown
by a lot of people [11] that Killing-Yano tensors and the
Killing spinor play a crucial role in separation of variables
for the Maxwell’s equation (s ¼ 1), Rarita-Schwinger’s

equation (s ¼ 3=2), and the gravitational perturbation
equation in the Kerr geometry. The separation of various
equations can be understood in terms of different order
differential operators that characterized the separation con-
stants that appeared in the separable solutions. The differ-
ential operators characterizing separation constants [12]
are also symmetry operators of the various field equations
in question. The essential property that allows the con-
struction of such operators is the existence of a Killing-
Yano tensor in the Kerr spacetime. These results have been
shown to hold for more general classes of type-D vacuum
metrics; see Ref. [13] for a comprehensive review.
In recent years, higher-dimensional generalizations of

the Kerr black hole and their properties have attracted
considerable attention [14], in particular, in the context
of string theory, with the discovery of the anti–de Sitter/
conformal field theory (AdS/CFT) correspondence, and
with the advent of brane-world theories [15], raising the
possibility of direct observation of Hawking radiation and
of as probes of large spatial extra dimensions in future high
energy colliders [16]. In the brane-world scenarios, our
physical world is represented by a four-dimensional brane
embedded in the higher-dimensional bulk spacetime.
Brane-world models of spacetimes with large extra dimen-
sions allow for the existence of higher-dimensional black
holes whose geometry can be approximately described by
the classical solutions of vacuum Einstein equation, thus
predicting the possibility of mini–black hole production in
a high energy factory. The metrics describing the isolated
rotating black holes in higher dimensions were first con-
structed by Myers and Perry [17] as the asymptotically flat
generalizations of the well-known four-dimensional Kerr
vacuum solution. By introducing a nonzero cosmological
constant, Hawking, et al. [18] obtained the asymptotically
nonflat generalizations in five dimensions with two inde-
pendent angular momenta and in higher dimensions with
just one nonzero angular momentum parameter. Further
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vacuum generalizations to all dimensions have been made
recently in [19]. Quite recently, an exact charged general-
ization of the Kerr-Newman solution in five dimensions
was obtained in [20] within the framework of minimally
gauged supergravity theory. Other rotating charged black
hole solutions in five-dimensional gauged and ungauged
supergravity were also obtained in [21–24].

It is generally accepted that symmetries play a key role
in the study of physical effects in the gravitational fields of
black holes. Initiated by the work of Frolov and his col-
laborators (see [25] for a review and references therein),
recently there has been a resurgence of interest [26–37] in
the study of ‘‘hidden’’ symmetry and separation of varia-
bles properties of the Klein-Gordon scalar equation, the
Hamilton-Jacobi equation, and stationary strings [38] in
higher dimensions [39]. Remarkably, it was shown that the
five-dimensional Myers-Perry [17] metric possesses a
number of miraculous properties similar to the Kerr metric.
Namely, it allows the separation of variables in the geode-
sic Hamilton-Jacobi equation and the separability of the
massless Klein-Gordon scalar field equation [26]. These
properties are also intimately connected with the existence
of the second order Stäckel-Killing tensor [26] admitted by
the five-dimensional Myers-Perry black hole geometry. It
was further demonstrated that this rank-two Stäckel-
Killing tensor can be constructed from its ‘‘square root,’’
a rank-three Killing-Yano tensor [27]. Following the pro-
cedure of Carter’s construction [40] in four dimensions,
Frolov et al. [27] started from a potential 1-form to gen-
erate a rank-two conformal Killing-Yano tensor [41],
whose Hodge dual is just the expected Killing-Yano tensor.
Subsequently, these results have further been extended
[27,35–37] to general higher-dimensional rotating black
hole solutions with Newman-Tamburino-Unti (NUT)
charges [19].

However, less is known about the separability of Dirac’s
equation and other higher-spin fields and its relation to the
Killing-Yano tensor in higher dimensions [42,43].
Therefore it is important to investigate the separability of
the fermion field equation and its relation to the Killing-
Yano tensor in higher-dimensional rotating black holes. In
this paper, I will report my past unpublished work (done in
the October of 2004) on the separation of variables for a
massive Dirac equation in five-dimensional rotating
Myers-Perry black holes with two unequal angular mo-
menta [17]. I will also present my recent construction of an
explicit symmetry operator that commutes with the stan-
dard Dirac operator, making use of the rank-three Killing-
Yano tensor which can be viewed as the square root of a
rank-two symmetric Stäckel-Killing tensor. In addition, the
separated parts of a massive Klein-Gordon equation in the
five-dimensional Myers-Perry background are used to con-
struct a simple and elegant expression of the Stäckel-
Killing tensor. Note that these symmetry operators are
directly constructed from the separated solutions of the

Klein-Gordon equation and Dirac’s equation in the back-
ground geometry considered here.
The outline of this paper goes as follows. In Sec. II, the

action of the five-dimensional gravity and fermions is
given and the fünfbein form of Dirac’s equation is formu-
lated. Using Clifford algebra and the spinor representation
of SO(4,1), I construct the spinor-connection 1-form which
is necessary for the fermion field equation in curved space-
time. Sec. III is devoted to dealing with the separation of
variables of Dirac’s equation in a five-dimensional Myers-
Perry black hole geometry. This section consists of three
subsections. In Sec. III A, a new form of the five-
dimensional Myers-Perry metric is expressed in the
Boyer-Lindquist coordinate which admits an explicit con-
struction of local orthonormal coframe 1-forms (pentad). A
brief review of the relevant symmetry properties of the
Myers-Perry metric is also presented. In Sec. III B, the
spinor connection is obtained by making use of the homo-
morphism between the SO(4,1) group and its spinor rep-
resentation which is derived from the Clifford algebra
defined by the anticommutation relations of the gamma
matrices. In Sec. III C, the massive Dirac equation in five-
dimensional Myers-Perry black hole is separated into
purely radial and purely angular equations. Sec. IV is
also divided into three parts. In this section, the separated
solutions of a massive Klein-Gordon equation is used to
construct a concise expression for the Stäckel-Killing ten-
sor. From the separated part of Dirac’s equation, I also
explicitly construct a first order symmetry operator that
commutes with the Dirac operator by using the rank-three
Killing-Yano tensor. The last section V is a brief summary
of this paper and the related work under preparation.
Possible applications of this work to further research are
given here. In Appendix A, the affine spin-connection 1-
forms are calculated by the first Cartan structure equation
from the exterior differential of the pentad. Appendix B
displays the five-dimensional Myers-Perry metric in a
manner similar to the Plebanski solution [44] in four
dimensions.

II. FÜNFBEIN FORMALISM OF DIRAC FIELD
EQUATION IN 5-DIMENSIONAL CURVED SPACE

It is well known that there exist two different but equiva-
lent formalisms for the four-dimensional gravity, namely,
the orthonormal tetrad formalism [45] and the null-tetrad
(Newman-Penrose) formalism [5]. Dirac’s equation in four
dimensions was reformulated within the Newman-Penrose
formalism first by Chandrasekhar [6] and then extended to
the charged case by Page [7]. To my knowledge, a higher-
dimensional generalization of the Newman-Penrose for-
malism was established in [46,47], but no similar work was
given for the Dirac equation, subject to the purpose here. In
absence of a similar Newman-Penrose formalism in five
dimensions, in this paper I will work out the Dirac equation
within the orthonormal pentad formalism [48]. In a forth-
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coming paper [49], a seminull pentad formalism of the
Dirac equation was constructed in the five-dimensional
relativity similar to the famous work of Chandrasekhar’s
[6]. The Dirac equation has been shown to be decoupled
into purely radial and purely angular parts which agree
with the results presented here.

In curved background spacetime, the action of the five-
dimension gravity and fermions is given by

S ¼
Z
d5x

ffiffiffiffiffiffiffi�gp ��R
16�

þ i � �AeA
�ð@� þ ��Þ 

þ i�e
�  

�
; (1)

where R is the five-dimensional curvature scalar of the
metric g��,  is a four-component Dirac spinor, �e is the

mass of the electron, �� is the spinor-connection, eA
� is

the fünfbein (pentad), and �A’s are the five-dimensional
gamma matrices. My conventions are as follows: Latin
letters A, B denote local orthonormal (Lorentz) frame
indices f0; 1; 2; 3; 5g, while Greek letters �, � run over
five-dimensional spacetime coordinate indices
ft; r; �;�;  g. Units are used asG ¼ @ ¼ c ¼ 1 throughout
this paper.

The Dirac equation can be deduced from the action (1)
by variation with respect to the spinor field as

ðHD þ�eÞ� ¼ ½�AeA�ð@� þ ��Þ þ�e�� ¼ 0; (2)

where the fünfbein eA
� and its inverse eA� are defined by

the spacetime metric g�� ¼ �ABe
A
�e

B
� with �AB ¼

diagð�1; 1; 1; 1; 1Þ being the flat (Lorentz) metric tensor.
For my purpose in this paper, I choose gamma matrices �A

obeying the anticommutation relations (Clifford algebra)

f�A; �Bg � �A�B þ �B�A ¼ 2�AB; (3)

and take an explicit representation of the Clifford algebra
as follows:

�0 ¼ i
0 I
I 0

� �
; �1 ¼ i

0 �3

��3 0

� �
;

�2 ¼ i
0 �1

��1 0

� �
; �3 ¼ i

0 �2

��2 0

� �
;

�5 ¼ I 0
0 �I

� �
¼ �i�0�1�2�3;

(4)

where �i’s are the Pauli matrices, and I is a 2� 2 identity
matrix, respectively.

In order to derive the spinor-connection 1-form � ¼
��dx

� � �Ae
A, I first compute the spin-connection 1-

form !AB ¼ !AB�dx
� � fABCe

C in the orthonormal

frame, i.e., the 1-form (pentad) eA ¼ eA�dx
� satisfying

the torsion-free condition

deA þ!A
B ^ eB ¼ 0; !AB ¼ �AC!

C
B ¼ �!BA:

(5)

To obtain the spinor-connection 1-form � from !AB, I can
make use of the homomorphism between the SO(4,1)
group and its spinor representation which is derived from
the Clifford algebra (3). The SO(4,1) Lie algebra is defined
by the ten antisymmetric generators �AB ¼ ½�A; �B�=ð2iÞ
which gives the spinor representation, and the spinor-
connection � can be regarded as a SO(4,1) Lie-algebra-
valued 1-form. Using the isomorphism between the SO
(4,1) Lie algebra and its spinor representation, i.e., �� ¼
ði=4Þ�AB!AB� ¼ ð1=4Þ�A�B!AB�, I can immediately

construct the spinor-connection 1-form

� ¼ 1

8
½�A; �B�!AB ¼ 1

4
�A�B!AB ¼ 1

4
�A�BfABCe

C:

(6)

Now in terms of the local differential operator @A ¼
eA

�@�, the Dirac equation (2) can be rewritten in the local

Lorentz frame as

½�Að@A þ �AÞ þ�e�� ¼ 0; (7)

where �A ¼ eA
��� ¼ ð1=4Þ�B�CfBCA is the component

of the spinor connection in the local Lorentz frame. Note
that the five-dimensional Clifford algebra has two different
but reducible representations (they can differ by the multi-
plier of a �5 matrix). It is usually assumed that fermion
fields are in a reducible representation of the Clifford
algebra. In other words, one can work with the Dirac
equation in a four-component spinor formalism like in
the four-dimensional case, and just needs to take the �5

matrix as the fifth basis vector component.

III. DIRAC FIELD EQUATION IN 5-DIMENSIONAL
MYERS-PERRY BLACK HOLE

In this section, I will present a new form for the five-
dimensional Myers-Perry metric in the Boyer-Lindquist
coordinates. One major advantage of these coordinates is
that it allows us to construct a local orthonormal pentad
with which the Dirac equation can be decoupled into
purely radial and purely angular parts.
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A. Metric of a 5-dimensional Myers-Perry black hole

The metric of a five-dimensional rotating black hole
with two independent angular momenta was first obtained
by Myers and Perry [17] in 1986. The solution with a
negative cosmological constant was given by Hawking
et al. [18] in 1999. The line element of the Myers-Perry
metric can be recast into an elegant form in the Boyer-
Lindquist coordinates as

ds2 ¼ g��dx
�dx� ¼ �ABe

A � eB

¼��r

�
ðdt� asin2�d�� bcos2�d Þ2 þ �

�r

dr2

þ�d�2 þ sin2�cos2�

p2�
½ðb2 � a2Þdtþ ðr2 þ a2Þad�

� ðr2 þ b2Þbd �2 þ 1

r2p2
½�abdtþ ðr2 þ a2Þ

� bsin2�d�þ ðr2 þ b2Þacos2�d �2; (8)

where

�r ¼ ðr2 þ a2Þðr2 þ b2Þ=r2 � 2M;

� ¼ r2 þ p2;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2�þ b2sin2�

p
:

The metric determinant for this spacetime is
ffiffiffiffiffiffiffi�gp ¼

r�sin� cos�, and the contra-invariant metric tensor can be
read accordingly from

g��@�@� ¼ �AB@A � @B
¼�ðr2 þ a2Þ2ðr2 þ b2Þ2

r4�r�

�
@tþ a

r2 þ a2
@�

þ b

r2 þ b2
@ 

�
2 þ�r

�
@2r þ 1

�
@2�þ

sin2�cos2�

p2�

�
�
ða2 � b2Þ@tþ a

sin2�
@�� b

cos2�
@ 

�
2

þ 1

r2p2
ðab@tþ b@�þ a@ Þ2: (9)

The Myers-Perry metric (8) possesses three Killing vec-
tors (@t, @�, and @ ), In addition, it also admits a rank-two

symmetric Stäckel-Killing tensor [26], which can be writ-
ten as the square of a rank-three Killing-Yano tensor [27].
The existence of such tensors ensures the separation of
variables in the geodesic Hamilton-Jacobi equation and the
separability of the massless Klein-Gordon scalar field
equation [26]. In this paper, it will be shown that the
separability of Dirac’s equation in this spacetime back-
ground is also closely associated with the existence of the
rank-three Killing-Yano tensor.
The spacetime metric (8) is of Petrov type-D [47,50]. It

possesses a pair of real principal null vectors fl;ng, a pair
of complex principal null vectors fm; �mg, and one real,
spatial-like unit vector k. Similar to the four-dimensional
Kerr black hole case, they can be constructed to be of
Kinnersley-type as follows:

l�@� ¼ ðr2 þ a2Þðr2 þ b2Þ
r2�r

�
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
þ @r;

n�@� ¼ ðr2 þ a2Þðr2 þ b2Þ
2r2�

�
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
� �r

2�
@r;

m�@� ¼ 1ffiffiffi
2

p ðrþ ipÞ
�
@� þ i

sin� cos�

p

�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

��
;

�m�@� ¼ 1ffiffiffi
2

p ðr� ipÞ
�
@� � i

sin� cos�

p

�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

��
;

k�@� ¼ 1

rp
ðab@t þ b@� þ a@ Þ:

(10)

These vectors are geodesic and satisfy the following or-
thogonal relations

l�n� ¼ �1; m� �m� ¼ 1; k�k� ¼ 1; (11)

and all others are zero.
Here I briefly sketch the construction of a seminull

pentad formalism in five dimensions, analogous to the
four-dimensional Newman-Penrose null-tetrad formalism.
For the Myers-Perry black hole (8) which has a topology of
S3 sphere, a most convenient seminull pentad should en-
dow it with a pair of real principal null vectors, a pair of

complex principal null vectors, and a real unit vector,
which obey the above orthogonal relations (11). In terms
of these vectors, the metric can be written as

ds2 ¼ �l � n� n � lþm � �mþ �m �mþ k � k:

(12)

I shall refer to this seminull pentad formalism as the 2�21
formalism. In a forthcoming paper [49], the Dirac equation
has been reformulated within this seminull pentad formal-
ism and can be decoupled into purely radial and purely
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angular parts in the five-dimensional Myers-Perry black
hole geometry.

On the other hand, for black ring solutions [51] whose
horizon topology is S2 � S1, the most suitable seminull
pentad formalism should possess a real, timelike unit
vector k and two pairs of complex principal null vectors
fm1; �m1g and fm2; �m2g, satisfying the orthonormal rela-
tions: k�k�¼m

�
1 �m1�¼m

�
2 �m2�¼1. Working within

such a 1�2 �2 formalism, the metric tensor can be written
as g�� ¼ �k�k� þm1� �m1� þ �m1�m1� þm2� �m2� þ
�m2�m2�.

B. Construction of covariant spinor differential
operator

In the local Lorentz form of Dirac’s equation, we need to
find the local differential operator @A ¼ eA

�@� and the

spinor connection �A ¼ eA
��� subject to the Myers-Perry

metric (8). The orthonormal basis 1-vectors @A dual to the
pentad eA constructed in the Appendix Eq. (A1) are

@0 ¼ ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
;

@1 ¼
ffiffiffiffiffiffi
�r

�

s
@r; @2 ¼ 1ffiffiffiffi

�
p @�;

@3 ¼ sin� cos�

p
ffiffiffiffi
�

p
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
;

@5 ¼ 1

rp
ðab@t þ b@� þ a@ Þ: (13)

Taking use of the local Lorentz frame component �A and
the gamma matrices with relation �5 ¼ �i�0�1�2�3, I get
the composite expression

�A�A ¼ 1

4
�A�B�CfBCA

¼ �1

ffiffiffiffiffiffi
�r

�

s �
�0
r

4�r

þ 1

2r
þ r

2�

�
þ �2 1ffiffiffiffi

�
p

�
1

2
cot�� 1

2
tan�� ða2 � b2Þ sin� cos�

2�

�
� ða2 � b2Þr sin� cos�

2�3=2p
�0�1�3

� ab

2r2p
�0�1�5 þ p

ffiffiffiffiffiffi
�r

p
2�3=2

�0�2�3 þ ab

2rp2
�2�3�5

¼ �1

ffiffiffiffiffiffi
�r

�

s �
�0
r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �2 1ffiffiffiffi

�
p

�
1

2
cot�� 1

2
tan�� ða2 � b2Þ sin� cos�

2�p
ðpþ ir�5Þ

�

þ iab

2r2p2
�0�1ðrþ ip�5Þ; (14)

where a prime denotes the partial differential with respect to the coordinates r and �.
Combining this formula with the spinor differential operator

�A@A ¼ �0 ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
þ �1

ffiffiffiffiffiffi
�r

�

s
@r þ �2 1ffiffiffiffi

�
p @�

þ �3 sin� cos�

p
ffiffiffiffi
�

p
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ �5 1

rp
ðab@t þ b@� þ a@ Þ; (15)

I find that the covariant Dirac differential operator in the local Lorentz frame is

�Að@A þ �AÞ ¼ �0 ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
þ �1

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�

þ �2 1ffiffiffiffi
�

p
�
@� þ 1

2
cot�� 1

2
tan�� ða2 � b2Þ sin� cos�

2�p
ðpþ ir�5Þ

�

þ �3 sin� cos�

p
ffiffiffiffi
�

p
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ �5 1

rp
ðab@t þ b@� þ a@ Þ

þ iab

2r2p2
�0�1ðrþ ip�5Þ: (16)
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C. Separation of variables in Dirac equation

With the above preparation in hand, I am now ready to decouple the Dirac equation. Substituting the above spinor
differential operator into Eq. (7), the Dirac equation in the five-dimensional Myers-Perry metric reads

�
�0 ðr2þa2Þðr2þb2Þ

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@tþ a

r2þa2
@�þ b

r2þb2
@ 

�
þ�1

ffiffiffiffiffiffi
�r

�

s �
@rþ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�

þ�2 1ffiffiffiffi
�

p
�
@�þ 1

2
cot�� 1

2
tan��ða2�b2Þ sin�cos�

2�p
i�5ðr� ip�5Þ

�
þ�3 sin�cos�

p
ffiffiffiffi
�

p
�
ða2�b2Þ@tþ a

sin2�
@�� b

cos2�
@ 

�

þ�5 1

rp
ðab@tþb@�þa@ Þþ iab

2r2p2
�0�1ðrþ ip�5Þþ�e

�
�¼ 0: (17)

Multiplying ðr� ip�5Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr� ip�5Þp

by the left to the above equation, and after some lengthy algebra
manipulations I finally obtain

�
�0 ðr2 þ a2Þðr2 þ b2Þ

r2
ffiffiffiffiffiffi
�r

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
þ �1

ffiffiffiffiffiffi
�r

p �
@r þ �0

r

4�r

þ 1

2r

�
þ �2

�
@� þ 1

2
cot�� 1

2
tan�

�

þ �3 sin� cos�

p

�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ

�
�5

p
� i

r

�
ðab@t þ b@� þ a@ Þ

þ iab

2

�
1

p2
þ 1

r2

�
�0�1 þ�eðr� ip�5Þ

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0: (18)

At this stage, I assume that the spin-1=2 fermion fields
are in a reducible representation of the Clifford algebra,
which can be taken as a four-component Dirac spinor.
Applying the explicit representation (4) for the gamma
matrices and adopting the following ansatz for the separa-
tion of variables

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
� ¼ eiðm�þk �!tÞ

R2ðrÞS1ð�Þ
R1ðrÞS2ð�Þ
R1ðrÞS1ð�Þ
R2ðrÞS2ð�Þ

0
BBB@

1
CCCA; (19)

I find that the Dirac equation in the five-dimensional
Myers-Perry metric can be decoupled into the purely radial
parts� ffiffiffiffiffiffi

�r

p
Dr� i

ðr2þa2Þðr2þb2Þ
r2

ffiffiffiffiffiffi
�r

p �
!� ma

r2þa2
� kb

r2þb2

��
R1

¼
�
	þ i�er� ab

2r2
� i

r
ðab!�mb�kaÞ

�
R2; (20)

� ffiffiffiffiffiffi
�r

p
Drþ i

ðr2þa2Þðr2þb2Þ
r2

ffiffiffiffiffiffi
�r

p �
!� ma

r2þa2
� kb

r2þb2

��
R2

¼
�
	� i�er� ab

2r2
þ i

r
ðab!�mb�kaÞ

�
R1; (21)

and the purely angular parts

�
L� þ sin� cos�

p

�
ða2 � b2Þ!� ma

sin2�
þ kb

cos2�

��
S1

¼
�
	þ�epþ ab

2p2
þ 1

p
ðab!�mb� kaÞ

�
S2;

(22)

�
L� � sin� cos�

p

�
ða2 � b2Þ!� ma

sin2�
þ kb

cos2�

��
S2

¼
�
�	þ�ep� ab

2p2
þ 1

p
ðab!�mb� kaÞ

�
S1;

(23)

in which I have introduced two operators

Dr ¼ @r þ �0
r

4�r

þ 1

2r
; L� ¼ @� þ 1

2
cot�� 1

2
tan�:

Now the separated radial equation and the angular equa-
tion can be reduced into a master equation containing only
one component. For the radial part, I write them explicitly
as
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1

r

ffiffiffiffiffiffi
�r

p
Drðr

ffiffiffiffiffiffi
�r

p
DrR1Þ þ

�ðr2 þ a2Þ2ðr2 þ b2Þ2
r4�r

�
!� ma

r2 þ a2
� kb

r2 þ b2

�
2 � ðab!�mb� kaÞ2

r2

þ 2�eðab!�mb� kaÞ ��2
er

2 � 	2 þ 	
ab

r2
� a2b2

4r4
� 	þ 2i�erþ ab=ð2r2Þ
	rþ i�er

2 � ab=ð2rÞ � iðab!�mb� kaÞ�rDr

þ
�
2i

r
þ i

�0
r

2�r

� �er� iab=r2 þ ðab!�mb� kaÞ=r
	rþ i�er

2 � ab=ð2rÞ � iðab!�mb� kaÞ
� ðr2 þ a2Þðr2 þ b2Þ

r2

�
!� ma

r2 þ a2
� kb

r2 þ b2

�

� 2i

r
½ð2r2 þ a2 þ b2Þ!�ma� kb�

�
R1 ¼ 0; (24)

and

1

r

ffiffiffiffiffiffi
�r

p
Drðr

ffiffiffiffiffiffi
�r

p
DrR2Þ þ

�ðr2 þ a2Þ2ðr2 þ b2Þ2
r4�r

�
!� ma

r2 þ a2
� kb

r2 þ b2

�
2 � ðab!�mb� kaÞ2

r2

þ 2�eðab!�mb� kaÞ ��2
er

2 � 	2 þ 	
ab

r2
� a2b2

4r4
� 	� 2i�erþ ab=ð2r2Þ
	r� i�er

2 � ab=ð2rÞ þ iðab!�mb� kaÞ�rDr

�
�
2i

r
þ i

�0
r

2�r

þ �erþ iab=r2 þ ðab!�mb� kaÞ=r
	r� i�er

2 � ab=ð2rÞ þ iðab!�mb� kaÞ
� ðr2 þ a2Þðr2 þ b2Þ

r2

�
!� ma

r2 þ a2
� kb

r2 þ b2

�

þ 2i

r
½ð2r2 þ a2 þ b2Þ!�ma� kb�

�
R2 ¼ 0: (25)

From the above decoupled master equations, it is easy to
see that they are more complicated than the four-
dimensional case derived by Chandrasekhar [2]. As for
the exact solution to these equations, I expect they can be
recast into the confluent form of Heun equation [52].

The case occurs similarly for the angular parts if I adopt

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2�þ b2sin2�

p
rather than � itself as a variable.

Moreover, the angular part can be transformed into the
radial part if I make the replacement p ¼ ir in the case
M ¼ 0.

IV. CONSTRUCTION OF SYMMETRY
OPERATORS IN TERMS OF STÄCKEL-KILLING

AND KILLING-YANO TENSORS

In the last section, I have explicitly shown that Dirac’s
equation is separable in the five-dimensional Myers-Perry
black hole spacetime. In this section, I will demonstrate
that this separability is intimately related to the very ex-
istence of a rank-three Killing-Yano tensor admitted by the
Myers-Perry metric. Specifically speaking, I will construct
a symmetry operator that commutes with the scalar
Laplacian by using the Stäckel-Killing tensor, and another
one that commutes with the Dirac operator by the Killing-
Yano tensor. These symmetry operators are directly con-
structed from the separated solutions of the Klein-Gordon
equation and Dirac’s equation.

A. Stäckel-Killing tensor from the separated solution of
the Klein-Gordon equation

In this subsection, I will present a simple and elegant
form for the Stäckel-Killing tensor, which can be easily
written as the square of a rank-three Killing-Yano tensor.

This symmetric tensor is constructed from the separated
solution of the Klein-Gordon scalar field equation in the
five-dimensional Myers-Perry metric.
To begin with, let us consider a massive Klein-Gordon

scalar field equation

ðh��2
0Þ�¼ 1ffiffiffiffiffiffiffi�gp @�ð ffiffiffiffiffiffiffi�gp

g��@��Þ ��2
0�¼ 0; (26)

together with the ansatz � ¼ RðrÞSð�Þeiðm�þk �!tÞ. In the
background spacetime metric (8), the massive scalar field
equation reads�
�ðr2 þ a2Þ2ðr2 þ b2Þ2

r4�r�

�
@tþ a

r2 þ a2
@�þ b

r2 þ b2
@ 

�
2

þ 1

r�
@rðr�r@rÞ þ 1

�sin�cos�
@�ðsin�cos�@�Þ

þ sin2�cos2�

p2�

�
ða2 � b2Þ@tþ a

sin2�
@�� b

cos2�
@ 

�
2

þ 1

r2p2
ðab@tþ b@�þ a@ Þ2 ��2

0

�
�¼ 0: (27)

Apparently, it can be separated into a radial part and an
angular part,

1

r
@rðr�r@rRÞ þ

�ðr2 þ a2Þ2ðr2 þ b2Þ2
r4�r

�
�
!� ma

r2 þ a2
� kb

r2 þ b2

�
2 � 1

r2
ðab!�mb� kaÞ2

��2
0r

2 �	2

�
RðrÞ ¼ 0; (28)
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1

sin� cos�
@�ðsin� cos�@�SÞ �

�
sin2�cos2�

p2

�
ða2 � b2Þ!

� ma

sin2�
þ kb

cos2�

�
2 þ 1

p2
ðab!�mb� kaÞ2

þ�2
0p

2 � 	2

�
Sð�Þ ¼ 0; (29)

which can be transformed into the confluent form of the
Heun equation [28,52].

Now from the separated Eqs. (28) and (29), I can con-
struct a new dual field equation as follows:�
� p2 ðr2 þ a2Þ2ðr2 þ b2Þ2

r4�r�

�
@t þ a

r2 þ a2
@�

þ b

r2 þ b2
@ 

�
2 þ p2

r�
@rðr�r@rÞ

� r2

� sin� cos�
@�ðsin� cos�@�Þ � r2sin2�cos2�

p2�

�
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
2

þ p2 � r2

r2p2
ðab@t þ b@� þ a@ Þ2 � 	2

�
� ¼ 0; (30)

from which I can extract a second order symmetric ten-
sor—the so-called Stäckel-Killing tensor

K��@�@�¼�p2 ðr2þa2Þ2ðr2þb2Þ2
r4�r�

�
@tþ a

r2þa2
@�

þ b

r2þb2
@ 

�
2þp2 �r

�
@2r � r2

1

�
@2�

� r2
sin2�cos2�

p2�

�
ða2�b2Þ@tþ a

sin2�
@�

� b

cos2�
@ 

�
2þp2� r2

r2p2
ðab@tþb@�þa@ Þ2:

(31)

This symmetric tensor K�� ¼ K�� obeys the equation [9]

K��;
 þ K�
;� þ K
�;� ¼ 0; (32)

and is equivalent to the one found in [26,27], up to an
ignorable constant.

In the local Lorentz coframe (A1), it has a simple,
diagonal form KAB ¼ diagð�p2; p2;�r2;�r2; p2 � r2Þ.
Using the Stäckel-Killing tensor, the above dual equation
can be written in a coordinate-independent form

ðK� 	2Þ� ¼ 1ffiffiffiffiffiffiffi�gp @�ð ffiffiffiffiffiffiffi�gp
K��@��Þ � 	2� ¼ 0:

(33)

It is obvious that the operator K commutes with the scalar
Laplacian h. Working out the commutator ½K;h� ¼ 0
yields the Killing equation (32) and the integrability con-

dition for the Stäckel-Killing tensor. These two operators
have a classical analogue. In classical mechanics, the
scalar Laplacian h corresponds to the Hamiltonian
g�� _x

� _x�, while the operator K to the Carter’s constant

K�� _x
� _x�. They are two integrals of motion in addition to

three constants from the Killing vector fields @t, @�, and

@ .

B. Killing-Yano potential, (conformal) Killing-Yano
tensor, and Stäckel-Killing tensor

Before constructing a first-order symmetry operator that
commutes with the Dirac operator, I first give a brief
review on the recent work [27,35,36] about the construc-
tion of the Stäckel-Killing tensor from the (conformal)
Killing-Yano tensor.
Penrose and Floyd [53] discovered that the Stäckel-

Killing tensor for the four-dimensional Kerr metric can
be written in the form K�� ¼ f�
f�


, where the skew-

symmetric tensor f�� ¼ �f�� is the Killing-Yano tensor

[54–56] obeying the equation f��;
 þ f�
;� ¼ 0. Using

this object, Carter and McLenaghan [10] constructed a
first-order symmetry operator that commutes with the
massive Dirac operator. In the case of a four-dimensional
Kerr black hole (D ¼ 4), the Killing-Yano tensor f is of
the rank two, its Hodge dual k ¼ ��f is a rank-two,
antisymmetric, conformal Killing-Yano tensor [41] obey-
ing the equation

k��;� þ k��;� ¼ 1

D� 1
ðg��k��;� þ g��k

�
�;�

� 2g��k
�
�;�Þ: (34)

This equation can be equivalently rewritten in the form
proposed by Penrose [57]

P ��� ¼ k��;� þ 1

D� 1
ðg��k��;� � g��k

�
�;�Þ ¼ 0:

(35)

A conformal Killing-Yano tensor k is dual to the Killing-
Yano tensor if and only if it is closed dk ¼ 0. This fact

implies that there exists a potential 1-form b̂ so that k ¼
db̂. Carter [40] is the first one who found this potential to
generate the Killing-Yano tensor for the Kerr-Newman
black hole.
Recently, these results have further been extended

[27,35–37] to general higher-dimensional rotating black
hole solutions. In the case of D ¼ 5 dimensions, it was
demonstrated [27] that the rank-two Stäckel-Killing tensor
can be constructed from its ‘‘square root’’, a rank-three,
totally antisymmetric Killing-Yano tensor. Following
Carter’s procedure [40], Frolov et al. [27] found a potential
1-form to generate a rank-two conformal Killing-Yano
tensor [41], whose Hodge dual f ¼ �k is a rank-three
Killing-Yano tensor.
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Now restricting ourselves to the five-dimensional
Myers-Perry metric, it is easy to check that the following
object constructed from the rank-three Killing-Yano tensor

K�� ¼ �1
2f���f�

��; (36)

is just the rank-two, Stäckel-Killing tensor given in
Eq. (31). The rank-three Killing-Yano tensor f obeying
the equation

f���;� þ f���;� ¼ 0; (37)

can be taken as the Hodge dual f ¼ �k of the 2-form k ¼
db̂ via the following definition:

f��� ¼ ð�kÞ��� ¼ 1
2

ffiffiffiffiffiffiffi�gp
"�����k

��: (38)

The Killing-Yano potential found for the five-
dimensional Myers-Perry metric is [27]

2b̂ ¼ ð�r2 þ a2cos2�þ b2sin2�Þdt
þ ðr2 þ a2Þasin2�d�þ ðr2 þ b2Þbcos2�d ; (39)

from which a conformal Killing-Yano tensor can be con-
structed

k ¼ db̂ ¼ re0 ^ e1 þ pe2 ^ e3: (40)

Adopting the convention "01235 ¼ 1 ¼ �"01235 for the
totally antisymmetric tensor density "ABCDE, I find that

the Killing-Yano tensor is given by

f ¼ �k ¼ ð�pe0 ^ e1 þ re2 ^ e3Þ ^ e5: (41)

In what follows, I shall show that this rank-three Killing-
Yano tensor and its exterior differential

W ¼ df

¼ �4
ab

rp
e0 ^ e1 ^ e2 ^ e3 þ 4

ða2 � b2Þ sin� cos�
p

ffiffiffiffi
�

p

� e0 ^ e1 ^ e2 ^ e5 þ 4

ffiffiffiffiffiffi
�r

�

s
e1 ^ e2 ^ e3 ^ e5 (42)

play a central role in constructing a first order symmetry
operator that commutes with the Dirac operator.

C. Killing-Yano tensor from the separated solution of
the Dirac equation

The last task is to construct a first order symmetry
operator that commutes with the Dirac operator, parallel
to the work done by Carter and McLenaghan [10] in the
case of a four-dimensional Kerr black hole. I proceed to
construct such an operator from the separated solutions
(20)–(23) of the Dirac equation. After some tedious alge-
bra manipulations, I find that the following equation:

�
�0p

ffiffiffiffiffiffi
�r

p �
@r þ �0

r

4�r

þ 1

2r

�
þ �1p

ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffi
�r

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�

þ �2ð�rÞ sin� cos�
p

�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ �3r

�
@� þ 1

2
cot�� 1

2
tan�

�

� i�0�1 �

rp
ðab@t þ b@� þ a@ Þ þ ab

2

�
ip

r2
þ �5r

p2

�
þ 	ð�5r� ipÞ

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0; (43)

is a dual one to the Dirac equation (18). Expanding it, I get

�
�0p

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �1p

ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�

þ �2ð�rÞ sin� cos�
p

ffiffiffiffi
�

p
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ �3r

1ffiffiffiffi
�

p
�
@� þ 1

2
cot�� 1

2
tan�

� ða2 � b2Þ sin� cos�
2�p

i�5ðr� ip�5Þ
�
� i�0�1ðrþ i�5pÞ 1

rp
ðab@t þ b@� þ a@ Þ þ iab

2rp
þ �5

�
	� ab

2r2
þ ab

2p2

��
� ¼ 0:

(44)

I do not hope �5	 appears in the above equation, therefore I can multiply it the �5 matrix by the left so as to rewrite it as
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�
�5�0p

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �5�1p

ðr2 þ a2Þðr2 þ b2Þ
r2

ffiffiffiffiffiffiffiffiffiffi
�r�

p �
@t þ a

r2 þ a2
@� þ b

r2 þ b2
@ 

�
þ �5�2ð�rÞ

� sin� cos�

p
ffiffiffiffi
�

p
�
ða2 � b2Þ@t þ a

sin2�
@� � b

cos2�
@ 

�
þ �5�3r

1ffiffiffiffi
�

p
�
@� þ 1

2
cot�� 1

2
tan�� ða2 � b2Þ sin� cos�

2�p

� i�5ðr� ip�5Þ
�
þ ðp�0�1 � r�2�3Þ 1

rp
ðab@t þ b@� þ a@ Þ þ iab

2rp
�5 þ 	� ab

2r2
þ ab

2p2

�
� ¼ 0; (45)

which can be put into an operator form

ðHf þ 	Þ� ¼ 0: (46)

My final aim is to find the explicit expression for this
symmetry operator Hf. The process to construct such an

operator is more involved than the one to treat with the
Dirac operator HD ¼ ��r� ¼ ��ð@� þ ��Þ. However,

the final result is extremely simple,

H f ¼ �1
2�

���f��

ð@
 þ �
Þ � 1

64�
����
��W��
�:

(47)

Using the definition W��
� ¼ �f��
;� þ f�
�;� �
f
��;� þ f���;
 and the property of gamma matrices as

well as f
��;
 ¼ 0, I can also write the above operator in

another form:

H f ¼ �1
2�

���f��

r
 þ 1

16�
����
��f��
;�: (48)

The symmetry operator Hf constructed here has a lot of

correspondences in different contexts. It is the five-
dimensional analogue to the nonstandard Dirac operator
discovered by Carter and McLenaghan [10] for the four-
dimensional Kerr metric, which generates generalized an-
gular momentum quantum number. This operator corre-
sponds to the nongeneric supersymmetric generator in
pseudoclassical mechanics [58]. Moreover, the 2-form
field L�� ¼ f��
 _x


 is parallel-propagated along the geo-

desic with a cotangent vector _x�, whose square is just the
Carter’s constant �ð1=2ÞL��L�� ¼ K�� _x

� _x�.

The existence of a rank-three Killing-Yano tensor is
enough to explain the separability of the Dirac equation
in the five-dimensional Myers-Perry vacuum background.
The operator Hf commutes with the standard Dirac opera-

torHD. Expanding the commutation relation ½HD;Hf� ¼ 0

yields the Killing-Yano equation (37) and the integrability
condition for the rank-three Killing-Yano tensor f.

V. CONCLUDING REMARKS

In this paper, I have investigated the separability of the
Dirac equation in the five-dimensional Myers-Perry metric
and its relation to a rank-three Killing-Yano tensor. First,
the field equation for Dirac fermions in five-dimensional
relativity is formulated in a fünfbein formalism. The

spinor-connection is constructed by the method of the
Clifford algebra and its derived Lie algebra SO(4,1).
Second, an orthonormal pentad has been established for
the Myers-Perry metric so that one can easily deal with the
Dirac equation in this background geometry. It is obviously
shown that Dirac’s equation in the Myers-Perry metric can
be separated into purely radial and purely angular parts.
Finally, from the separated solutions of the massive Klein-
Gordon equation and Dirac’s equation, I have constructed
two symmetry operators that commute with the scalar
Laplacian and the Dirac operator, respectively. A simple
form for the Stäckel-Killing tensor was given so that it can
be easily understood as the square of a rank-three Killing-
Yano tensor.
A comparison with the previously published work

[42,43] is made here. First, my work covers the partial
work done in [42] about the separation of variables of
Dirac’s equation in the Myers-Perry black hole with two
equal-magnitude angular momenta. In [43], Dirac’s equa-
tion was separated in general higher-dimensional rotating
Kerr-AdS-NUT black hole background. However, because
the role of angular momenta becomes less obvious, it
seems difficult to directly apply that work to study various
properties of the Dirac field. What is more, symmetry
operators that (anti-)commute with the Dirac operator
have not been found there. Although my work can serve
as a special case of that work and is announced later than it,
the results presented in this paper can be directly applied to
study various aspects [59] of fermion fields, for example,
Hawking radiation [60], emission rates [61], quasinormal
modes, instability [62], etc. On the other hand, a non-
standard Dirac operator has been explicitly constructed
here. In addition, the representation of gamma matrices
adopted in this paper is different from that used in [43].
In a subsequent work [49], I have constructed a seminull

pentad formalism of the Dirac equation in the five-
dimensional relativity similar to the widely used null-tetrad
formalism [5]. The Dirac equation can be shown to be
decoupled into purely radial and purely angular parts
which agree with the equations obtained here. The agree-
ment assures that the Clifford-algebra formalism is equiva-
lent to my seminull pentad formalism. A paper based upon
my previously unpublished notes is being written.
Finally, the present work can be directly extended to the

case of five-dimensional rotating black holes with a non-
zero cosmological constant [18]. In another forthcoming
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paper, the present work has been generalized to the charged
case of five-dimensional rotating black holes in minimal
gauged and ungauged supergravity [20] with the inclusion
of a Chern-Simons term. It is found there that the usual
Dirac equation cannot be separated by variables. To ensure
the separability of fermion fields in this Einstein-Maxwell-
Chern-Simons background geometry, one must include an
additional term in the action of spin-1=2 fields. A paper on
this aspect is in preparation.

It is also an interesting question to investigate the sepa-
rability of higher-spin field equations (for example,
Maxwell’s equation and Rarita-Schwinger’s equation) in
the five-dimensional Myers-Perry metric and its relation to
a rank-three Killing-Yano tensor.
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APPENDIX A: PENTAD AND CONNECTION
1-FORMS

The new form of the five-dimensional Myers-Perry met-
ric (8) admits the following local Lorentz basis of 1-forms
(pentad) defined as eA ¼ eA�dx

� orthonormal with respect

to �AB,

e0 ¼
ffiffiffiffiffiffi
�r

�

s
ðdt� asin2�d�� bcos2�d Þ; e1 ¼

ffiffiffiffiffiffi
�

�r

s
dr; e2 ¼

ffiffiffiffi
�

p
d�;

e3 ¼ sin� cos�

p
ffiffiffiffi
�

p ½ðb2 � a2Þdtþ ðr2 þ a2Þad�� ðr2 þ b2Þbd �;

e5 ¼ 1

rp
½�abdtþ ðr2 þ a2Þbsin2�d�þ ðr2 þ b2Þacos2�d �:

(A1)

These coframe 1-forms are different from those used in [63,64].
After some algebraic computations, I obtain the exterior differential of the coframe 1-forms as

de0 ¼ �
� ffiffiffiffiffiffi

�r

�

s �
;r
e0 ^ e1 þ ða2 � b2Þ sin� cos�

�3=2
e0 ^ e2 � 2p

ffiffiffiffiffiffi
�r

p
�3=2

e2 ^ e3; de1 ¼ ða2 � b2Þ sin� cos�
�3=2

e1 ^ e2;

de2 ¼ r
ffiffiffiffiffiffi
�r

p
�3=2

e1 ^ e2; de3 ¼ � 2ða2 � b2Þr sin� cos�
�3=2p

e0 ^ e1 þ r
ffiffiffiffiffiffi
�r

p
�3=2

e1 ^ e3 þ p

sin� cos�

�
sin� cos�

p
ffiffiffiffi
�

p
�
;�
e2 ^ e3;

de5 ¼ � 2ab

r2p
e0 ^ e1 þ 1

r

ffiffiffiffiffiffi
�r

�

s
e1 ^ e5 þ 2ab

rp2
e2 ^ e3 � ða2 � b2Þ sin� cos�

p2
ffiffiffiffi
�

p e2 ^ e5: (A2)

The spin-connection 1-form !A
B ¼ !A

B�dx
� ¼ fABCe

C can be found from the Cartan’s first structure equation (5) as

follows:

!0
1 ¼

� ffiffiffiffiffiffi
�r

�

s �
;r
e0 � ða2 � b2Þr sin�cos�

�3=2p
e3 � ab

r2p
e5; !0

2 ¼�ða2 � b2Þ sin�cos�
�3=2

e0 �p
ffiffiffiffiffiffi
�r

p
�3=2

e3;

!0
3 ¼�ða2 � b2Þr sin�cos�

�3=2p
e1 þp

ffiffiffiffiffiffi
�r

p
�3=2

e2; !0
5 ¼� ab

r2p
e1; !1

2 ¼�ða2 � b2Þ sin� cos�
�3=2

e1 � r
ffiffiffiffiffiffi
�r

p
�3=2

e2;

!1
3 ¼�ða2 � b2Þr sin� cos�

�3=2p
e0 � r

ffiffiffiffiffiffi
�r

p
�3=2

e3; !1
5 ¼� ab

r2p
e0 � 1

r

ffiffiffiffiffiffi
�r

�

s
e5;

!2
3 ¼�p

ffiffiffiffiffiffi
�r

p
�3=2

e0 � p

sin�cos�

�
sin� cos�

p
ffiffiffiffi
�

p
�
;�
e3 � ab

rp2
e5; !2

5 ¼� ab

rp2
e3 þ ða2 � b2Þ sin� cos�

p2
ffiffiffiffi
�

p e5; !3
5 ¼

ab

rp2
e2:

(A3)

The local Lorentz frame component �A can be easily read from the spinor-connection 1-form � � �Ae
A ¼ ð1=4Þ�A�B!AB

as
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�0 ¼ 1

2

�
�
� ffiffiffiffiffiffi

�r

�

s �
;r
�0�1 þ ða2 � b2Þ sin� cos�

�3=2
�0�2 � ða2 � b2Þr sin� cos�

�3=2p
�1�3 � ab

r2p
�1�5 � p

ffiffiffiffiffiffi
�r

p
�3=2

�2�3

�
;

�1 ¼ 1

2

�ða2 � b2Þr sin� cos�
�3=2p

�0�3 þ ab

r2p
�0�5 � ða2 � b2Þ sin� cos�

�3=2
�1�2

�
;

�2 ¼ 1

2

�
�p

ffiffiffiffiffiffi
�r

p
�3=2

�0�3 � r
ffiffiffiffiffiffi
�r

p
�3=2

�1�2 þ ab

rp2
�3�5

�
;

�3 ¼ 1

2

�ða2 � b2Þr sin� cos�
�3=2p

�0�1 þ p
ffiffiffiffiffiffi
�r

p
�3=2

�0�2 � r
ffiffiffiffiffiffi
�r

p
�3=2

�1�3 � p

sin� cos�

�
sin� cos�

p
ffiffiffiffi
�

p
�
;�
�2�3 � ab

rp2
�2�5

�
;

�5 ¼ 1

2

�
ab

r2p
�0�1 � 1

r

ffiffiffiffiffiffi
�r

�

s
�1�5 � ab

rp2
�2�3 þ ða2 � b2Þ sin� cos�

p2
ffiffiffiffi
�

p �2�5

�
:

(A4)

APPENDIX B: PLEBANSKI-LIKE FORM OF THE D ¼ 5 MYERS-PERRY METRIC

In some cases, it is more convenient to use p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2�þ b2sin2�

p
rather than � as the appropriate angle coordinate.

In doing so, the five-dimensional Myers-Perry metric can be put in a symmetric manner as follows

ds2 ¼ ��r

�

�
dt� ðp2 � a2Þa

b2 � a2
d�� ðp2 � b2Þb

a2 � b2
d 

�
2 þ �

�r

dr2 þ �

�p

dp2 þ �p

�

�
dtþ ðr2 þ a2Þa

b2 � a2
d�

þ ðr2 þ b2Þb
a2 � b2

d 

�
2 þ

�
ab

rp

�
2
�
dt� ðr2 þ a2Þðp2 � a2Þ

ðb2 � a2Þa d�� ðr2 þ b2Þðp2 � b2Þ
ða2 � b2Þb d 

�
2
; (B1)

where

�r ¼ ðr2 þ a2Þðr2 þ b2Þ=r2 � 2M;

�p ¼ �ðp2 � a2Þðp2 � b2Þ=p2; � ¼ r2 þ p2:

The following coordinate transformations:

t ¼ þ ða2 þ b2Þuþ a2b2v;

� ¼ aðuþ b2vÞ;  ¼ bðuþ a2vÞ; (B2)

send the metric to a Plebanski-like form [44]

ds2 ¼ ��r

�
ðdþ p2duÞ2 þ �

�r

dr2 þ �

�p

dp2

þ�p

�
ðd� r2duÞ2

þ
�
ab

rp

�
2½dþ ðp2 � r2Þdu� r2p2dv�2; (B3)

in which the role of angular momenta becomes less clear.
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