
Homogeneous noncommutative quantum cosmology

Marco Maceda,* Alfredo Macı́as,+ and Luis O. Pimentel‡

Depto. de Fsica, Universidad Autnoma Metropolitana-Iztapalapa, A.P. 55-534, C.P. 09340, Mexico D.F.
(Received 12 May 2008; published 15 September 2008)

Using the Groenewold-Moyal product, the noncommutative Bianchi IX model is constructed by

imposing commutation relations on the minisuperspace variables ð�; �þ; ��Þ. A noncommutative

‘‘wormhole’’ solution to the corresponding Wheeler-DeWitt equation is constructed and its behavior at

fixed � is analyzed.
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I. INTRODUCTION

In this work we consider quantum cosmological models
for Bianchi type IX models in the generalized vacuum
scalar-tensor theories of gravity defined by the action

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
R: (1)

The line element for the class of spatially homogeneous
space-times is given by

ds2 ¼ �dt2 þ hab!
a!b; a; b ¼ 1; 2; 3; (2)

where hab is a function of cosmic time t and represents the
metric on the surfaces of homogeneity and !a are one-

forms. The three-metric may be parametrized by hab ¼
R2
0e

�2�ðe2�ðtÞÞab, where e�3� represents the effective vol-

ume of the universe and

�ab :¼ diagð�þ þ 2
ffiffiffi
3

p
��; �þ � 2

ffiffiffi
3

p
��;�2�þÞ (3)

is a traceless matrix that determines the anisotropy of the
universe.

According to Misner [1,2], the corresponding Hamil-
tonian is

H2 ¼ p2þ þ p2� � 24�2ð3ÞRg (4)

where

ð3ÞRg ¼ � 3
32R

4
0e

�4�ðV � 1Þ (5)

and

Vð�; �þ; ��Þ :¼ 1þ 1
3 Trðe4� � 2e�2�Þ

¼ 1þ 2
3e

4�þ½coshð4 ffiffiffi
3

p
��Þ � 1� þ 1

3e
�8�þ

� 4
3e

�2�þ coshð2 ffiffiffi
3

p
��Þ: (6)

From Eq. (4) we obtain then

½�p2
� þ p2þ þ p2� þ e�4�ðV � 1Þ��ð�; �þ; ��Þ ¼ 0

(7)

where we have set H2 ¼ p2
� and the scale factor R0 has

also been chosen as R0 ¼
ffiffiffiffiffi
2
3�

q
.

Equation (7) admits the rewriting [3]

½�p2
� þ p2þ þ p2� ��2

;� þ�2
;�þ þ�2

;���
��ð�; �þ; ��Þ ¼ 0 (8)

where

�ð�; �þ; ��Þ :¼ 1
6e

�2� Trðe2�Þ
¼ 1

6e
�2�½2e2�þ coshð2 ffiffiffi

3
p

��Þ þ e�4�þ�:
(9)

Several solutions are known to Eq. (8) in the commuta-
tive case [4–8]. The simplest solution is obtained by re-
writing Eq. (8) in the form

½ð@� ��;�Þð@� þ�;�Þ � ð@þ ��;�þÞð@þ þ�;�þÞ
� ð@� ��;��Þð@� þ�;��Þ��ð�; �þ; ��Þ ¼ 0

(10)

after factorization followed of the quantization (@ ¼ 1)

p� :¼ �i@�; pþ :¼ �i@�þ ¼: �i@þ;

p� :¼ �i@�þ ¼: �i@�:
(11)

One obtains thus the set of equations

ð@� þ�;�Þ� ¼ 0; ð@þ þ�;�þÞ� ¼ 0;

ð@� þ�;��Þ� ¼ 0
(12)

leading to the ‘‘wormhole’’ solution [6]

�W:H: ¼ exp½���: (13)

A straightforward calculation shows that from Eq. (10)
we can write the Wheeler-DeWitt equation for Bianchi IX
cosmology as

½@2��@2þ�@2�� 12�þ e�4�ðV� 1Þ��ð�;�þ;��Þ¼ 0:

(14)

The term proportional to � arises due to factor order-
ing [3].
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II. NONCOMMUTING CASE

Several models [9–11] involving noncommutative de-
formations have been studied in the last few years based on
the use of the Groenewold-Moyal (GM) product [12,13],
which is defined as

ðf ? gÞðxÞ :¼ exp

�
i

2
���@�@

0
�

�
fðxÞgðx0Þjx¼x0 :

The GM star product acting on the variables�, �þ, �� of
minisuperspace will be defined with the help of the follow-

ing commutators

½�; �þ�?1
¼ i�1; ½�; ���?2

¼ i�2;

½�þ; ���?3
¼ i�3:

(15)

In the above we have chosen the symbols ?i to denote the
different star products.
We shall now introduce noncommutativity in the model

presented in Sec. I. Our starting point will be the equivalent
of Eq. (10) before quantization, namely

½ðip� ��;�Þ? ðip� þ�;�Þ � ðipþ ��;�þÞ? ðipþ þ�;�þÞ� ðip� ��;��Þ? ðip� þ�;��Þ�?�ð�;�þ;��Þ ¼ 0:

(16)

Here ? :¼ ?1 � ?2 � ?3.
The GM star product affects effectively in Eq. (16) the

terms involving the function �. However, it is known that
the commutation relations given by Eq. (15) can be im-
plemented in terms of commutative variables and ordinary
product of functions through the replacements

� ! �� 1
2�

1pþ � 1
2�

2p�;

�þ ! �þ þ 1
2�

1p� � 1
2�

3p�;

�� ! �� þ 1
2�

2p� þ 1
2�

3pþ

(17)

where

½�; p�� ¼ i; ½�þ; pþ� ¼ i; ½��; p�� ¼ i:

(18)

This way of proceeding is known generally as a Bopp shift
map [14–16]: it will modify the dependence of � (and V)
on the variables �, �þ, ��, which are now commuting
variables.

A. Noncommutative ‘‘wormhole’’ solution

The simplest solution to look for is the GM de-
formed one generalizing Eq. (13). Actually, in the spirit
of the commutative ‘‘wormhole’’ solution we obtain the
constraints

ðip� þ�;�Þ ?� ¼ 0; ðipþ þ�;�þÞ ?� ¼ 0;

ðip� þ�;��Þ ?� ¼ 0: (19)

After the quantization

p� :¼ �i@�; pþ :¼ �i@þ; p� :¼ �i@�;
(20)

we finally arrive to the set of equations

ð@� þ�;�Þ ?� ¼ 0; ð@þ þ�;�þÞ ?� ¼ 0;

ð@� þ�;��Þ ?� ¼ 0: (21)

This system of equations clearly generalizes the commu-
tative one in Eq. (12). Using now the Bopp shifts defined
previously in Eq. (17) and taking into account Eq. (9) we
have explicitly

@�� ¼ þ 1

3
e�2��i�1@þ�i�2@�½2e2�þ�i�1@�þi�3@� coshð2 ffiffiffi

3
p

�� � i
ffiffiffi
3

p
�2@� � i

ffiffiffi
3

p
�3@þÞ þ e�4�þþ2i�1@��2i�3@���;

@þ� ¼ � 1

6
e�2��i�1@þ�i�2@�½4e2�þ�i�1@�þi�3@� coshð2 ffiffiffi

3
p

�� � i
ffiffiffi
3

p
�2@� � i

ffiffiffi
3

p
�3@þÞ � 4e�4�þþ2i�1@��2i�3@���;

@�� ¼ � 2ffiffiffi
3

p e�2��i�1@þ�i�2@�e2�þ�i�1@�þi�3@� sinhð2 ffiffiffi
3

p
�� � i

ffiffiffi
3

p
�2@� � i

ffiffiffi
3

p
�3@þÞ�: (22)

The system just written has a rather complicated look. It is
therefore desirable to find a suitable way to find a solution
to it. Consider then the system of equations in Eq. (21),
which we write as

~r� ¼ � ~r� ?�; ~r :¼
@�
@þ
@�

0
@

1
A: (23)

We recall now the definition of the path-ordered
exponential

PeðtÞ :¼ P? exp

�Z t

0
dtAðtÞ

�
(24)

in the 1-dimensional case via its initial value problem

@PeðtÞ
@t

¼ AðtÞ ? PeðtÞ; Peð0Þ ¼ 1: (25)

The path ordering P in Eq. (24) is done with respect of the
?-product. In terms of a Taylor series development one has
the expression
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PeðtÞ ¼ 1þ
Z t

0
dt1Aðt1Þ þ

Z t

0
dt1

Z t1

0
dt2Aðt1Þ ? Aðt2Þ

þ
Z t

0
dt1

Z t1

0
dt2

Z t2

0
dt3Aðt1Þ ? Aðt2Þ ? Aðt3Þ

þ . . . (26)

where . . . means higher order terms constructed in an
obvious way. It is then clear that for our problem under
study we can write the following expression as a solution to
Eq. (23)

�ð�; �þ; ��Þ ¼ P? exp

�
�
Z
�

~ds � ~r�
�

¼ P? exp

�
�
Z 1

0
d�

~ds

d�
� ~r�

�
(27)

where

~ds :¼
d�
d�þ
d��

0
@

1
A

and � denotes a path in parameter space starting at the
origin and ending at an arbitrary point ð�; �þ; ��Þ so that
�ð0; 0; 0Þ ¼ 1. In the second equality we have chosen to
introduce a variable � parametrizing the path �.

We should mention that equations of the same type as
those in the system Eq. (21) have appeared in the context of
noncommutative gauge theories [17–20]. In this case the

relevant object is given by the expression

Wðp; ~AÞ ¼
Z

d4xe�ip�xP? exp

�
ie
Z 1

0
d�

~d�

d�

� ~Aðxþ �ð�ÞÞ
�

(28)

with �ið0Þ ¼ 0, �ið1Þ ¼ li. This defines an open Wilson
line and the choice of parametrization �ið�Þ ¼ �ijpj�

corresponds to a straight Wilson line [18].

III. LOWEST ORDER CONTRIBUTIONS

From the formal point of view our solution Eq. (27) has
the same functional form as the commutative one. Two
new features are present however, the path ordering pre-
scription and the star product in the integrals associated to
it. In contrast to previous works, a closed expression for�
seems to be rather difficult to write. We shall thus calculate
the difference

��ð�; ~�Þ ¼ P? exp

�
�

Z
�

~ds � ~r�
�
� exp½��� (29)

to first order on the deformation parameters ~� ¼
ð�1; �2; �3Þ. Using Eq. (26) we have then

��ð�; ~�Þ ¼
Z
�
dsi1

Z
�
dsj2ð�;i ?�;j ��;i�;jÞ ¼

Z
�
dsi1

Z
�
dsj2ð�B:shift

;i ��;iÞ�;j

¼
Z
�
d�1ð�B:shift

;�1
��;�1

Þ�þ
Z
�
d�þ1ð�B:shift

;þ1 ��;þ1Þ�þ
Z
�
d��1ð�B:shift

;�1 ��;�1Þ�

¼
Z
�
ðd�1Ŝ�1

�þ d�þ1Ŝ�þ1
�þ d��1Ŝ��1

�Þ; (30)

where we have used the Bopp shifts in the second equality
and introduced the following operators

Ŝ� :¼ � 1

3
e�2� ~A1 � ~X; Ŝ�þ :¼þ 2

3
e�2� ~A2 � ~X;

Ŝ�� :¼ þ 2ffiffiffi
3

p e�2� ~A3 � ~X (31)

with

~A 1 :¼
2e2�þ coshð2 ffiffiffi

3
p

��Þ þ e�4�þ

2e2�þ coshð2 ffiffiffi
3

p
��Þ � 2e�4�þ

2
ffiffiffi
3

p
e2�þ sinhð2 ffiffiffi

3
p

��Þ

0
B@

1
CA; (32)

~A 2 :¼
e2�þ coshð2 ffiffiffi

3
p

��Þ � e�4�þ
e2�þ coshð2 ffiffiffi

3
p

��Þ þ 2e�4�þffiffiffi
3

p
e2�þ sinhð2 ffiffiffi

3
p

��Þ

0
B@

1
CA; (33)

~A 3 :¼
e2�þ sinhð2 ffiffiffi

3
p

��Þ
e2�þ sinhð2 ffiffiffi

3
p

��Þffiffiffi
3

p
e2�þ coshð2 ffiffiffi

3
p

��Þ

0
B@

1
CA; (34)

and

~X :¼
�1pþ þ �2p�
�1p� � �3p�
�2p� þ �3pþ

0
B@

1
CA ¼ i

��1@þ � �2@�
��1@� þ �3@�
��2@� � �3@þ

0
B@

1
CA: (35)

The three different vectors ~Ai encode in their expressions
part of the structure of the auxiliary potential � while the
vector ~X contains indeed the pure first order noncommu-
tative corrections.
To proceed further, we shall now use the expression for

� in Eq. (9) in order to carry out the integrals involved in

the calculation of ��ð�; ~�Þ in Eq. (30). After a straightfor-
ward calculation we obtain the following results
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Ŝ�� ¼ 0; Ŝ�þ� ¼ 2e�4��2�þ
�
�1 coshð2 ffiffiffi

3
p

��Þ þ 1ffiffiffi
3

p �2 sinhð2 ffiffiffi
3

p
��Þ þ 2ffiffiffi

3
p �3 sinhð2 ffiffiffi

3
p

��Þ
�
;

Ŝ��� ¼ 2ffiffiffi
3

p e�4��2�þ
�
�1 sinhð2 ffiffiffi

3
p

��Þ þ 1ffiffiffi
3

p �2ðcoshð2 ffiffiffi
3

p
��Þ þ 2e6�þÞ þ 2ffiffiffi

3
p �3ðcoshð2 ffiffiffi

3
p

��Þ � e6�þÞ
�
:

(36)

It is interesting to note that the contribution from the operator Ŝ� vanishes identically. With the previous expressions we
finally have

��ð�; ~�Þ ¼ 1

3
ie�4��2�þ

�
e6�þ��ð�2 � �3Þ

��þ �þ
� coshð2 ffiffiffi

3
p

��Þ 3ð2��þ þ �2þ þ �2�Þ�1 þ 2ð�þ 2�þÞ��ð�2 þ 2�3Þ
ð2�þ �þÞ2 � 3�2�

� ffiffiffi
3

p
sinhð2 ffiffiffi

3
p

��Þ 2ð�þ 2�þÞ���1 þ ð2��þ þ �2þ þ �2�Þð�2 þ 2�3Þ
ð2�þ �þÞ2 � 3�2�

�
(37)

where we have used the parametrization siðtÞ ¼ tsi.

However, due to the fact that ��ð�; ~�Þ is pure imagi-
nary, the modulus��������P? exp

�
�
Z
�

~ds � ~r�
���������

2¼ exp½�2�� ¼ j�W:H:j2

(38)

to first order on ~� (see [21] for a detailed discussion on
the probabilistic interpretation of the wave functional �).
From this result it would seem that in order to see the
effects due to noncommutativity we should consider either
higher orders on the expansion Eq. (26) or a numerical
analysis. In the next section we shall show that we can
indeed say something.

IV. NONCOMMUTATIVITY ON THE
ð�þ; ��Þ-PLANE AT FIXED �

In this section we shall consider the simplified case ~� ¼
ð0; 0; �Þ. This choice is motivated by the form of the po-
tential � since its dependence on the variable � is just
through a multiplicative factor and furthermore, an inter-
esting structure is present in the coordinate plane ð�þ; ��Þ
[1,22].

Let us then fix � to be a constant and make a Taylor
series development of Eq. (9) around the origin in the
ð�þ; ��Þ-plane. The function � (and thus the potential
V) has a very simple symmetric structure

� ¼ 1
2e

�2�½1þ 4ð�2þ þ �2�Þ�: (39)

In the commutative case then we obtain the following set of
equations

@þ� ¼ �4e�2��þ�; @�� ¼ �4e�2����: (40)

This system leads in the noncommutative case to the
following equations

@þ� ¼ �4e�2��þ ?�; @�� ¼ �4e�2��� ?�:

(41)

Using now the Bopp shifts of Eq. (17), these equations can
be rewritten as

@þ�þ 2i�e�2�@�� ¼ �4e�2��þ�;

@��� 2i�e�2�@þ� ¼ �4e�2����:
(42)

If we now introduce new variables u and v through the
relations

�þ ¼: u� 2i�e�2�v; �� ¼: vþ 2i�e�2�u (43)

we have immediately

@u ln� ¼ �4e�2�uþ 2ð2e�2�Þ2i�v;
@v ln� ¼ �4e�2�v� 2ð2e�2�Þ2i�u: (44)

It follows from them that

@v@u ln� ¼ 2ð2e�2�Þ2i�;
@u@v ln� ¼ �2ð2e�2�Þ2i�: (45)

This shows that due to noncommutativity ln� may not be
well defined and something interesting occurs.
In spite of the above, however, it is really the density

probability j�j2 that we are looking after. From Eq. (42) it
follows that

@þ ��� 2i�e�2�@� �� ¼ �4e�2��þ ��;

@� ��þ 2i�e�2�@þ �� ¼ �4e�2��� ��:
(46)

The system formed from Eq. (42) and (46) is equivalent to
the equations

@þ ln� ��� 2i�e�2�@� ln
��

�
¼ �8e�2��þ;

@� ln� ��þ 2i�e�2�@þ ln
��

�
¼ �8e�2���;

@þ ln
��

�
� 2i�e�2�@� ln� �� ¼ 0;

@� ln
��

�
þ 2i�e�2�@þ ln� �� ¼ 0

(47)

In consequence
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½1� 4�2e�4��@þ ln� �� ¼ �8e�2��þ;

½1� 4�2e�4��@� ln� �� ¼ �8e�2���
(48)

with solution

j�j2NC ¼ exp

�
� 4e�2�

1� 4�2e�4�
ð�2þ þ �2�Þ � c0

�
(49)

where c0 is a constant. We should stress that we have not
made any assumption on � but to be a constant.

To find the value of c0 it suffices to recall that in the
commutative case

j�j2C ¼ exp½�2�� ¼ exp½�4e�2�ð�2þ þ �2�Þ � e�2��
(50)

for small �þ and ��. Thus we see immediately that
c0 ¼ e�2�.

An interesting feature arises from the solution given in
Eq. (49): there do exist critical values

��c ¼ �1
2e

2� (51)

for which j�j2NC ¼ 0. For values of ��c < � < �þc , the

probability j�j2NC behaves as a decreasing exponential,

while for values in the range �þc < � or � < ��c its behavior
is dictated by an increasing exponential. The presence of
�2 in the denominator inside the brackets in the solution
Eq. (49) also exemplifies why no first order correction on �
appears on j�j2NC as shown previously in Sec. III.

Figure 1 illustrates the behavior of j�j2NC in the neigh-

borhood of the origin on the ð�þ; ��Þ-plane for several
values of � at � ¼ 1.

V. CONCLUSIONS

We have shown that when introducing commutation
relations through the GM product among the variables
ð�; �þ; ��Þ used to describe the Bianchi IX model ac-
cording to Misner’s parametrization, a deformed solution
similar in structure to the ‘‘wormhole’’ solution of the
commutative case can be obtained. The solution has been
expressed in the form of an open Wilson line by using the
path-ordered exponential, path-ordered with respect to the
star product.
Even though a closed expression has not been possible to

attain for the full set of equations, due in part to the fact that
the potential has a non trivial structure as encoded in the
supersymmetric potential�, the lowest order deviations of
the commutative case can be calculated. Furthermore, a
nontrivial structure appears even in the simplified case ~� ¼
ð0; 0; �Þ. By considering a neighborhood of the origin,
where the potential V in Eq. (6) is known to posses a highly
symmetric structure in the ð�þ; ��Þ-plane, we have been
able to show the existence of a critical value �c given by
Eq. (51) for which j�j2NC exhibits a sort of transition in its

behavior as seen from the explicit expression obtained in
Eq. (49).
It is clear that the most interesting deviation of the

commutative case happens when � ¼ �c since j�j2NC to-

tally vanishes. Even though this result is valid in a region
around the origin, it means that contrary to previous studies
on this subject something drastic happens: the probability
has a peak (local maximum strictly positive) at the origin
but as � ! �þc from the left, for example, it becomes
narrower until it completely disappears and immediately
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FIG. 1. Probability j�ð1; �þ; ��Þj2NC of the state function of the universe with j��c j ¼ e2

2 � 3:69.
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after the value �þc , a valley (local minimum strictly posi-
tive) pops up.

One should take into account that in the commutative
case j�j2C vanishes when �þ, �� ! �1 and something

similar is to be expected in the noncommutative case. This
means then for �þc < � or � < ��c , the state defined by the
wave functional at the origin is certainly not longer the
preferred one. Our result is different from previous known
works where the peak of the commutative solution is
shifted from its original place, but continues to be the
global maximum.

It is worthwhile to mention that the presence of a tran-
sition phase has also been discussed in the context of
quantum mechanics on the noncommutative plane in the
presence of a magnetic field [23,24]. In this case two very
distinct behaviors for the model are observed and this
feature in the context of quantum gravity has also been
discussed [25]. We should also mention that when studying
the canonical formulation of general relativity using mini-
superspace models, the appearance of different regimes
for the behavior of the wave function of states has been
observed [26]. The setting there however is completely
commutative.

It has been argued recently in an interesting work [27]
that it would be more natural to consider the expression

�NCð�; �þ; ��Þ ? ��NCð�; �þ; ��Þ (52)

as the relevant quasiprobability distribution. This form is
very appealing due to the fact that we are considering
noncommutative objects, but we feel that it also greatly
depends on finding a well-behaved function�NC. As men-
tioned before, in most cases of physical systems there will

be only one (partial) differential equation to be GM de-
formed and no problem would arise. However, since the
Bopp shifts make use of commutative variables, it would

seem more natural to consider�NC
��NC as the appropriate

quantity. This is certainly an issue to be further discussed.
On the mathematical side of the problem treated in this

work, we would like to say also a few words. It is known
that the expressions

�NB ¼ e�� exp½	1 þ 	2 þ 	3� (53)

and

� ¼ e�� exp½	i � 	j � 	k�; 
ijk ¼ 1 (54)

with 	i ¼ c0e
2��2�i are also solutions of the Wheeler-

DeWitt equation [3] and it would be desirable to construct
similar solutions in the noncommutative case. The shift by
the factor e�� can be performed in a straightforward way
leading to an expression differing slightly from the com-
mutative one. However, one of the serious difficulties that
arises when trying to continue with this program is an am-
biguity inherent to the definition of the variables 	i: in the

noncommutative case we may define 	1 as 	1 ¼ c0e
�2� ?

e�2�þ ? e�2
ffiffi
3

p
�� or perhaps as 	1 ¼ P?e

�2��2�þ�2
ffiffi
3

p
�� ,

for example. This leads in turn to an ambiguity in the
expressions one may obtain using a chain rule appropriate
to the star product. How to proceed is under current study.
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