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Marcel Reginatto

Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
(Received 18 February 2008; published 18 September 2008)

We consider the question of whether consistency arguments based on measurement theory show that the

gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a

DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting

with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a

second model in which a gravitational wave interacts with a quantized scalar field. We argue that one

cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the

many physical arguments which speak in favor of a quantum theory of gravity, it appears that the

justification for such a theory must be based on empirical tests and does not follow from logical arguments

alone.
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I. INTRODUCTION

The theoretical analysis of the measurement process has
played a crucial role in the development of quantum theory.
A famous example is the discussion between Einstein and
Bohr on the role of the uncertainty relations, which took
place during the Solvay conferences in Brussels at the end
of the 1920s. Another example is the analysis of quantum
electrodynamical field quantities by Bohr and Rosenfeld in
1933 [1]. We are interested in the question of whether an
analysis along these lines could also be of help in the
search for a quantum theory of gravity.

Quantum gravity does not yet exist in a final form, but
many promising, although competing approaches, exist
[2]. Among them are string theory, quantum geometrody-
namics, loop quantum gravity, path-integral quantization,
and others. It would be of interest to see which variables
can be accessible in a quantum measurement and whether
they can be measured with arbitrary accuracy or not. In the
canonical approaches to quantum gravity, candidates for
such variables are the three-dimensional metric and the
second fundamental form, or holonomies and fluxes of the
densitized triad; in string theory; the candidates for the
most fundamental variables are less clear.

The present paper can be seen as preparation for such an
analysis of quantum-gravitational variables. It addresses
the question of whether a measurement analysis could
disclose that the gravitational field must be quantized for
consistency. There exist various papers in the literature that
claim that this question must be answered in the affirma-
tive, see for example [3,4]. In our paper, we show that such
a conclusion cannot be drawn. Many physical arguments
speak in favor of quantum gravity (such as the existence of
the singularity theorems in the classical theory) [2], but the

final justification can only come from an empirical test and
not from logical arguments alone.
Our paper is organized as follows. In Sec. II, we address

the gedanken experiment discussed in [4]. We disclose
gaps in the chain of argument which invalidate the con-
clusion drawn that gravity must be quantized. In Sec. III,
we apply the formalism of quantum measurement analysis
developed by Bryce DeWitt to such a gedanken experi-
ment. This serves the purpose of putting the heuristic
discussion of [4] on a quantitative level, but is also of
interest in its own right—as a study of the relationship
between classical and quantum theory. We show that (and
how) the uncertainties present in one system entail uncer-
tainties in the system to which it is coupled, but that this
does not enforce the quantization of the coupled system. In
Sec. IV, we present an explicit counterexample to the claim
that a system coupled to a quantum system must neces-
sarily also be of quantum nature: we discuss a hybrid
model with a consistent coupling between classical gravity
and a quantized scalar field. In Sec. V, we consider the
argument made in [3] that the quantum theory must be
extended to all physical systems and show that this con-
clusion is not justified. Sec. VI gives a brief summary and
an outlook.

II. CRITIQUE OF THE EPPLEYAND HANNAH
GEDANKEN EXPERIMENT

In 1977, Eppley and Hannah proposed a gedanken ex-
periment which was meant to demonstrate that the gravi-
tational field must be quantized [4]. They considered the
interaction of a classical gravitational wave with a quan-
tum system, and argued that this would lead to a violation
of momentum conservation, to a violation of the uncer-
tainty principle, or to the transmission of signals faster than
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light. Since nothing special about gravity seems to enter
their line of thought (one is, in particular, at the level of a
linearized wave), their arguments should hold for any
classical wave, in particular, for an electromagnetic
wave. One thus seems to be led to the conclusion that
any system that is coupled to a quantum system must
also be a quantum system.

A gedanken experiment should, of course, be realizable
at least in principle. It was recently emphasized by
Mattingly that this is not the case for the Eppley-Hannah
(EH) model; for example, their detector must be so massive
as to be within its own Schwarzschild radius [5].
Furthermore, it was argued by Huggett and Callender
that the violations of physical principles are only present
in the Copenhagen interpretation of quantum mechanics
and are thus, at least partially, resolvable within alternative
interpretations [6]. Here we show that even without the
question of realizability or interpretation, it is not correct to
say that the EH gedanken experiment entails the necessity
of quantizing the gravitational field.

Eppley and Hannah consider the interaction of a classi-
cal gravitational wave of small momentum with a quantum
particle described by a wave function  . They restrict to
the case in which the wavelength, �, of the wave is much
smaller than the position uncertainty, �x, of the particle in
order for the interaction to lead to a measurement of the
position of the quantum particle. For the generation and
detection of the gravitational wave, they make the follow-
ing assumption: the uncertainties of the quantum system
which is used to prepare and detect the wave will result in a
negligible perturbation of the classical wave. To discuss
this assumption, we shall present a DeWitt-type measure-
ment analysis in the following section. Here we take their
assumption for granted. When the quantum particle is
probed by the classical wave, it is furthermore assumed
that no direct perturbation of the particle occurs because of
the small wave momentum. This constitutes an ‘‘ideal
measurement’’ in the sense of John von Neumann, a con-
dition that is now also called ‘‘quantum nondemolition
measurement,’’ cf. [7]. (We postpone a discussion of this
assumption until the end of this section; here, we also take
it for granted.)

Eppley and Hannah now distinguish between two pos-
sibilities: either the gravitational wave leads to a collapse
of the wave function of the particle, or it does not. If it does,
they argue that this would entail either momentum non-
conservation or a violation of the uncertainty relation. If it
does not collapse, they argue that there will be a trans-
mission of information with superluminal speed.

Let us consider the first case of an assumed collapse.
Such a collapse is not part of the standard linear quantum
theory because it would violate the superposition principle.
One can, of course, modify quantum mechanics in order to
accommodate such a collapse, cf. chapter 8 of [7] or [8]. In
fact, one popular class of such models are models of

gravity-induced collapse of the wave function. Such col-
lapse models typically introduce new constants of nature.
They often have problems with conservation laws, so some
effort is required in order to construct a model that is in
accordance with such laws. It is thus not surprising that EH
arrive at problems with momentum nonconservation, but
this by itself should not be taken as a logical argument to
quantize gravity. Therefore, before any definite statement
about a possible violation of momentum conservation or
the uncertainty relations can be made, the interaction of the
gravitational wave with the quantum particle must be dis-
cussed quantitatively within a definite collapse model. The
arguments of [4] are therefore inconclusive for this case.
Let us assume, then, that the gravitational wave does not

collapse the wave function  of the particle. Eppley and
Hannah then consider an EPR-type situation where one
particle decays into two other particles which together are
in a singlet state (e.g., a �0 decaying into two �): if an
observer measures photon 1 in horizontal polarization,
photon 2 will be found in vertical polarization, and vice
versa. Eppley and Hannah then argue that a classical
gravitational wave scattered off from particle 2 can distin-
guish between particle 2 having a definite polarization or
particle 2 being in a superposition of both polarizations.
The gravitational wave could thus instantaneously ‘‘see’’
whether a measurement at particle 1 was done—the corre-
sponding information would then have propagated with
superluminal speed. This conclusion is, however, not cor-
rect. Before the measurement of particle 1, the total state of
photons and detector is in the entangled state

j�0i ¼ 1ffiffiffi
2

p ðj "i1j #i2 � j #i1j "i2Þj�0i; (1)

where j "i1 (j #i1) denotes horizontal (vertical) polarization
of photon 1 (and similarly for photon 2), and j�0i denotes
the initial (switched off) state of the detector which will
measure photon 1. After the detector has measured photon
1, the initial state j�0i will have evolved into the new
entangled state

j�i ¼ 1ffiffiffi
2

p ðj "i1j #i2j�"i � j #i1j "i2j�#iÞ; (2)

where j�"i (j�#i) denotes the state of the detector after it

has measured the polarization of photon 1 to be horizontal
(vertical). The important point is that photon 2, by itself, is
not in a pure state, neither before nor after the measure-
ment of photon 1. It finds itself in a mixed state which is
obtained from the total pure state of system plus detector
by tracing out the states of particle 1 and the detector. This
leads for both (1) and (2) to the same density operator for
photon 2,

�̂ ¼ 1

2
ðj "i2h" j2 þ j #i2h# j2Þ: (3)

In both cases, photon 2, by itself, is in a mixed state of
horizontal and vertical polarization with equal probability
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one half. The gravitational wave ‘‘sees’’ the same mixed
state for photon 2, independent of whether a measurement
of photon 1 has been performed or not; thus, no super-
luminal communication is possible. The difference be-
tween the total states (1) and (2) can only be seen after
both photons are brought together: in case (1) they will
interfere, while in case (2) they will not; in the latter case
the information about the original superposition has been
delocalized into correlations of the detector state with its
natural environment, that is, decoherence has occurred [7].

The above argument assumes that the linear structure of
quantum theory remains untouched. This, of course, cor-
responds to an Everett interpretation. If, on the other hand,
one assumes that a measurement on photon 1 collapses its
wave function into j "i1 or j #i1, a superluminal communi-
cation might in principle be possible, cf. [9]. This can
happen, for example, in the context of semiclassical gravity
(see, e.g., [2]) where the source of the gravitational field is
taken to be the quantum expectation value of the energy-
momentum tensor. Semiclassical gravity introduces a non-
linearity into quantum theory, which in principle can be
experimentally tested [9]. The possibility of such an ex-
ample does not prove, however, that a mixed classical-
quantum coupling without superluminal communication
is impossible. In fact, Sec. IV presents a candidate for
such a theory. In Appendix B we shall discuss a simple
gedanken experiment of a classical particle interacting
with a quantum system; we shall show there that the mixed
classical-quantum coupling of Sec. IV can successfully
deal with such a situation. This is possible because the
classical and quantum sectors still exhibit some
entanglement.

One of the assumptions that we have taken for granted
here, namely, that the momentum of the wave is suffi-
ciently small for the particle not to be perturbed, leads to
difficulties if the scattering of the gravitational wave is
going to be used to measure the position of the particle. Let
us assume, as Eppley and Hannah do, that the interaction is
such that incoming plane gravitational waves are scattered
by the quantum system with the result that spherical waves
are emitted. To achieve this, a certain amount of energy
needs to be transferred from the incoming gravitational
wave to the quantum system, because the system will not
emit gravitational waves unless its quadrupole or higher
multipole modes are excited. Given that a quantum system
typically has quadrupole modes that are quantized, one
would expect this energy to be of the order of h�, where
� is some characteristic frequency associated with the
transition to the quadrupole mode. But if we assume that
the incoming gravitational wave carries a negligible
amount of momentum, then it will not be able to transfer
a sufficient amount of energy to the quantum system to
excite its higher modes and no scattering can take place.
And if we allow the gravitational wave to carry sufficient
energy for scattering to occur, then we cannot rule out a

transfer of energy and momentum that may be sufficient
for the quantum system to be left in a state that does not
violate the Heisenberg uncertainty relation, independent of
any particular model that might be used to describe col-
lapse of the wave function.
A more detailed description of the interaction term is

required before we can make more conclusive statements
regarding the outcome of the EH gedanken experiment.
Presumably, the gravitational wave will interact with the
quantized system through gravitational effects only. If so,
then the form of the interaction will be determined by the
way in which gravity couples to matter. In the next sec-
tions, we present examples where these considerations are
taken into account and particular interaction terms are
examined.

III. DEWITT-TYPE MEASUREMENTANALYSIS

A. General analysis

Motivated, in particular, by the EH gedanken experi-
ment discussed in the last section, we present a general
measurement analysis of an interaction between a gravita-
tional wave and a nongravitational system. For this pur-
pose, we apply the general formalism introduced by Bryce
DeWitt, cf. [3,10–12]. We consider this type of analysis for
two reasons. First, DeWitt’s approach provides a descrip-
tive and straightforward method of modeling a measure-
ment (or any other influence of one system on another).
Second, it provides a convenient way of developing a
concrete realization of the EH gedanken experiment, see
Sec. III B below. Before describing our model, we review
the general framework.
The starting point of the measurement analysis devel-

oped by DeWitt is the observation that a measurement of a
physical observable requires an interaction between the
system and the apparatus. A measurement is then inter-
preted as recording the resulting change in the state of the
apparatus, that is, the difference between the configura-
tions with and without the interaction taking place. For
example, for a voltage measurement this would be 2 V if
the initial value increases (due to the coupling between
apparatus and system) from 5 to 7 V.
There are four basic ingredients that enter into the

analysis and which need to be modeled theoretically: the
physical system, the measuring apparatus, the choice of
system observable that is being measured, and the coupling
term that describes the interaction between the system and
the apparatus. At this level of description, the focus is on
possible theoretical limitations rather than on the practical
limitations that are unavoidable when carrying out mea-
surements in a laboratory. Therefore, other complications
that are encountered in real experiments are not considered
here. Once these four ingredients are defined, one can
follow DeWitt’s method and calculate the change in the
configuration of the apparatus induced by the coupling to
the system. Two assumptions are needed to make the
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equations tractable. First, the coupling is assumed to be
weak. This is an essential assumption that allows a pertur-
bative approach using first- and second-order terms only.
Moreover, this assumption corresponds to the idea of a
careful measurement which imparts only a small distur-
bance and is therefore justified when investigating
‘‘. . .uncontrollable uncertainties which remain in spite of
all precautions’’ [10]. Second, it is assumed that the
second-order terms which involve the disturbance of the
apparatus can be neglected. This approximation is valid
because of the usual 1=m2 dependence of the Green func-
tions of the given systems together with the condition that
the apparatus be much more massive than the system. Such
an assumption helps simplify the equations, but one may
also take such terms into consideration if necessary.

The first step in this perturbative analysis is to solve the
equations for the system and apparatus while neglecting
the interaction term, that is, the equations

S½��;i ¼ 0; �½��;I ¼ 0;

where S½�� denotes the action functional of the uncoupled
system, �½�� the action functional of the uncoupled appa-
ratus,� are system variables and � are apparatus variables.
The comma denotes functional differentiation and lower-
case (capital) latin letters are used to indicate derivatives
with respect to system (apparatus) variables. We make use
of DeWitt’s condensed notation, where a summation over
discrete indices indicates an integration over the argument
of the field (e.g., given Aiðx; tÞ and Biðx; tÞ, AiBi should be
read as

P
i

R
dxdtAiB

i). The solutions of the uncoupled
equations will be called �0 and �0, respectively.

Once the uncoupled field configurations are calculated,
one introduces the interaction term �½�; ��. The interac-
tion is assumed to last for a finite time only, which means
that all terms describing the perturbations that arise due to
the interaction (i.e., ��, ��, etc.) must satisfy retarded
boundary conditions,

lim
t!�1��ðtÞ ¼ 0; lim

t!�1��ðtÞ ¼ 0: (4)

If we take into consideration the interaction term, the total
action functional takes the form

S½�� þ �½�� ! S½�� þ�½�� þ g�½�; ��; (5)

with a small dimensionless coupling constant g.
We now introduce the assumption that the coupling is

weak and expand the equations derived from (5) around the
solutions �0 and �0 of the uncoupled equations,

S;i½�0 þ ��� þ g�;i½�0 þ ��; �0 þ ��� ¼ 0;

�;I½�0 þ ��� þ g�;I½�0 þ ��; �0 þ ��� ¼ 0;

where due to the small coupling the stationary points are
expected to lie close to �0 and �0. This leads to the func-
tional Taylor series

S;i½�0� þ S;ij½�0���j þ 1

2
S;ijk½�0���j��k

þ g�;i½�0; �0� þ g�;ij½�0; �0���j

þ g�;iI½�0; �0���I þ � � � ¼ 0 (6)

and

�;I½�0� þ�;IJ½�0���J þ 1

2
�;IJK½�0���J��K

þ g�;I½�0; �0� þ g�;IJ½�0; �0���J
þ g�;Ii½�0; �0���i þ � � � ¼ 0: (7)

In principle, Eqs. (6) and (7) can be used to derive solutions
to any order. Within DeWitt’s scheme one has to calculate
from (6) the change in the configuration of the system only
to first order, that is, to solve

S;ij½�0���j ¼ �g�;i½�0; �0�: (8)

Backreaction of the apparatus change onto the system
(which would correspond to the term g�;iI��

I) is thus

not considered. Note that terms involving the first func-
tional derivative of the action vanish because�0 and �0 are
solutions of the uncoupled equations of motion. To get an
expression for the apparatus which takes into account the
system changes, it is necessary to solve Eq. (7) to second
order. The calculation simplifies if we now make use of the
second assumption and neglect all second-order terms
involving �� and any �� terms that appear together with
�� terms of the same order. When this is done, we are led
from (7) to the equations

�;IJ½�0���J ¼ �g�;I½�0; �0� � g�;Ii½�0; �0���i: (9)

The last term describes the backreaction of the system on
the apparatus. It is also possible to have the special case
where the interaction between system and apparatus causes
no system disturbance, that is, with ��i ¼ 0. In this case,
one needs to use (7) without the above approximation of
neglecting certain terms in ��.
Finally, one needs to choose an appropriate apparatus

observable, A, to calculate the change, �A, which arises
due to the disturbance, ��, within the apparatus configu-
ration,

�A ¼ A;I��
I: (10)

While the brief description given here does not present
DeWitt’s original procedure in full (which makes use of
Peierls brackets and Green’s functions, see Sec. IVC), it is
sufficient for the analysis presented in the next subsection,
where we apply the formalism to a concrete model. Note
that so far the analysis is entirely classical.
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B. Mass-cube interacting with a gravitational wave
packet

The motivation for this model arose from the critique of
[4] presented in Sec. II. While the actual results and
interpretations at the end of this subsection are heuristic,
it will be shown that they support our critique mentioned
before.

We consider a cube with homogeneous mass density
interacting with a linear gravitational wave packet. The
cube is characterized by its edge length, a, and its mass,M.
Its speed is assumed to be small compared to the speed of
light (nonrelativistic approximation). It can be described
by the action

S ¼
Z

dt
1

2
M _r2 ¼ 1

2

Z
d4x� _r2: (11)

The mass density of the cube is given by

� ¼ M

a3
�

�
x1 � x1cmðtÞ þ

a

2

��
1��

�
x1 � x1cmðtÞ �

a

2

��

��

�
x2 � x2cmðtÞ þ

a

2

��
1��

�
x2 � x2cmðtÞ �

a

2

��

��

�
x3 � x3cmðtÞ þ

a

2

��
1��

�
x3 � x3cmðtÞ �

a

2

��
;

(12)

the subscript ‘‘cm’’ is an abbreviation for ‘‘center of
mass,’’ and the xicm are the time-dependent coordinates of

the center of mass of the cube, that is, they correspond to
the aforementioned dynamical variable of the system �. A
possible solution of the free equation of motion, that is, the
solution corresponding to the �0 above, is

r cmðtÞ ¼ ð0; vt; 0Þ; (13)

which is unaccelerated motion in x2-direction with velocity
v.

If the cube consists of noninteracting particles, the com-
ponents of its stress-energy tensor read

T00 ¼ �c2 Tik ¼ �uiuk ¼ � _xicmðtÞ _xkcmðtÞ;
where � is given by (12). (We have neglected here possible
internal stresses of the cube, so the cube is in first approxi-
mation interpreted as a set of noninteracting particles.) The
linear gravitational wave packet is, as usual, a superposi-
tion of plane waves, which are solutions of the linear
Einstein equations. In the spirit of the EH-model, the
gravitational wave plays here the role of the ‘‘apparatus.’’
The Einstein equations follow from the variation of the
Einstein-Hilbert action

�½g	�� ¼
Z
d4x

ffiffiffiffiffiffiffi�gp
R

2

;

where 
 ¼ 8�G=c4. For the limit of linearized gravity one
gets

h�	� ¼ 0: (14)

Here, g	� � �	� þ 2h	� with jh	�j � 1, �	� � h	� �
1
2�	�h

�
�,�	� ¼ diagð�1; 1; 1; 1Þ, and we use the harmonic

gauge which corresponds to �	�;
� ¼ 0. We are interested

in solutions of (14) that represent gravitational waves
propagating into a direction of maximal coupling (perpen-
dicular to the path of the cube), for example, the
x1-direction:

�
!0
	�ðxÞ ¼ ReðAþeþ	�e�i!0ðt�ðx1=cÞÞÞ; (15)

where eþ	� denotes a polarization tensor which reads

eþ	� ¼
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 �1

0
BBB@

1
CCCA;

this describes the þ-polarization, see, for example, [13],
chapter 35. A superposition of such solutions with
Gaussians A0 expð�bð!0 �!Þ2=2Þ according to

�	�ðx1; tÞ ¼ Re

�
eþ	�Aþ

�
Z
d!0A0e

�ðb=sÞð!0�!Þ2�i!0ðt�ðx1=cÞÞ
�

� Re

�
eþ	�A

ffiffiffiffiffiffiffi
2�

b

s
e�ð1=2bÞðt�ðx1=cÞÞ2�i!ðt�ðx1=cÞÞ

�
;

(16)

where A ¼ AþA0, yields the requested linear gravitational
wave packet. We note that this solution�	� corresponds to

�0 in Sec. III A.
The coupling between wave and cube is modeled via a

linear interaction of the wave and the stress-energy tensor
of the mass contribution. This constitutes a nonlinear cou-
pling between the gravitational field and the particles, and
thus goes beyond the usual limit in which the particles are
only considered as test particles in an external gravitational
wave. The interaction is switched on at t ¼ T in order to
follow DeWitt’s procedure that all disturbances have to
obey Eq. (4); hence we assume

�½rðtÞ;�	�ðx1; tÞ� ¼
Z
d4xT	��

	��ðt� TÞ: (17)

The contraction of T	� with�
	� in this form of interaction

defines which states of motion will yield nonvanishing
contributions. A brief look at eþ	� shows that only the T22
and T33 components will couple to the scattering gravita-
tional wave. Moreover, they are going to contribute with
opposite sign. This indicates that certain systems, for ex-
ample, an isotropic scalar field, would not couple to such a
gravitational wave because the interaction would be pro-
portional to k22 � k23 ¼ k22 � k22 ¼ 0.
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For this model, the interaction causes disturbances �rcm
and �� of the initially free solutions (13) and (15) which,
if assumed small, are given by the general expressions (8)
and (9). Following the procedure described above (i.e., to
take the changes within the system into account in order to
calculate those of the apparatus), we first compute �rcm.

We shall use (8) with xj for the�
j and 	� for the �

J; we

set g ¼ 1. Then,

S;ij�x
j ¼ �M� €xiðtÞ; (18)

and, since T	� 
	� ¼ � _x22 

22,

� ��

�xiðtÞ ¼ �
Z
d3x

�
@�

@xi
_x22 

22 � �i2
d

dt
ð2� _x2 

22Þ
�

� �ðt� TÞ: (19)

We shall consider first the disturbance in x2ðtÞ.
Equation (8) reads for this case

�M� €x2ðtÞ ¼ � ��

�x2ðtÞ : (20)

For the right-hand side we find that only the second term in
(19) contributes. Setting T ¼ 0, we then get

� ��

�x2ðtÞ ¼
Z
d3x

�
d

dt
ð2� _x2 

22Þ
�
�ðtÞ

¼ � 2Mvc

a
�ðtÞð 22þ �  22� Þ

� 2Mv

a
�ðtÞ

Z a=2

�a=2
dx1 

22ðx1; tÞ; (21)

where

 22þ ¼ A

ffiffiffiffiffiffiffi
2�

b

s
e�ðt2þ=2bÞ�i!tþ ;

 22� ¼ A

ffiffiffiffiffiffiffi
2�

b

s
e�ðt2�=2bÞ�i!t� ;

and tþ ¼ tþ a=2c and t� ¼ t� a=2c. In the following
we do not consider the last term occurring in (21), since it
is proportional to �ðtÞ and thus only effective at the initial
time t ¼ 0. We then get from (20)

� €x2ðtÞ ¼ 2vcA

a

ffiffiffiffiffiffiffi
2�

b

s
�ðtÞReðe�ðt2�=2bÞ�i!t� � e�ðt2þ=2bÞ�i!tþÞ:

(22)

In a similar way one finds for the second time derivatives of
the other disturbances,

�M� €x1ðtÞ ¼ � ��

�x1ðtÞ ¼ �Mv2

a
�ðtÞð 22þ �  22� Þ

¼ v

2c
� €x2ðtÞ;

�M� €x3ðtÞ ¼ � ��

�x3ðtÞ ¼ 0: (23)

One recognizes from these equations that �x1ðtÞ is smaller
than �x2ðtÞ by a factor v=2c; since we work in the non-
relativistic approximation v=c� 1, we only have to con-
sider �x2ðtÞ in the following. Therefore, integrating (22)
twice, one arrives at the result for �x2ðtÞ,

�x2ðtÞ ¼ 2vcA�

a

ffiffiffiffiffiffi
2b

p
e�ðb!2=2Þ�ðtÞ � Re

��
tffiffiffiffiffiffi
2b

p þ
ffiffiffi
b

2

s �
� a

2cb
þ i!

��
erf

�
tffiffiffiffiffiffi
2b

p þ
ffiffiffi
b

2

s �
� a

2cb
þ i!

��

�
�
tffiffiffiffiffiffi
2b

p þ
ffiffiffi
b

2

s �
a

2cb
þ i!

��
erf

�
tffiffiffiffiffiffi
2b

p þ
ffiffiffi
b

2

s �
a

2cb
þ i!

��

þ 1ffiffiffiffi
�

p ðe�ððt= ffiffiffiffi
2b

p Þþ
ffiffiffiffiffiffi
b=2

p
½�ða=2cbÞþi!�Þ2 � e�ððt= ffiffiffiffi

2b
p Þþ

ffiffiffiffiffiffi
b=2

p
½ða=2cbÞþi!�Þ2Þ

�
þ C1tþ C2; (24)

where the constants C1 and C2 depend on the initial
conditions.

We are interested in the limit where t can be assumed
large, that is, after the wave has passed through and the
measurement is completed. Using the asymptotic property
of the error function,

xerfðxÞ þ e�x2ffiffiffiffi
�

p � x;

one gets

�x2ðtÞ � �2vA�e�ðb!2=2Þ þ C1tþ C2 � C1t: (25)

It is not surprising that asymptotically �x2ðtÞ increases
linearly with time, since the dust particles comprising the
cube do not interact.
We want to impose initial conditions such that �x2ð0Þ ¼

0 and � _x2ð0Þ ¼ 0. After a straightforward calculation we
find that C2 ¼ 0 and

C1 ¼ � 2vcA

a½ð a2bcÞ2 þ!2�

ffiffiffiffiffiffiffi
2�

b

s
e�a2=8bc2

�
�
a

bc
cos

�
!a

2c

�
� 2! sin

�
!a

2c

��
: (26)
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According to (25), the asymptotic behavior of �x2ðtÞ is
determined by this constant C1.

The next step in DeWitt’s procedure is the application of
(9) in order to calculate the backreaction on the gravita-
tional wave, � 	�. In this equation, only the functional

derivative of � (Eq. (17)) with respect to  22 is nonzero,
since T	� 

	� ¼ � _x22 
22; a derivative with respect to I and

J in (9) is thus a derivative with respect to  22. The left-
hand side of (9) yields

c4

4�G
h� 	�ðxÞ:

On the right-hand side, the first term gives

� ��

� 	�
¼ �� _x22�ðtÞ�	2 ��2 : (27)

The second term also yields a contribution only for	 ¼ 2,
� ¼ 2, and reads

�X
i

��

� 22�x
i �x

i ¼ �v2
�
2�D1 þ v

@�

@x2
D0 þ v

@�

@x2
D1t

�

� �ðtÞ; (28)

where D0 ¼ �2A�e�b!2=2 and D1 ¼ C1=v. Taking all
together, (9) reads

h� 22 ¼ 4�G

c4
v2
�
2�D1 þ v

@�

@x2
D0 þ v

@�

@x2
D1t

�
�ðtÞ:
(29)

We solve this equation with the help of the usual retarded
Green function,

Drðt� t0; r� r0Þ ¼ �ðt� t0Þ
4�jr� r0j�

�
t� t0 � jr� r0j

c

�
;

under the assumption that jr� r0j � jrj � r; we also in-
troduce the retarded time

tr � t� jr� r0j
c

� t� r

c
:

After some straightforward calculations, we get the result

� 22ðr; tÞ ¼ GMv2

c4r

�
1� 2C1

v

�
�ðtrÞ: (30)

The first term on the right-hand side corresponds to the first
term on the right-hand side of (9); the form of the resulting
term is well known from the generation of gravitational
waves by, for example, the circular motion of two masses
(here it is a consequence of the interaction (17)). The
second term originates from the second term in (9) and
describes the backreaction coming from �xi. We expect it
to be much smaller than the first term. Let us perform some
numerical estimates.

We take, for example, the values ! ¼ 1 Hz and a ¼
1 m (but the precise values are not important). We then

have

!a

2c
� 10�9 � 1;

and we can therefore approximate cos!a2c � 1 and sin!a2c �
!a
2c in (26). The ratio of the second term to the first term in

the parentheses of (26) is then given by !2b, which is
much bigger than 1 if we assume a narrow packet for the
gravitational wave (16) (as we shall do). We then also find
that the first term in the denominator of (26) is much
smaller than the second term. We thus get

2C1

v
� 4A

ffiffiffiffiffiffiffi
2�

b

s
e�a2=8bc2 : (31)

The size of the backreaction in (30) is thus proportional to
the amplitude of the gravitational wave as expected. If we

take A=
ffiffiffi
b

p � 10�20 (which should be a realistic value for
an astrophysical gravitational wave), we see that the back-
reaction term is tiny. Since the exponential in (31) is � 1
for our values of parameters, we get from (30)

� 22ðr; tÞ � GMv2

c4r

�
1� 4A

ffiffiffiffiffiffiffi
2�

b

s �
: (32)

We have obtained this result from the application of the
general expression (9). This formula follows after neglect-
ing certain terms in the more general formula (7). But can
this be justified? After all, a gravitational wave is not a
massive apparatus in the original sense of DeWitt’s analy-
sis. If we compare (9) with (7), there are only two terms
that are being neglected, the third and fifth terms of (7).
One then needs to justify neglecting these two terms. In our
case, the fifth term is identically zero because the interac-
tion term (17) is linear in the field  	�, and therefore its
second functional derivative is zero. To justify neglecting
the third term, notice that this term is proportional to the
square of � 22. But, according to the approximate calcu-
lation that has been carried out, see (30), � 22 is of order
v2=c4. One can therefore assume that the third term must
be of order v4=c8, and therefore it is safe to neglect it in the
nonrelativistic approximation. The approximation (9) is
thus a good one because of the form of the interaction
and the nonrelativistic approximation.
We now need to consider a suitable ‘‘apparatus quan-

tity’’ of the gravitational wave to be measured, cf. (10). We
choose the energy density of the gravitational wave,

Að�	�Þ � TGW
00 ¼ c2

8�G
_�	�

_�	�: (33)

The change of TGW
00 is given by

�TGW
00 ¼ c2

8�G

Z
d3x0dt0

�TGW
00

��	� ��
	�

¼ � c2

4�G
€ 22� 22; (34)
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since � _ 22 ¼ 0 (neglecting, again, a delta-function contri-
bution). If we use again b�1 � !2 and set t � x1=c
(because only then do we get a noticeable contribution

from a packet peaked around t� x1=c), we get € 22 �
�A!2

ffiffiffiffiffiffiffiffiffiffiffiffi
2�=b

p
, and therefore

�TGW
00 � A!2Mv2

4�rc2

ffiffiffiffiffiffiffi
2�

b

s �
1� 4A

ffiffiffiffiffiffiffi
2�

b

s �
: (35)

(Note that the dependence on a has dropped out in this
limit.) The measurement of �TGW

00 thus yields directly

information about the kinetic energy of the cube (and
also about a if higher-order corrections are taken into
account).

These results, although derived for a classical mass
cube, are also valid, at least approximately, for a quantized
system. This follows from the fact that the equations of
motion for the center of mass of the free quantum system
are also solved by (13). The solutions of the uncoupled
equations are therefore the same; however, in the case of a
quantum system, the interaction term may differ from (17)
by terms of order @, leading to corresponding quantum
corrections to the disturbances. These corrections should
be negligible if the quantum system is large enough, in
which case our solutions are also valid for a gravitational
wave packet interacting with a quantum mass cube. The
effect of the quantum uncertainties of the system on the
disturbance of the apparatus observable is estimated below.

Regarding the EH gedanken experiment, it is of interest
to consider the limit of �TGW

00 in which the amplitude A
tends to zero. Taking A! 0 leads to a vanishing distur-
bance of the apparatus observable:

lim
A!0

�TGW
00 ¼ 0;

which suggests that obviously no measurement can be
achieved within this limit. Another way of coming into
contact with the EH gedanken experiment, at least on a
heuristical level, is to introduce quantum uncertainties for
the mass cube. The particles comprising the cube obey the
uncertainty principle. These uncertainties limit the accu-
racy for the measurement of the edge length a and intro-
duce an uncertainty that depends on the particles’ position
uncertainty �x. A simultaneous momentum measurement
will be restricted by the quantum-mechanical momentum
uncertainty �p * @=�x. It is only at this stage that the
quantum theory comes into play (and only in the weak
form of the uncertainty relation). The resulting classical
uncertainty for TGW

00 then becomes

�TGW
00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@�TGW

00

@a
�a

�
2 þ

�
@�TGW

00

@v
�v

�
2

s

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
@�TGW

00

@a
�x

�
2 þ

�
@�TGW

00

@v

@

2m�x

�
2

s
:

The minimum uncertainty is found for

�xmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

2m

�TGW
00 ;v

�TGW
00 ;a

vuut ;

and therefore

�TGW
00 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

m
�TGW

00 ;v�T
GW
00 ;a

s
:

Thus, a coupling between a weak gravitational wave and a
test body obeying the uncertainty principle in the manner
described above unavoidably transfers a minimum amount
of uncertainty to the classical system, as can be seen here
for the averaged energy density of the scattered gravita-
tional wave (for more arguments on the transfer of uncer-
tainties, see Sec. IV). But this disagrees with the
requirement in [4] that the gravitational wave, considered
as a classical system, should be free of all uncertainties
during the whole measurement. This indicates another
weakness of the arguments presented in the EH gedanken
experiment. We thus conclude from this discussion that the
corresponding assumption made in [4] is unrealistic.
Whether the derived minimum uncertainty is big enough
to strictly invalidate the EH-arguments is a different ques-
tion and beyond the scope of our discussion.

IV. INTERACTING CLASSICAL-QUANTUM
SYSTEMS

In this section, we construct an explicit model to de-
scribe the interaction of a classical gravitational wave with
a quantized field. This provides a counterexample to the
claims made in [3,4] that a system coupled to a quantum
system must, for consistency reasons, also be of quantum
nature. A number of different methods have been proposed
to model ‘‘mixed’’ classical-quantum systems; here, we
use the formalism of ensembles in configuration space
[14]. This formalism is applicable to both classical and
quantum systems and allows a general and consistent
description of interactions between them. In particular,
the correct equations of motion for the classical and quan-
tum sectors are recovered in the limit of no interaction,
conservation of probability and energy are satisfied, uncer-
tainty relations hold for conjugate quantum variables, and
the formalism allows a backreaction of the quantum system
on the classical system.
We consider one of the simplest models: a two-

dimensional version of the scalar theory of gravity of
Nordström [15,16] with a quantized massive scalar field.
Although not a viable theory of gravity [2,17], the theory of
Nordström appears to be the simplest one that has all the
ingredients that are necessary to model a gedanken experi-
ment of the Eppley and Hannah type. There are gravita-
tional waves in the theory, the coupling to the scalar field is
uniquely determined, and the calculations simplify some-
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what because the whole theory can be formulated in
Minkowski space-time (although the reformulation due to
Einstein and Fokker [18] shows that one may relax the
requirement of a flat space-time and provide a geometric
interpretation of the theory). The simple model discussed
in this section already shows the main features expected of
a more realistic description while presenting fewer techni-
cal complications, the main advantage being that the inter-
action term is simpler than the one derived from general
relativity. This will allow us to get explicit expressions for
the state of the coupled classical-quantum system that are
valid to first order in the coupling parameter for particular
classes of fields.

The scalar theory of gravity of Nordström is based on the
Lagrangian density [2]

L ¼ LN þLmatter ¼ � 1

2
�	��;	�;� � gT�þLmatter;

where �	� ¼ diagð�1; 1Þ is the two-dimensional

Minkowski metric, the commas indicate partial derivatives,
g is the coupling constant, T ¼ �	�T	� is the trace of the

energy-momentum tensor T	� and Lmatter is the

Lagrangian density of matter. It will be convenient to
consider the Hamiltonian formulation of the theory, which
in two dimensions and for the particular case where the
matter consists of a massive scalar field  takes the form

H ¼ 1

2

Z
dxð�2

� þ�02Þ þ 1

2

Z
dxð�2

 þ  02 þm2 2Þ

þ gm2
Z
dx� 2: (36)

Here, the prime indicates a derivative with respect to the
spatial coordinate.

The description of ‘‘mixed’’ classical-quantum systems
of Ref. [14] is based on a canonical formalism for describ-
ing statistical ensembles on configuration space (which is
here the space spanned by the fields � and  ). The state of
the system is described in terms of a probability P together
with its canonically conjugate variable S, and the equations
of motion are derived from an ensemble Hamiltonian. For
the model that we are considering in this section, the
equations for P and S are of the form

_Sþ
Z
dx

�
1

2

��
�S

��

�
2 þ

�
�S

� 

�
2
�

þ @
2

8

�
1

P2

�
�P

� 

�
2 � 2

P

�2P

� 2

�
� 1

2
��00

þ 1

2
 ½� 00 þ ð1þ 2g�Þm2 �

�
¼ 0 (37)

and

_Pþ
Z
dx

�
�

��

�
P
�S

��

�
þ �

� 

�
P
�S

� 

��
¼ 0; (38)

where the overdot indicates a derivative with respect to the
time coordinate.
Equation (37) has the form of a modified Hamilton-

Jacobi equation, and in the limit where @ goes to zero it
becomes identical to the Hamilton-Jacobi equation that
corresponds to Eq. (36). Equation (38) can be interpreted
as a continuity equation for the probability P. There are
some subtle issues concerning the physical interpretation
of S within the formalism of ensembles in configuration
space which we can discuss only briefly here. To maintain
full generality, S should not be regarded as a field momen-
tum density potential. In particular, for an ensemble of
classical fields with uncertainty described by probability
P, it will not be assumed that the field momentum density
of a member of the ensemble is a well-defined quantity
proportional to the functional derivative of S, as it is done
in the usual deterministic interpretation of the Hamilton-
Jacobi functional equation. This avoids forcing a similar
deterministic interpretation in the quantum and quantum-
classical cases. A deterministic picture can be recovered
for classical ensembles precisely in those cases in which
trajectories are operationally defined [14].

A. Solution for the noninteracting case

We first derive solutions for the noninteracting case (i.e.,
we set g ¼ 0). We assume

S½�; ; tÞ ¼ Sc½�; tÞ � Eqt; (39)

P½�; ; tÞ ¼ Pc½�; tÞPq½ �; (40)

where Eq is a constant. With this ansatz, (37) and (38) take
the simpler form

� _Sc þ Eq ¼ 1

2

Z
dx

��
�Sc

��x

�
2 � @

2

Aq
�2Aq

� 2
x

��x�
00
x

�  x½ 00
x �m2 x�

�
; (41)

_Pc ¼ �
Z
dx

�
�

��x

�
Pc

�Sc

��x

��
¼ 0; (42)

where we have introduced Aq � ffiffiffiffiffiffi
Pq

p
. To solve these equa-

tions, we will use standard techniques developed for the
Schrödinger functional representation of quantum field
theory [19,20]. Here, however, we work in a representation
where the pair of canonically conjugate functionals P and
S are taken as fundamental variables. Although it is pos-
sible to introduce a wave functional for the total system by

means of a transformation of the form� ¼ ffiffiffiffi
P

p
eiS=@, there

is no clear advantage in doing this as (41) and (42) do not
become linear in this case.
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We consider solutions which are of the form

Sc½�; tÞ ¼ 1

2

ZZ
dydz�yFyzðtÞ�z;

Pc½�; tÞ ¼ NcðtÞe�ð1=2Þ
RR

dadbð�a�aðtÞÞKabðtÞð�b�aðtÞÞ;

Pq½ � ¼ Nq

�
1

@

ZZ
dydz�yGyz z

�
2
e�ð1=@Þ

RR
dadb aGab b :

Equation (41) leads to

Eq � @

2

Z
dxGxx �

RRR
dxdydz�yGyxGxz zRR
dydz�yGyz z

¼ 0; (43)

_F yz þ
Z
dxFyxFxz � @2z�ðy� zÞ ¼ 0; (44)

�
Z
dxGyxGxz � ½@2z �m2��ðy� zÞ ¼ 0; (45)

while Eq. (42) leads to

_Nc

Nc
� 1

2

ZZ
dydxðyKyxxÞ: þ

Z
dxFxx ¼ 0; (46)

Z
dyðyKyzÞ� þ

ZZ
dydxyKyxFxz ¼ 0; (47)

� 1

2
_Kyz �

Z
dxKyxFxz ¼ 0: (48)

To solve these equations, we introduce (real) basis func-

tions fðkÞx that satisfy the eigenvalue equation

� @2xf
ðkÞ
x ¼ k2fðkÞx

as well as orthonormality and completeness relations of the

form
R
dxfðkÞx fðmÞx ¼ �km and

P
kf

ðkÞ
x f

ðkÞ
y ¼ �ðx� yÞ. We

have assumed discrete eigenvalues to simplify the notation,
but the extension to continuous ones is straightforward. We
now expand all quantities in terms of these basis functions
and use these expressions in (43)–(48). Equations (44),
(45), and (48) lead to representations for the kernels of
the form

Fxy ¼ �X
k

k tanðktÞfðkÞx fðkÞy ; (49)

Gxy ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
fðkÞx fðkÞy ; (50)

Kyx ¼
X
k

�k
cos2ðktÞ f

ðkÞ
x f

ðkÞ
y ; (51)

where the �k are arbitrary constants. Equations (43) and
(47) lead to representations for the functions �x andx and
also determine the value of Eq,

�x ¼ fðaÞx ; (52)

Eq ¼ @

2

Z
dxGxx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p
; (53)

x ¼
X
k

wk cosðktÞfðkÞx ; (54)

where the wk and a are arbitrary constants. The term on the
right-hand side of (53) diverges and needs to be renormal-
ized. Fortunately, the divergence can be easily isolated and
removed in this formalism: it is present in the first term of
the right-hand side. This prescription for dealing with the
energy renormalization is essentially the same one that is
used when dealing with the Schrödinger wave functional
representation of quantum field theory [20]. In our case, the
issue of the renormalization prescription is not a crucial
one, and we will not discuss it further. Finally, Nq is
proportional to a constant while Nc is determined by
Eq. (46) and is formally given by

Nc � 1

�k cosðktÞ (55)

in the generic case where none of the �k vanishes.
The physical interpretation of these solutions can be

summarized briefly as follows. The solution fSc½�; tÞ;
P½�; ; tÞg provides the field-theoretic generalization of a
solution which describes a particular ensemble in configu-
ration space for a one-dimensional classical harmonic
oscillator (i.e., a one-dimensional oscillator state which is
prepared with zero momentum and no momentum uncer-
tainty, but localized in space—see Appendix A for details);
Aq½ � is the Schrödinger wave functional for a one-particle
state specified by the eigenfunction �x ¼ fðaÞx and of en-
ergy Eq [20].

B. Solution for the interacting case (g � 1)

We now want to turn on the interaction and consider the
case where g� 1. A general solution to (37) and (38)
valid to first order in g seems quite complicated, although
in principle possible. We derive here a solution that is
correct to first order in g for a particular class of states.
In this solution, the expression for S, given by (39), re-
mains of the same form, but the expression for P, given by
(40), is modified to P½�; ; tÞ ¼ Pc½�; tÞPcq½�; � with

Pcq½�; � ¼ Nq½��
�
1

@

ZZ
dydz�yGyz½�� z

�
2

� e�ð1=@Þ
RR

dadb aGab½�� b :

That is, we now allow the kernelGxy and the normalization

factorNq to be functionals of�. With this new ansatz, (37)
and (38) lead to a set of equations similar to the set (43)–
(48) that we derived previously. Note that we do not
distinguish explicitly between quantities that are evaluated
with g ¼ 0 and with g � 0 in the rest of this section in
order not to clutter the notation.
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We first consider the three equations derived from (37):
Equations (43) and (44) remain as before, but (45) is
replaced by

�
Z
dxGyxGxz � ½@2z � ð1þ 2g�zÞm2��ðy� zÞ ¼ 0:

(56)

A solution of (56) that is correct to first order in g is given
by

Gxy½�� ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2ð1þ 2gIkÞ

q
gðkÞx gðkÞy

’ X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p �
1þ gIk

k2=m2 þ 1

�
gðkÞx gðkÞy ;

where the dependence of Gxy½�� on �x comes in through

Ik ¼
Z
dxfðkÞx �xf

ðkÞ
x :

The gðkÞx are modified eigenfunctions determined by first-
order perturbation theory,

gðkÞx ¼ fðkÞx þ X
n�k

�ðknÞfðnÞx

with

�ðknÞ ¼ 2gm2
X
n�k

�R
dxfðkÞx �xf

ðnÞ
x

k2 � n2

�
� 1:

Equation (44) is independent of both g and Gxy and there-

fore the previous solution for Fxy; equation (49), remains

valid. To solve (43), we require a �x that satisfies the
integral equation

R
dx�xGxy ¼ ��y where � is a constant.

The expression

�x ¼ fðaÞx þ X
n�a

�ðanÞfðnÞx

is correct to first order in g. We also need to ensure that Eq

remains a constant (i.e., independent of �x). This require-
ment is satisfied if we restrict to values of a that are large
enough to have a2=m2 � 1=g. In this case, the correction to
the quantum energy Eq becomes negligible (of order g2)
and can be ignored, since

Eq ¼ @

2

Z
dxGxx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p �
1þ gIa

a2=m2 þ 1

�

’ @

2

Z
dxGxx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p
:

Therefore, our solution is correct to first order in g pro-
vided the quantized field is in a state of high enough
energy.

We now consider the three equations derived from (38):
Equations (46) and (48) remain as before, but (47) is
replaced by

Z
dyðyKyzÞ� þ

ZZ
dydxyKyxFxz þ

RR
dydx �Nq

�Gyx

�Gyx

��z

Nq

�
2
RR
dydx�y

�Gyx
��z

 xRR
dydx�yGyx x

þ 1

@

ZZ
dydx y

�Gyx

��z

 x ¼ 0: (57)

The last three terms in (57) are all of order g, and the
correction due to these terms becomes negligible (of order
g2) if we restrict to gravitational waves where the constants
�k � 1=g in Eq. (51). Under this assumption, the expres-
sions for Kxy, x and N

c given by (51), (54), and (55) all

remain valid. Therefore, our solution is correct to first order
in g provided we restrict to gravitational waves�x that are
sharply peaked about x.

C. Discussion

We have considered a classical gravitational wave inter-
acting with a quantum field in the context of a two-
dimensional model and we have derived an explicit solu-
tion for this ‘‘mixed’’ classical-quantum system. Our so-
lution is valid to first order in the coupling parameter g and
for a particular class of states. While the argument of
Eppley and Hannah is based on supposed inconsistencies
that would arise when trying to couple a classical gravita-
tional wave to a quantum system, the results of this section
suggest that there is no fundamental principle that excludes
such systems. This is further evidence that the argument for
quantizing gravity cannot be based on the claim that the
nonquantization of gravity would lead to logical inconsis-
tencies of this sort. It is of interest to discuss briefly one
particular aspect of the solution derived here. In the non-
interacting case, the probability P½�; ; tÞ of the total
system is the product of the probabilities of each of the
subsystems, as expressed by (40), and this means that the
uncertainty associated with the quantized scalar field can-
not affect any averages that we calculate for observables of
the classical gravitational wave (in particular, estimates of
uncertainties such as the root mean square deviation will be
independent of the state of the quantized scalar field). But
once the interaction is turned on, and, in particular, as we
incorporate corrections that are of higher order in g, the
uncertainty of the observables of the classical gravitational
wave will depend on the particular state of the quantized
scalar field since the probability of the total system will be
a rather complicated function of the fields which will no
longer factor into a simple product. This confirms one of
the results obtained in the previous section, that uncertainty
is transferred from the quantum system to the classical
system as a result of the interaction. Since the model of
interacting classical-quantum systems discussed in this
section provides an explicit counterexample to DeWitt’s
claim that ‘‘. . .the quantization of a given system implies
also the quantization of any other system to which it can be
coupled [. . .] therefore, the quantum theory must immedi-
ately be extended to all physical systems, including the
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gravitational field’’ [3], it will be useful to examine
DeWitt’s argument to clarify this issue.

V. CRITIQUE OF DEWITT’S ARGUMENT

In order to explain and present DeWitt’s argumentation,
it is necessary to introduce an appropriate concept used by
him: the Peierls brackets. The Peierls brackets are a gen-
eralization of the ordinary Poisson brackets. A general-
ization because they directly follow from the action of the
considered system and do not require the canonical coor-
dinates and momenta to be defined in advance. But they are
nevertheless identical with the usual Poisson brackets for
standard canonical systems (if it is possible to arrive at an
unconstrained Hamiltonian formalism corresponding to
the initial Lagrangian formalism, which is the case for
nonsingular Langrange functions). This fact allows one
to apply the correspondence principle, that is, to introduce
commutators, to the measurement analysis, which in turn
enabled DeWitt to obtain his final result (67) below.

To explain the meaning of the Peierls brackets, it is
convenient to recall the formalism of Sec. III. Consider a
system S½��. Its equation of motion may be solved by �0.
A change of the action functional S will in general lead to
an equation of motion whose solution deviates from �0.
Under the requirement that this change is small, it is
natural to expand the action functional around the free
solution. Omitting higher terms allows one to calculate
the deviation �� of the system variable. The formal solu-
tion via the Green-function method reads

��j ¼ gGij�;i;

where Gij denotes the Green function in the condensed
notation. The additional action term not only produces
disturbances within the dynamical variable �0, but also
in any observable B built out of these. The expansion of B
up to first order in g leads to

B½�0 þ ��� � B½�0� þ B;i��
i;

where B;i��
i is formally given by

B;i��
i ¼ gB;iG

ij�;j � ��B:

Before we introduce the Peierls bracket, it is convenient to
define the operation

D�B � lim
g!0

1

g
��B ¼ B;iG

ij�;j:

To comply with condition (4), one can choose the retarded
Green function for the calculation of ��. Doing this leads
to the interpretation of D�B as the retarded change which
� causes within B.

The Peierls brackets are now defined as the difference
between the effects which two quantities, say A and B,
have on each other in the sense described above,

ðA; BÞ � DAB�DBA:

A formal calculation for the small disturbance of the
apparatus variable � yields

��J ¼ gGIJð�;I þ�;Ii��
iÞ

as a solution of (9). To approximate the disturbance of any
apparatus observable A, one can use a procedure analo-
gous to the one used above for system observables B; that
is, approximate A½�� � A½�0� þ �A with

�A ¼ A;I��
I ¼ gA;IG

IJð�;J þ�;Ji��
iÞ

¼ gA;IG
IJ�;J þ gA;IG

IJ�;Ji��
i

¼ gD�Aþ g2A;IG
IJ�;JiG

ij�;j

¼ gD�Aþ g2ðD�AÞ;iGij�;j

� gD�Aþ g2D�ðD�AÞ; (58)

where the omission of the ðD�AÞ;IGIJ�;J term in the last

line is justified by choosing the apparatus to be ‘‘macro-
scopic’’ compared to the system (see Sec. III).
Given a particular choice of apparatus observable, one

would like to use the expression for �A to express a system
observable in terms of the ‘‘experimental data.’’ Since this
is not possible in general, DeWitt considered the following
special case. If the coupling term � is chosen so that it
satisfies

D�A ¼ s (59)

for a particular system observable s, (58) becomes

�A ¼ gsþ g2D�s:

Then, ifD�s only depends on apparatus variables, s can be
expressed in terms of experimental data,

s ¼ �A

g
� gD�s: (60)

Since s is a function of the experimental data, there will be
an uncertainty associated with s that reflects limited knowl-
edge of the apparatus quantities. If, say, A and D�s are
only known up to �A and �D�s, the uncertainties will
propagate as

�s2 ¼ �A2

g2
þ g2ð�D�sÞ2:

If this is minimized with respect to the coupling constant g,
it becomes

�s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�D�s

p
: (61)

This equation is not very interesting if one remains at the
classical level, because both �A and �D�s can be made
arbitrarily small and hence s can be measured with arbi-
trary accuracy. But if one refers to quantum mechanics,
limitations for the product of uncertainties of conjugate
observables arise. DeWitt noticed how to reformulate (61)
to contain exactly such a product; that is, to choose

MARK ALBERS, CLAUS KIEFER, AND MARCEL REGINATTO PHYSICAL REVIEW D 78, 064051 (2008)

064051-12



� ¼ sC; (62)

where C is an apparatus variable conjugate to A, that is,
with ðA;CÞ ¼ 1. Using the identity Drð�Þsð�Þtð�Þ ¼ sð�Þ�
ðDrð�Þtð�ÞÞ enables (61) to be rewritten as

�s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�D�s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�DsCs

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�ðCDssÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�A�CjDssj

q
; (63)

provided one assumes Dss to be approximately constant.
The resulting product of uncertainties �A and �C leads to
an interesting result if one applies a quasiclassical uncer-
tainty principle to it. That is, to require the product of the
uncertainties of two conjugated observables to be limited
by the quantum-mechanical uncertainty principle
�A�C 	 @=2, and thus

�s 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@jDssj

q
: (64)

A possible interpretation of (64) could be that the achiev-
able accuracy within the measurement of even one single
observable is limited, unlike in established quantum theory
where every single quantity is assumed to be detectable
with arbitrary accuracy. This, however, would contradict
the commonly accepted principle of the determinability of
a single observable. A way of overcoming this apparent
contradiction was given by Bohr and Rosenfeld in their
work on the measurability of the quantized electromag-
netic field [1]. Bohr and Rosenfeld showed that the reason
for the apparent contradiction was that the measurement
was not performed ‘‘carefully enough.’’ They found that
the accuracy improved immediately if a particular term
was added to the total action: when considering a mea-
surement of the electromagnetic field with the help of a test
body, they found that they had to add another force to the
system. In the language of DeWitt’s approach, this means
adding a so-called ‘‘compensation term’’ to the action:

Sþ �þ g� ! Sþ�þ g�� 1

2
g2D��:

In virtue of this compensation mechanism, the second term
of (60) drops out and (63) becomes

�s ¼ �A

g
;

which contains no fundamental limitation on the measure-
ment of s anymore.

In fact, for the simultaneous measurement of two ob-
servables nothing essentially or conceptually new has to be
added. The only thing that is required is the addition of a
further coupling term corresponding to the measurement of
the second quantity s2, say �2, and the corresponding
compensation term to the action. The total coupling then
reads

gð�1 þ�2Þ � 1

2
g2D�1þ�2

ð�1 þ�2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
compensation term

:

To ensure that the resulting equations are resolvable with
respect to experimental data one has, analogously to (59)
and (62), to demand

�1 ¼ s1B1 with ðB1; A1Þ ¼ 1;

�2 ¼ s2B2 with ðB2; A2Þ ¼ 1;

D�1
A1 ¼ s1;

D�2
A2 ¼ s2:

After the introduction of classical uncertainties for the
product of �s1 and �s2 (minimized with respect to g),
this leads to

�s1�s2 ¼ 1

2
ð�A1�ð�1; s1Þ þ �A2�ð�2; s2ÞÞ: (65)

Together with

ðA1; ð�1; s1ÞÞ ¼ �ð�1; ðs1; A1ÞÞ � ðs1; ðA1;�1ÞÞ
¼ ðs1; s2Þ;

ðA2; ð�2; s2ÞÞ ¼ �ð�2; ðs2; A2ÞÞ � ðs2; ðA2;�2ÞÞ
¼ ðs2; s1Þ;

it is possible to arrive at a, as DeWitt called it, universal
principle. This is done by assuming the existence of a
fundamental principle which limits the accuracy of two,
simultaneously considered, apparatus observables by

�A�B 	 @

2
jðA; BÞj: (66)

For example, this could be A1 and A2 and, if independent of
the system trajectories, ð�1; s1Þ and ð�2; s2Þ. This funda-
mental principle together with (65) would result in the
corresponding principle for the system observables

�s1�s2 	 @

2
jðs1; s2Þj; (67)

which could be interpreted as a universal principle valid
for any two observables of any system coupled to an
apparatus obeying (66).
However, one cannot conclude from this inequality that

the system that is being measured has to be quantized. The
only place where quantum-mechanical considerations ap-
pear explicitly is in the observation that the quantization
rule ½A; B� ¼ i@ðA; BÞ applied to apparatus observables
automatically results in an uncertainty relation for A and
B that satisfies (66), and therefore that an apparatus that is
quantummechanical in nature would satisfy his fundamen-
tal principle. DeWitt’s derivation, however, makes use of
classical Poisson brackets only, which indicates that quan-
tum considerations do not play a fundamental role in his
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calculation. His argument is, after all, very general: it
applies equally well to two classical systems that interact,
or to a classical system that interacts with a quantum
system, as long as all of his requirements are satisfied.
Furthermore, one has to recall that the uncertainty relations
have nothing to do with disturbances; they only express the
limited applicability of classical concepts [7]. DeWitt’s
argument therefore does not provide a proof that the quan-
tum theory must be extended to all physical systems.

VI. OUTLOOK

Inspired by the gedanken experiment proposed in [4], we
have investigated a model in which a gravitational wave
interacts with a mass cube. In order to discuss the mutual
interaction, we have applied a DeWitt-type measurement
analysis to the coupled system. We have found that if one
system possesses some uncertainty, this uncertainty is
necessarily transferred to the other system. It does not
matter whether the uncertainty is of quantum-mechanical
or classical origin. DeWitt’s formalism is general enough
to encompass both situations. We have also shown that
some of the arguments in [4] are incorrect because they do
not take into account the quantum entanglement which
arises in the situation under study.

We have investigated a second model in which a classi-
cal gravitational wave interacts consistently with a quan-
tized scalar field. This hybrid model provides a
counterexample to the claim that a system coupled to a
quantum system must necessarily also be of quantum
nature. We have considered the argument made in [3]
that the quantum theory must be extended to all physical
systems, and have shown that this conclusion is not justi-
fied. The universal validity of quantum theory would in
turn necessarily entail the quantization of the gravitational
field, cf. also the remarks by Richard Feynman in this
context, for example: ‘‘. . .if you believe in quantum me-
chanics up to any level then you have to believe in gravi-
tational quantization . . .’’ [21]. One cannot, therefore,
conclude from these gedanken experiments alone, without
assuming the universal validity of quantum theory, that
gravity must be quantized. This is similar to the old analy-
sis by Bohr and Rosenfeld about the measurability of the
quantized electromagnetic field; this analysis does not
show that the electromagnetic field must be quantized but
that the results of the measurement analysis are in accor-
dance with the quantum electrodynamical commutation
relations, cf. [22]. Of course, by empirical arguments
(e.g., the observed coupling of photons to matter) one
knows that the electromagnetic interaction is of quantum
nature. As long as quantum-gravitational experiments are
not possible, analogous empirical arguments are unavail-
able for gravity; there exists, however, an experiment that
falsifies (under some assumptions) the standard version of
semiclassical gravity where classical gravity is coupled to

the expectation value of a quantum energy-momentum
tensor for matter [23].
From general arguments (singularity theorems, univer-

sality of gravity, unification), the quantization of gravity
seems unavoidable [2], although there is no logical proof.
The task is then to consider particular approaches to quan-
tum gravity, such as loop quantum gravity or string theory,
and to perform a quantum measurement analysis along the
lines of [1] or [3]. This is, however, left to future
publications.
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APPENDIX A: ANALOGY BETWEEN THE
CLASSICAL SECTOR OF THE HYBRID MODEL

AND THE HARMONIC OSCILLATOR

We consider here the interpretation of the solution
fSc½�; tÞ; Pc½�; tÞg for the case g! 0 which we derived
in Sec. IV.
It will be helpful to consider first a simpler but closely

related system, an ensemble in configuration space for the
classical one-dimensional harmonic oscillator. The equa-
tions that describe the state of the system are the Hamilton-
Jacobi equation and the continuity equation,

_Sosc þ 1

2

�
@Sosc
@x

�
2 þ 1

2
!2x2 ¼ 0;

_Posc þ @

@x

�
P
@Sosc
@x

�
¼ 0:

The Hamilton-Jacobi equation has a solution of the form

Soscðx; tÞ ¼ �!x2

2
tanð!tÞ:

Given Sosc, the most general solution of the continuity
equation is given by

P ¼ 1

cosð!tÞ f
�

x

cosð!tÞ
�
;

where f is an arbitrary function. In particular, there is a
Gaussian solution,

Poscðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2�cos2ð!tÞ
s

� exp

�
� 1

2

�

cos2ð!tÞ ðx� w cosð!tÞÞ2
�
;

where w and � are constants.
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At t ¼ 0, the state has average momentum

hpið0Þ �
Z
dxPðx; 0Þ @Sosc

@x
ðx; 0Þ ¼ 0

and no momentum uncertainty (i.e., �pð0Þ ¼ 0); average

position hxið0Þ ¼ w and position uncertainty �xð0Þ ¼
��1=2. The solution therefore represents a state which is
prepared with zero momentum and no momentum uncer-
tainty, but localized in space. Furthermore, when !t!
f
 �

2 ;
 3�
2 ; . . .g, Poscðx; tÞ becomes a delta function and the

particle is found at x ¼ 0 with probability one. The total
energy of the state is given by

E ¼
	
�@Sosc

@t



¼ 1

2
!2��1:

A formal solution of the quantum analogue of this
problem is obtained by taking the limit �! 0. One can

check that the wave function  ¼ ffiffiffiffiffiffiffiffiffi
Posc

p
eiSosc=@ is then a

solution of the Schrödinger equation, and that it corre-
sponds to a state which is prepared with zero momentum
and no momentum uncertainty but completely delocalized.

Consider now the solution Sc½�; tÞ and Pc½�; tÞ
of Sec. IV. To see the analogy to the one-dimensional

harmonic oscillator, evaluate Sc½�; tÞ and �Sc½�;tÞ
��x

using the representation �x ¼
P
kakf

ðkÞ
x and Fyx ¼

�P
kk tanðktÞfðkÞy fðkÞz , where the fðkÞy are the basis functions

introduced previously. This leads to

Sc½�; tÞ ¼ �X
k

ka2k
2

tanðktÞ

�Sc½�; tÞ
��x

¼ �X
k

kak tanðktÞfðkÞx :

Furthermore, Pc½�; tÞ is given by

Pc½�; tÞ ¼ NcðtÞe�ð1=2Þ
RR

dadbð�a�aÞKabðtÞð�b�aÞ

with

Kyx ¼
X
k

�k
cos2ðktÞ f

ðkÞ
x f

ðkÞ
y ; x ¼

X
k

wk cosðktÞfðkÞx ;

Nc � 1

�k cosðktÞ :

Comparing these expressions, one can see that the solution
Sc½�; tÞ is analogous to Soscðx; tÞ while Pc½�; tÞ is analo-
gous to Poscðx; tÞ.

Just as in the case of the one-dimensional harmonic
oscillator, a formal solution of the corresponding quantized
field equations is obtained by taking the limit �! 0.

APPENDIX B: SCATTERING OF CLASSICAL AND
QUANTUM NONRELATIVISTIC PARTICLES

THAT INTERACT GRAVITATIONALLY

Consider a gedanken experiment that involves the scat-
tering of two nonrelativistic particles, one a classical par-
ticle of mass M (the projectile) and the other one a
quantum particle of mass m (the target). The interaction
is assumed to be caused by the gravitational attraction
between the two particles.
This gedanken experiment is most interesting when the

initial amplitude for the quantum particle (i.e., as t! �1
when the two particles are very far from each other so that
the interaction term can be neglected) has two peaks of
equal magnitude, A and B, that are well separated. Then, in
a measurement, the quantum particle will be ‘‘found’’ at
the location of peak A (with probability 1=2) or at the
location of peak B (with probability 1=2). (In the Everett
interpretation, the measuring agency is entangled with
these separate possibilities.) Consider the case where the
classical particle comes very close to peak A and remains
at all times at a very large distance from peak B.
What happens when the classical particle scatters from

the quantum particle? A ‘‘naive approach’’ suggests three
possible mutually exclusive outcomes: (a) the quantum
particle is found at the location of peak A and the classical
particle comes very close to the quantum particle of mass
m: the scattering is very strong; (b) the quantum particle is
found at the location of peak B and the classical particle
never comes very close to the quantum particle of mass m:
the scattering is very weak; (c) as in ‘‘semiclassical grav-
ity’’, cf. [23], the classical particle ‘‘sees’’ a mass m=2 at
the location of peak A and it ‘‘sees’’ a mass m=2 at the
location of peak B: the scattering is about one half of what
one would calculate under assumption (a).
Each of these possibilities seems unrealistic. The source

of difficulties is, clearly, the use of the ‘‘naive approach’’: it
is impossible to derive any reasonable conclusion without
introducing a concrete model for this mixed classical-
quantum system. We show below that none of these out-
comes is supported by a more careful analysis.
The formalism of configuration space ensembles allows

a general and consistent description of interacting
classical-quantum systems [14,24], and we will now apply
it to this problem. Using this formalism, it is straightfor-
ward to set up the equations that are needed to describe the
gedanken experiment. Let q denote the configuration space
coordinate of a quantum particle of mass m, and x denote
the configuration coordinate of a classical particle of mass
M, and consider an interaction term of the form

Vðq; xÞ ¼ �G mM

jx� qj :

Within this formalism, the equations that describe the
system are derived from the Hamiltonian
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~HQC½P; S� ¼
Z
dqdxP

�jrqSj2
2m

þ jrxSj2
2M

�G
mM

jx� qj
þ @

2

4

jrq logPj2
2m

�
(B1)

and take the form

@P

@t
¼ �rq:

�
P
rqS

m

�
�rx:

�
P
rxS

M

�
; (B2)

� @S

@t
¼ jrqSj2

2m
þ jrxSj2

2M
� @

2

2m

r2
qP

1=2

P1=2
�G

mM

jx� qj :
(B3)

Equations of this type have been studied in detail in
Refs. [14,24], and we refer the reader to these papers;
here we summarize a few aspects of the formalism.
Moreover, Sec. IV presents a detailed discussion of a
model based on this approach.

The state of the mixed classical-quantum system is
described by two functions, Pðx; q; tÞ and Sðx; q; tÞ, which
have the following physical interpretation: P is a probabil-
ity density defined over configuration space, and 1

MPrxS

( 1
mPrqS) is a probability current associated with the clas-

sical (quantum) particle. Equation (B2) has the form of a
continuity equation, and (B3) has the form of a modified
Hamilton-Jacobi equation. One may introduce a wave

function of the form  ¼ ffiffiffiffi
P

p
eiS=@ which will satisfy a

nonlinear generalization of the Schrödinger equation.
Already the equations show some features that tell us

what to expect of the solutions:

(1) When j @
2

2m

r2
qP

1=2

P1=2 j � jG mM
jx�qj j, we can neglect the

term proportional to @
2

2m

r2
qP

1=2

P1=2 in (B3). This will be the

case when the mass m of the quantum system is large
enough for this inequality to be valid. But if this is the
case, (B3) reduces to the classical Hamilton-Jacobi equa-
tion and we end up with the equations of a classical-
classical system. This shows that the formalism has the
correct classical limit.

(2) If the interaction term Vðq; xÞ ¼ �G mM
jx�qj that ap-

pears in (B3) is very small (say at t! �1 when the two
particles are very far from each other) and there is no initial
correlation between the particles, then the nonlinearity in
the equations of the quantum particle will amount to only a
small perturbation and the superposition principle will be
valid for the quantum sector to a very good approximation.
This means that the formalism has the correct quantum
limit. Notice, however, that the equations are nonlinear
when the interaction term is taken into consideration: the
quantum superposition principle breaks down when the
interaction between the classical and quantum particles is
strong.

(3) Suppose that the systems were independent before
the interaction (i.e., at t! �1 when the two particles are

very far from each other). That amounts to postulating
initial conditions

Pð�1Þðx; q; tÞ ¼ Pð�1Þ
C ðx; tÞPð�1Þ

Q ðq; tÞ
Sð�1Þðx; q; tÞ ¼ Sð�1Þ

C ðx; tÞ þ Sð�1Þ
Q ðq; tÞ:

Before the interaction, the combined classical-quantum
system breaks up naturally into classical and quantum
sectors. However, after the interaction, the two systems
will not be independent anymore, and we will have

Pðþ1Þðx; q; tÞ � Pðþ1Þ
C ðx; tÞPðþ1Þ

Q ðq; tÞ
Sðþ1Þðx; q; tÞ � Sðþ1Þ

C ðx; tÞ þ Sðþ1Þ
Q ðq; tÞ:

Now the combined classical-quantum system will no lon-
ger have well-defined classical and quantum sectors. This
means that a measurement of the position of either the
classical or quantum particle will force a change of the
fields fPðx; q; tÞ; Sðx; q; tÞg that describe the total system. In
other words, the classical and quantum sectors have be-
come entangled.
(4) Cases (a) and (b) of the ‘‘naive approach’’ are

‘‘either-or’’ outcomes that implicitly assume that there is
no entanglement in the case of mixed classical-quantum
systems. But we have just shown that a consistent theory of
interacting classical-quantum systems leads to final states
that are entangled. We have to conclude therefore that
these two outcomes are not supported by a more careful
analysis and that they must be rejected. Furthermore, the
theory that we have used is fundamentally different from
standard ‘‘semiclassical gravity.’’ Therefore, case (c) of the
‘‘naive approach’’ is also excluded.
The predictions of the mixed classical-quantum system

described by (B2) and (B3) differ then substantially from
the outcomes predicted using the ‘‘naive approach.’’ The
qualitative features of the solution can be determined
without carrying out a detailed calculation. To do this,
we introduce center-of-mass and relative coordinates

�x :¼ mqþMx

mþM
; r :¼ q� x;

and the total mass MT and relative mass 	 defined by

MT :¼ mþM; 	 :¼ mM

mþM
:

Rewriting the Hamiltonian (B1) in terms of these new
coordinates leads to [14]

~HQC ¼
Z
d �xdrP

�jr �xSj2
2MT

þ @
2m

4ðmþMÞ
jr �x logPj2

2MT

�

þ
Z
d �xdrP

�jrrSj2
2	

þ @
2M

4ðmþMÞ
jrr logPj2

2	

�G
	MT

jrj
�
� @

2

4ðmþMÞ
Z
d �xdr

r �xP:rrP

P
:

(B4)
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To interpret this expression, compare to the Hamiltonian of
a purely quantum system, which is of the general form [14]

~H Q½P; S� ¼
Z
dqP

�jrSj2
2m

þ @
2

4

jr logPj2
2m

þ VðqÞ
�
:

We see then that the Hamiltonian ~HQC in (B4) is the sum of

three terms: (i) a quantumlike term corresponding to free
center-of-mass motion but with a rescaled Planck constant

@ �X :¼ ½m=ðmþMÞ�1=2@;
(ii) a quantumlike term corresponding to relative motion in

a potential VðrÞ ¼ �G	MT

jrj but with a rescaled Planck

constant

@ R :¼ ½M=ðmþMÞ�1=2@;
and (iii) an intrinsic interaction term. One would expect
then a solution with qualitative features that resemble
those of a purely quantum system, however with important
modifications induced by the (iii) term and the rescaling of
the Planck constant in (i) and (ii). Regarding conservation

laws, we point out that the equations of motion (B2) and
(B3) are invariant under Galilean transformations [14];
therefore the usual conservation laws that follow from
Galilean invariance apply. A more detailed analysis of
this particular mixed classical-quantum system is in
preparation.
(5) As mentioned before, the wave function  associated

with this mixed classical-quantum system obeys a non-
linear generalization of the Schrödinger equation and the
theory can be seen as a nonlinear modification of quantum
mechanics. Therefore, the concepts that are used to de-
scribe measurements in quantum theory will have their
counterparts in this formalism, although perhaps with lim-
ited validity. For example, if we want to modify standard
quantum theory by introducing a wave function collapse
(i.e., a discontinuous change in the wave function due to an
observation), then we will need to assume that there is
something equivalent here that applies to the whole system
(i.e., a discontinuous change in fPðx; qÞ; Sðx; qÞg due to an
observation).
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