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The interior of a Schwarzschild black hole is investigated at the level of phenomenological dynamics

with the discreteness corrections of loop quantum geometry implemented in two different improved

quantization schemes. In one scheme, the classical black hole singularity is resolved by the quantum

bounce, which bridges the black hole interior with a white hole interior. In the other scheme, the classical

singularity is resolved and the event horizon is also diffused by the quantum bounce. Jumping over the

quantum bounce, the black hole gives birth to a baby black hole with a much smaller mass. This lineage

continues as each classical black hole brings forth its own descendant in the consecutive classical cycle,

giving the whole extended spacetime fractal structure, until the solution eventually descends into the deep

Planck regime, signaling a breakdown of the semiclassical description. The issues of scaling symmetry

and no-hair theorem are also discussed.
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I. INTRODUCTION

It has long been suggested that the singularities in gen-
eral relativity signal a breakdown of the classical theory
and should be resolved by the quantum effects of gravity.
Loop quantum gravity (LQG) is one of such candidate
theories of quantum gravity and its application to cosmo-
logical models is known as loop quantum cosmology
(LQC) (see [1] for a review). The comprehensive formu-
lation for LQC has been constructed in detail in the spa-
tially flat and isotropic model with a free massless scalar
field [2–4], showing that the quantum evolution is deter-
ministic across the deep Planck regime and the cosmologi-
cal singularity is replaced by a quantum bounce for the
states which are semiclassical at late times. This construc-
tion was extended to k ¼ �1 Friedmann-Robertson-
Walker models to include intrinsic curvature [5,6] as well
as Bianchi I models to include anisotropy [7–10], affirming
the resolution of cosmological singularities and the occur-
rence of quantum bounces, either in the fundamental quan-
tum theory of LQC or at the level of phenomenological
dynamics.

To further extend this formulation and enlarge its do-
main of validity, the next step is to investigate loop quan-
tum geometry of the black hole and to see whether the
black hole singularity is also resolved. The simplest step is
to consider the interior of a Schwarzschild black hole, in
which the temporal and radial coordinates flip roles and
thus the metric components are homogeneous with the
Kantowski-Sachs symmetry. Thanks to homogeneity, the
loop quantization of the Schwarzschild interior can be
formulated as a minisuperspace model in a similar fashion
to LQC. This has been developed in [11–13] and its phe-
nomenological dynamics studied in [14] shows that the

black hole interior is extended to a white hole interior
through the bounce, which resolves the singularity.
The analysis in [14] is based on the original quantization

strategy (referred to as the ‘‘�o scheme’’ in this paper)
used in [12], which, as a direct transcription of the original
LQC construction in [2], introduces a fixed parameter
to impose fundamental discreteness of quantum geo-
metry. However, it has been argued that the �o-scheme
quantization in LQC leads to a wrong semiclassical limit in
some regimes and should be improved by replacing the
discreteness parameters with adaptive variables which de-
pend on the scale factors [4]. Two improved strategies
(called ‘‘ �� scheme’’ and ‘‘ ��0 scheme’’ in this paper) for
loop quantization of the Schwarzschild interior were in-
vestigated in [15] at the level of phenomenological
dynamics.
However, the results of [15] are not easily compared

with the bouncing scenario of LQC as some details are still
missing. For instance, the exact condition for the occur-
rence of the bounce has yet to be pinpointed. To have a
better understanding of the extended Schwarzschild solu-
tion, more effort is needed to investigate the quantum
corrections on the horizon and the evolution of the parame-
ters (e.g., mass of the black hole) that characterize different
classical phases across the quantum bounce.
In order to bridge the gap between the loop quantum

dynamics of cosmological models and that of
Schwarzschild black holes, a cosmological model of
Kantowski-Sachs spacetime with a massless scalar field
has been studied in [16] at the level of phenomenological
dynamics. The study of [16] not only sets a new cosmo-
logical model of LQC with inclusion of both intrinsic
curvature and anisotropy but also facilitates a methodology
to study the details of loop quantum geometry of
the Schwarzschild interior. By exploiting the methods
introduced in [16], we are able to articulate the geometrical*chiou@gravity.psu.edu
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interpretation of the extended Schwarzschild solution and
refine some observations obtained in [15].

Based on the same semiclassical approach of [16] to
incorporate loop quantum corrections, the phenomenologi-
cal dynamics of the Schwarzschild interior is investigated
in this paper with two improved quantization strategies ( ��
and ��0 schemes). In the �� scheme, the classical singularity
is resolved and replaced by the quantum bounce, which
bridges the black hole interior with the interior of a white
hole. On the other hand, in the ��0 scheme, the classical
black hole singularity is resolved and the event horizon is
diffused by the quantum bounce, across which, the classi-
cal black hole gives birth to a baby black hole with a
decreased mass in the consecutive classical cycle. This
lineage continues, giving the extended spacetime ‘‘fractal’’
structure, until eventually the triad variable pb grows ex-
ponentially while the other triad variable pc descends into
a deep Planck regime, signaling a breakdown of the semi-
classical description.

As in the Hamiltonian framework for homogeneous
models, we have to restrict the spatial integration to a finite
sized shell I � S2 to make the Hamiltonian finite. This
prescription raises the question whether the resulting dy-
namics is independent of the choice of I . It can be shown
that the phenomenological dynamics in the ��0 scheme is
completely independent of the choice of I as is the clas-
sical dynamics, while the phenomenological dynamics in
the �� scheme reacts to I and thus, in the language of the
‘‘no-hair’’ theorem, one extra parameter (mass of the con-
joined white hole) is required to completely characterize
the extended Schwarzschild solution.

In addition to the issues related to the dependence on I ,
the phenomenological dynamics also reveals interesting
scaling symmetry, which is suggestive that the fundamen-
tal scale (area gap) imposed for the spatial geometry may
give rise to a fundamental scale in temporal measurement.

This paper follows the steps in [16] as closely as possible
and uses the same notations thereof.1 In Sec. II, the
Ashtekar variables with the Kantowski-Sachs symmetry
are introduced and the classical geometry of the
Schwarzschild interior is solved in Hamiltonian formalism.
The phenomenological dynamics with discreteness correc-
tions of loop quantum geometry is constructed and solved
in Sec. III for the �� and ��0 schemes, respectively. The
scaling symmetry and related issues are discussed in
Sec. IV. Finally, the results are summarized and discussed
in Sec. V. For comparison, the phenomenological dynam-
ics in the �o scheme is also included in the Appendix.

II. CLASSICAL DYNAMICS

In this section, we first briefly describe the Ashtekar
variables for the geometry invariant under the

Kantowski-Sachs symmetry [12]. In the Hamiltonian
framework, we then solve the classical solution in terms
of Ashtekar variables for the interior of a Schwarzschild
black hole.

A. Ashtekar variables with the Kantowski-Sachs
symmetry

The metric of homogeneous spacetime with the
Kantowski-Sachs symmetry group R� SOð3Þ is given by
the line element:

ds2 ¼ �d�2 þ gxxð�Þdx2 þ g��ð�Þd�2

¼ �NðtÞ2dt2 þ gxxðtÞdx2 þ g��ðtÞd�2 þ g��ðtÞd�2;

(2.1)

where � is the proper time, NðtÞ is the lapse function
associated with the arbitrary coordinate time t via
NðtÞdt ¼ d�, and d�2 represents the unit 2-sphere given
in polar coordinates as

d�2 ¼ d�2 þ sin2�d�2: (2.2)

The topology of the homogeneous spatial slices is � ¼
R� S2, which is coordinatized by x 2 R, � 2 ½0; ��, and
� 2 ½0; 2��.
As in any homogeneous cosmological models, on the

homogeneous spacelike slice �, we can choose a fiducial
triad field of vectors oeai and a fiducial cotriad field of
covectors o!i

a that are left-invariant by the action of the
Killing fields of �. (Note oeai

o!i
b ¼ �a

b.) The fiducial 3-

metric of � is given by the cotriad o!i
a:

oqab ¼ o!i
a
o!j

b�ij: (2.3)

In the comoving coordinates ðx; �;�Þ, we can choose oqab
to have

oqabdx
adxb ¼ dx2 þ d�2 þ sin2�d�2; (2.4)

which gives oq :¼ detoqab ¼ sin2�.
In connection dynamics, the canonical pair consists of

the Ashtekar variables: the densitized triads ~Ea
ið ~xÞ and

connections Aa
ið ~xÞ, which satisfy the canonical relation:

fAa
ið ~xÞ; ~Eb

jð ~x0Þg ¼ 8�G��i
j�

b
a�

3ð ~x� ~x0Þ; (2.5)

where � is the Barbero-Immirzi parameter. In the case that
connections and triads admit the Kantowski-Sachs sym-
metry R� SOð3Þ, Aa

i and ~Ea
i after gauge fixing of the

Gauss constraint are of the form [12]:

A ¼ Aa
i�idx

a

¼ ~c�3dxþ ~b�2d�� ~b�1 sin�d�þ �3 cos�d�; (2.6)

~E ¼ ~Ea
i�i@a ¼ ~pc�3 sin�@x þ ~pb�2 sin�@� � ~pb�1@�;

(2.7)

where ~b, ~c, ~pb, and ~pc are functions of time only and

1Assiduous readers are encouraged to look at [10,16] to see the
close parallels.
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�i ¼ �i�i=2 are SUð2Þ generators satisfying ½�i; �i� ¼
	ij

k�k (with �i being the Pauli matrices).

The symplectic structure on the symmetry-reduced
phase space is given by the complete symplectic structure
[as in (2.5)] integrated over the finite sized shell I � S2:

~� ¼ 1

8�G�

Z
I�S2

d3xdAa
ið ~xÞ ^ d ~Ea

ið ~xÞ

¼ L

2G�
ðd~c ^ d~pc þ 2d~b ^ d~pbÞ; (2.8)

where the integration is over � 2 ½0; ��, � 2 ½0; 2�� and
restricted to x 2 I :¼ ½0; L�; the finite interval I is pre-
scribed to circumvent the problem due to homogeneity that
the spatial integration over the whole spatial slice R� S2

diverges. (We will see that this prescription does not
change the classical dynamics but might have effects on
the quantum corrections.) The reduced symplectic form
leads to the canonical relations for the reduced canonical
variables:

f~b; ~pbg ¼ G�L�1; f~c; ~pcg ¼ 2G�L�1 (2.9)

and f~b; ~cg ¼ f~pb; ~pcg ¼ 0. It is convenient to introduce the
rescaled variables:

b :¼ ~b; c :¼ L~c; pb :¼ L~pb; pc :¼ ~pc; (2.10)

which satisfy the canonical relations:

fb; pbg ¼ G�; fc; pcg ¼ 2G�: (2.11)

The relation between the densitized triad and the 3-
metric is given by

qqab ¼ �ij ~Ea
i
~Eb

j; (2.12)

which leads to

g�� ¼ g�� ¼ g��sin
2� ¼ pc; gxx ¼ p2

b

L2pc

: (2.13)

Let Sx�, Sx�, and S�� be the three surfaces of interest,

respectively, bounded by the interval I and the equator, I
and a great circle along a longitude, and the equator and a
longitude (so that S�� forms a quarter of the sphere S2). It

follows that the physical areas of Sx�, Sx�, and S�� are

given by

A x� ¼ Ax� ¼ 2�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxg��

p ¼ 2�pb;

A�� ¼ �g�� ¼ �pc;
(2.14)

and the physical volume of I � S2 is

V ¼ 4�L
ffiffiffiffiffiffiffi
gxx
p

g�� ¼ 4�pb

ffiffiffiffiffiffi
pc

p
: (2.15)

This gives the physical meanings of the triad variables pb

and pc.
2

B. Classical solution

The vacuum solution of Kantowski-Sachs spacetime is
identified with the interior of a Schwarzschild black hole
(as will be shown in Sec. II C). The Hamiltonian constraint
of the Schwarzschild interior is given in terms of Ashtekar
variables as

H ¼ � N

2G�2

�
2bc

ffiffiffiffiffiffi
pc

p þ ðb2 þ �2Þ pbffiffiffiffiffiffi
pc
p

�
: (2.16)

This can be derived from the Hamiltonian constraint of the
full theory of LQG. (See [12] or Appendix B of [16].)
To solve the classical solution, we can simplify the

Hamiltonian by choosing the lapse function N ¼
pb

ffiffiffiffiffiffi
pc
p � V=4� and thus introducing the conformal time

variable dt0 ¼ ðpb
ffiffiffiffiffiffi
pc
p Þ�1d�. The rescaled Hamiltonian is

given by

H0 ¼ � 1

2G�2
½2bcpbpc þ ðb2 þ �2Þp2

b�: (2.17)

The equations of motion are governed by the Hamilton’s
equations:

dc

dt0
¼ fc;H0g ¼ 2G�

@H0

@pc

¼ �2��1cbpb; (2.18)

dpc

dt0
¼ fpc;H

0g ¼ �2G�@H0

@c
¼ 2��1pcbpb; (2.19)

db

dt0
¼ fb;H0g ¼ G�

@H0

@pb

¼ �b��1ðbpb þ cpcÞ � �pb;

(2.20)

dpb

dt0
¼ fpb;H

0g ¼ �G�@H0

@b
¼ ��1pbðbpb þ cpcÞ;

(2.21)

as well as the constraint that the Hamiltonian must vanish:

H0 ¼ 0) 2bcpbpc þ ðb2 þ �2Þp2
b ¼ 0: (2.22)

Notice that substituting (2.14) into (2.19) and (2.21) gives
us

b ¼ �

2
ffiffiffiffiffiffi
pc
p dpc

d�
¼ �

d

d�

ffiffiffiffiffiffiffiffiffiffi
g��

p
; (2.23)

c ¼ �

p1=2
c

dpb

d�
� �pb

2p3=2
c

dpc

d�
¼ �

d

d�

�
pbffiffiffiffiffiffi
pc
p

�

¼ �
d

d�
ðL ffiffiffiffiffiffiffi

gxx
p Þ; (2.24)

which tells that, classically, the connection variable b is the
time change rate of the square root of the physical area of
S2 [up to constant ð4�Þ�1�] and c is the time change rate of
the physical length of I (up to constant �).

2More precisely, in (2.14) pb and pc should be jpbj and jpcj
[12]. With the gauge fixing pb > 0, the opposite sign of pc

corresponds to the inverse spatial orientation, which we do not
need to consider in this paper.
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To solve the equations of motion, first note that combin-
ing (2.18) and (2.19) gives

d

dt0
ðpccÞ ¼ 0 ) pcc ¼ �Kc is constant; (2.25)

and on the other hand, (2.20) and (2.21) yield

d

dt0
ðKbÞ ¼ �p2

b with pbb ¼: �Kbðt0Þ: (2.26)

The Hamiltonian constraint (2.22) then reads as

2KbKc þ K2
b þ p2

b ¼ 0: (2.27)

By (2.26) and (2.27), we have

dKb

dt0
¼ 2KbKc þ K2

b; (2.28)

the solution of which is given by

Kbðt0Þ ¼ �2Kc


e2Kcðt0�t00Þ

1þ 
e2Kcðt0�t00Þ
(2.29)

with 
 being a dimensionless constant specified by the
initial state:


 :¼ � Kbðt00Þ
Kbðt00Þ þ 2Kc

: (2.30)

In terms of Kbðt0Þ and the constant Kc, (2.19) and (2.21)
now read as

1

pc

dpc

dt0
� V

4�pc

dpc

d�
¼ 2Kbðt0Þ; (2.31)

1

pb

dpb

dt0
� V

4�pb

dpb

d�
¼ Kbðt0Þ þ Kc; (2.32)

the solutions to which are given by

pcðt0Þ ¼ g��ðt0Þ ¼ pcðt00Þ
�


þ 1


e2Kcðt0�t00Þ þ 1

�
2

(2.33)

and

pbðt0Þ ¼ pbðt00Þð
þ 1Þ eKcðt0�t00Þ


e2Kcðt0�t00Þ þ 1
: (2.34)

Consequently, we have

gxxðt0Þ ¼ p2
b

L2pc

¼ pbðt00Þ2
L2pcðt00Þ

e2Kcðt0�t00Þ (2.35)

and

V ðt0Þ ¼ 4�pb

ffiffiffiffiffiffi
pc

p

¼ 4�pbðt00Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pcðt00Þ

q
ð
þ 1Þ2 eKcðt0�t00Þ

ð
e2Kcðt0�t00Þ þ 1Þ2 :
(2.36)

It should be noted that, by (2.31) and (2.32), the time
reversal t0 ! �t0 corresponds to the sign flipping of Kc !

�Kc and Kbðt0Þ ! �Kbð�t0Þ simultaneously. For conve-
nience, we fix the convention Kc > 0 for black holes and
Kc < 0 for white holes. For a black hole, the Hamiltonian
constraint (2.27) then yields Kbðt0Þ< 0 and consequently

> 0.
With the help of (2.27) and (2.30), it can be shown from

(2.34) that pb reaches the maximal value

pb;max ¼ pbðt00Þ

þ 1

2
ffiffiffiffi


p ¼ Kc (2.37)

at the epoch t0 ¼ t0max satisfying 
 expð2Kcðt0max � t00ÞÞ ¼
1. That is, the constant 2�Kc can be interpreted as the
maximal value of the area Ax� ¼ Ax� � 2�pb.

The solutions of Kbðt0Þ, pbðt0Þ, and pcðtÞ all approach to
constants asymptotically as t0 ! �1. The solutions at the
epochs of particular interest are listed as follows:

Kbðt0Þ ¼
8<
:
�2Kc as t0 ! 1;
0 as t0 ! �1;
�Kc as t0 ¼ t0max;

(2.38)

pbðt0Þ ¼
�
0 as t0 ! �1;
pb;max ¼ Kc as t0 ¼ t0max;

(2.39)

pcðt0Þ¼
8><
>:
0 as t0!1;
pcðt00Þð
þ1Þ2�4G2M2 as t0!�1;
pcðt0maxÞ¼pcðt00Þð
þ1Þ2=4�G2M2 as t0 ¼ t0max:

(2.40)

Notice that the constant

pcðt0maxÞ ¼ G2M2 � pcðt00Þ
ð
þ 1Þ2

4

¼ pcðt00Þ
�

Kc

Kbðt00Þ þ 2Kc

�
2

(2.41)

¼ pcðt00Þ
�
Kbðt00ÞKc

pbðt00Þ2
�
2

(2.42)

is independent of t00 [this can be shown by taking the

derivative of the right-hand side of (2.41) with respect to
t00 with the help of (2.28) and (2.31)]. In the next section, we
will identify the constant pcðt00Þð
þ 1Þ2 as 4G2M2 withM
being the mass of the Schwarzschild black hole (i.e., the
area of the horizon is given by 16�G2M2).
Additionally, the asymptotic behavior of gxx is given by

gxxðt0Þ ¼
�1 as t0 ! 1;
0 as t0 ! �1; (2.43)

and that of V is

V ðt0Þ ¼ 0 as t0 ! �1: (2.44)

The behaviors of the classical solution are depicted in
Fig. 1. In Sec. II C, we show that the epoch t0 ¼ �1
corresponds to the event horizon of the Schwarzschild
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black hole and t0 ¼ 1 corresponds to the black hole
singularity.

Notice that, by (2.14), (2.15), and (2.24), V, pb, and c
depend on the choice of the interval I and scale as V, pb,
c / L, while pc and b are independent of I . As a result, the
constants of motion Kc as well as the function Kbðt0Þ both
scale as / L. The ratios Kc=V and Kb=V are nevertheless
independent of I ; hence (2.31) and (2.32) tell that the
differential equations for p�1c dpc=d� and p�1b dpb=d� in

terms of the proper time � are both independent of I .
Therefore, the classical dynamics is completely indepen-
dent of the finite interval I we choose to make sense of the
Hamiltonian formalism. (However, the independence of
the choice of I is not necessarily retained when quantum
corrections are taken into account.) Furthermore, the black
hole massM is also independent of I as can be seen on the
right-hand side of (2.41).

There are 4 degrees of freedom in the phase space of pb,
pc, b, and c. Imposing the Hamiltonian constraint and
taking into account the irrelevant choices of the finite
interval I and starting time t00, we end up with only 4�
3 ¼ 1 genuine degree of freedom. This affirms the ‘‘no-
hair theorem,’’ which states that, in the case of the vacuum
solution without angular momentum, stationary, asymp-
totically flat black holes are uniquely characterized by
one parameter of mass. At the level of phenomenological
dynamics with loop quantum corrections, the no-hair theo-

rem remains unchanged for the ��0 scheme but requires one
extra parameter (due to the dependence on I) in the
�� scheme, as will be studied in Sec. III A.

C. Interior of the Schwarzschild black hole

The standard expression of the Schwarzschild metric in
terms of spherical coordinates is given by

ds2 ¼ �
�
1� 2GM

r

�
dt2 þ

�
1� 2GM

r

��1
dr2 þ r2d�2;

(2.45)

which is asymptotically flat (i.e., as r! 1, the metric
components approach those of Minkowski spacetime in
spherical coordinates.) Inside the horizon, the temporal and
radial coordinates flip roles. To reflect this, we rename the
coordinates ðr; tÞ as ðt;L�1xÞ with an arbitrary scaling
factor L. The metric of the Schwarzschild interior now
reads as the form of (2.1):

ds2 ¼ �NðtÞ2dt2 þ gxxðtÞdx2 þ g��ðtÞd�2

¼ �
�
2GM

t
� 1

��1
dt2 þL�2

�
2GM

t
� 1

�
dx2

þ t2d�2; (2.46)

where t 2 ½0; 2GM�, x 2 R, andM is the mass of the black
hole. The black hole singularity corresponds to t ¼ 0 and

(a) (b)

(c) (d)

FIG. 1 (color online). Classical solution: The initial condition is given at t00 ¼ t0max (and thus 
 ¼ 1) with pbðt00Þ ¼ pb;max ¼ Kc ¼
5:� 107‘2Pl and pcðt00Þ ¼ pcðt0maxÞ ¼ G2M2 ¼ 4:� 107‘2Pl (‘Pl :¼

ffiffiffiffiffiffiffi
G@
p

is the Planck length). (a) pbðt0Þ and pcðt0Þ ¼ g��ðt0Þ.
(b) gxxðt0Þ. (c) Vðt0Þ. (d) Kbðt0Þ.

PHENOMENOLOGICAL LOOP QUANTUM GEOMETRY OF THE . . . PHYSICAL REVIEW D 78, 064040 (2008)

064040-5



the event horizon corresponds to t ¼ 2GM. Note that
different values of L correspond to different scalings of
x and, thus they all give equivalent metric.3

To show that the solution we get in Sec. II B is the
Schwarzschild interior, we first identify g�� ¼ t2. The
solution in (2.33) then yields

e2Kcðt0�t00Þ ¼ 
�1
�
�1þ ð
þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pcðt00Þ

q
t

�
(2.47)

and

� pcðt00Þ
4Kc
ð
þ 1Þ2
ð
e2Kcðt0�t00Þ þ 1Þ3 e

2Kcðt0�t00Þdt0 ¼ 2tdt: (2.48)

Consequently, (2.35) reads as

gxx ¼ 4K2
c

L2pcðt00Þð
þ 1Þ2
�ð
þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pcðt00Þ

q
t

� 1

�
(2.49)

and the solutions of (2.33) and (2.34) give

d�2 ¼ Nðt0Þ2dt02 ¼ pbðt00Þ2
4K2

c
pcðt00Þ
�ð
þ 1Þ2pcðt00Þ
ð
þ1Þ

ffiffiffiffiffiffiffiffiffi
pcðt00Þ
p
t � 1

�
dt2

¼
�ð
þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pcðt00Þ

q
t

� 1

��1
dt2 ¼: NðtÞ2dt2; (2.50)

where (2.37) has been used.
If we identify the constant of motion pcðt0maxÞ in (2.41) as

G2M2, we then have

N2ðtÞ ¼
�
2GM

t
� 1

��1
(2.51)

and

gxxðtÞ ¼
�

Kc

LGM

�
2
�
2GM

t
� 1

�
; (2.52)

which are identical to those in (2.46) with L ¼
LðGM=KcÞ.

III. PHENOMENOLOGICAL DYNAMICS WITH
LOOP QUANTUM CORRECTIONS

In the fundamental loop quantum theory with
Kantowski-Sachs symmetry [12], the Hamiltonian con-
straint incorporates two main sources of corrections:
First, the connection variables b and c do not exist and
should be replaced by holonomies; second, the discreteness
of quantum geometry also modifies the cotriad component
!c :¼ pb=

ffiffiffiffiffiffi
pc
p ¼ L

ffiffiffiffiffiffiffi
gxx
p

such that the eigenvalues of !̂c

are finite and significantly different from the classical value

near the singularity, at which pb=
ffiffiffiffiffiffi
pc
p

diverges. In the

semiclassical description, it is realized that the modifica-
tion on the cotriad !c is less important. At the level of
phenomenological analysis, following the procedures
adopted for the isotropic cosmology [17] and the
Bianchi I model [10], we will ignore the correction on
!c by simply keeping the classical function !c ¼
pb=

ffiffiffiffiffiffi
pc
p

and take the prescription to replace b, c with

b! sinð ��bbÞ
��b

; c! sinð ��ccÞ
��c

; (3.1)

introducing the variables ��b and ��c to impose the funda-
mental discreteness of loop quantum geometry.4 The heu-
ristic argument for this prescription can be found in
Appendix B of [16] from the perspective of the full (un-
reduced) theory of LQG.
With the prescription of (3.1) adopted and the cotriad

component !c unchanged, by choosing N ¼ �pb
ffiffiffiffiffiffi
pc
p

and

dt0 ¼ ð�pb
ffiffiffiffiffiffi
pc
p Þ�1d�, the (rescaled) classical Hamiltonian

(2.17) is modified to serve as the effective Hamiltonian for
the semiclassical theory:

H0�� ¼ �
1

2G�

�
2
sinð ��bbÞ

��b

sinð ��ccÞ
��c

pbpc

þ
�
sinð ��bbÞ

��b

�
2
p2
b þ �2p2

b

�
: (3.2)

The phenomenological dynamics is then solved as if the
dynamics was classical but governed by the new effective
Hamiltonian. This treatment is however only heuristic and
its validity is still questionable; a more rigorous under-
standing of the fundamental quantum dynamics would
require more sophisticated refinement. Nevertheless, the
fact that the phenomenological theory could provide an
accurate approximation (for the case where the backreac-
tion is negligible) has been evidenced in the isotropic
cosmology [4,17–19] and also affirmed in the Bianchi I
models [20].
As for imposing the fundamental discreteness of LQG

on the formulation of homogeneous spacetime, the original
construction (�o scheme) is to take ��b and ��c as constants
(referred to as �o

b, �o
c in the Appendix and � in

[12,14,15]). However, it has been shown in both isotropic
and Bianchi I models that the �o scheme can lead to the
wrong semiclassical limit5 and should be improved by a
more sophisticated construction ( �� scheme) in which the
value of discreteness parameters depends adaptively on the
scale factors (e.g., �� / 1=

ffiffiffiffi
p
p

is used in [4]) and thus

3As far as the interior is concerned, L remains arbitrary.
However, if the exterior is also taken into account, there is a
canonical convention to fix L ¼ 1 such that t ¼ L�1x in (2.45)
coincides with the proper time in the asymptotically flat regime.

4This prescription is sometimes referred to as ‘‘polymeriza-
tion’’ or ‘‘holonomization’’ in the literature.

5For the Schwarzschild interior, due to the absence of matter
content, it is not obvious whether the �o scheme gives rise to the
wrong semiclassical behavior. For completeness, the phenome-
nological dynamics in the �o scheme is presented in the
Appendix.
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implements the underlying physics of quantum geometry
of LQG more directly [4,10].

For the case with Kantowski-Sachs symmetry, there is a
variety of possibilities to implement the ��-scheme dis-
creteness. Two well-motivated constructions (referred to
as the �� scheme and ��0 scheme) are focused on in this
paper:

(i) �� scheme:

��b ¼
ffiffiffiffiffiffi
�

pb

s
; ��c ¼

ffiffiffiffiffiffi
�

pc

s
; (3.3)

(ii) ��0 scheme:

�� 0b ¼
ffiffiffiffiffiffi
�

pc

s
; ��0c ¼

ffiffiffiffiffiffiffiffiffi
pc�

p
pb

: (3.4)

Here � is the area gap in the full theory of LQG and � ¼
2

ffiffiffi
3
p

��‘2Pl for the standard choice (but other choices are

also possible) with ‘Pl ¼
ffiffiffiffiffiffiffi
G@
p

being the Planck length.
Either scheme has its own merits and until more detailed

physics is investigated it remains arguable which one is
more sensible. In particular, the �� scheme (in the version
for the Bianchi I model) is suggested in [7], since in the
construction of the fundamental loop quantum theory the
Hamiltonian constraint in the �� scheme gives a difference
equation in terms of affine variables and therefore the well-
developed framework of the spatially flat and isotropic
LQC can be straightforwardly adopted. However, it is
argued in [21] that the �� scheme may lead to an unstable
difference equation. On the other hand, the ��0 scheme does
not admit the desirable affine variables but it has the virtue
over the �� scheme that its phenomenological dynamics is
independent of the choice of I as will be seen (although
this virtue is not necessarily required when quantum cor-
rections are taken into account). To explore their virtues
and ramifications, we study both the �� scheme and the
��0 scheme at the level of phenomenological dynamics in
Secs. III A and III B respectively. (Motivations for both
schemes and more comments on them can be found in
Appendix B of [16].)

Before going into detail, we can get an idea where the
quantum corrections become appreciable by estimating the
quantities ��bb, ��cc, etc., which indicate how significant
the quantum corrections are (quantum corrections are neg-
ligible if ��bb, ��cc, etc. � 1). Plugging the classical
solutions (2.29), (2.33), and (2.34), into (3.3) and (3.4),
we have

��bb ¼ � ��b

Kb

pb

¼ ��1=2 Kb

p3=2
b

!
�1 as t0 ! 1;
0 as t0 ! �1;

(3.5)

�� cc ¼ � ��c

Kc

pc

¼ ��1=2 Kc

p3=2
c

!
�1 as t0 ! 1;
��1=2Kc

8G3M3 as t0 ! �1;
(3.6)

and

�� 0bb ¼ � ��0b
Kb

pb

¼ 4���1=2 Kb

V
!

�1 as t0 ! 1;
0 as t0 ! �1;

(3.7)

�� 0cc ¼ � ��0c
Kc

pc

¼ 4���1=2 Kc

V
!

�1 as t0 ! 1;
1 as t0 ! �1:

(3.8)

Therefore, in the �� scheme, the quantum corrections are
significant near the classical singularity and negligible on
the horizon provided that

Kc � 8G3M3

�
ffiffiffiffi
�
p ; (3.9)

which can always be satisfied if we choose I small enough
for a given M. On the other hand, in the ��0 scheme, both
the classical singularity and the horizon receive quantum
corrections.

A. Phenomenological dynamics in the �� scheme

The phenomenological dynamics in the �� scheme is
specified by the Hamiltonian (3.2) with ��b, ��c given by
(3.3). At the level of phenomenological dynamics, the
equations of motion are governed by the Hamilton’s equa-
tions and the constraint that the Hamiltonian must vanish;
these are

dc

dt0
¼ fc;H0��g ¼ 2G�

@H0��
@pc

¼ �2��1
�
3 sinð ��ccÞ

2 ��c

� c cosð ��ccÞ
2

��
sinð ��bbÞ

��b

pb

�
;

(3.10)

dpc

dt0
¼ fpc;H

0
��g ¼ �2G�

@H0��
@c

¼ 2��1pc cosð ��ccÞ
�
sinð ��bbÞ

��b

pb

�
; (3.11)

db

dt0
¼ fb;H0��g ¼ G�

@H0��
@pb

¼ ���1
�
3 sinð ��bbÞ

2 ��b

� b cosð ��bbÞ
2

�

�
�
sinð ��bbÞ

��b

pb þ sinð ��ccÞ
��c

pc

�
� �pb; (3.12)
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dpb

dt0
¼ fpb;H

0
��g ¼ �G�

@H0��
@b

¼ ��1pb cosð ��bbÞ
�
sinð ��bbÞ

��b

pb þ sinð ��ccÞ
��c

pc

�
;

(3.13)

as well as

H0�� ¼ 0

) 2
sinð ��bbÞ

��b

sinð ��ccÞ
��c

pbpc

þ
��

sinð ��bbÞ
��b

�
2 þ �2

�
p2
b ¼ 0: (3.14)

[Note that in the classical limit ��bb, ��cc! 0, we have
sinð ��bbÞ= ��b ! b, sinð ��ccÞ= ��c ! c and cosð ��bbÞ,
cosð ��ccÞ ! 1. By inspection, it follows that (3.10),
(3.11), (3.12), (3.13), and (3.14) reduce to their classical
counterparts (2.18), (2.19), (2.20), (2.21), and (2.22) in the
classical limit.] Also notice that (3.11) and (3.13) lead to

sinð ��bbÞ
��b

¼ 1

cosð ��ccÞ
�

2p1=2
c

dpc

d�
; (3.15)

sinð ��ccÞ
��c

¼ 1

cosð ��bbÞ
�

p1=2
c

dpb

d�
� 1

cosð ��ccÞ
�pb

2p3=2
c

dpc

d�
;

(3.16)

which are the modifications of (2.23) and (2.24) with
quantum corrections.

Combining (3.10) and (3.11), we have�
3 sinð ��ccÞ

2 ��c

� c cosð ��ccÞ
2

�
dpc

dt0
þ pc cosð ��ccÞ dcdt0

¼ d

dt0

�
pc

sinð ��ccÞ
��c

�
¼ 0; (3.17)

which, in accordance with the classical counterpart (2.25),
yields the constant of motion:

pc

sinð ��ccÞ
��c

¼ �Kc: (3.18)

Similarly, (3.12) and (3.13) lead to�
3 sinð ��bbÞ

2 ��b

� b cosð ��bbÞ
2

�
dpb

dt0
þ pb cosð ��bbÞ dbdt0

¼ d

dt0

�
pb

sinð ��bbÞ
��b

�
¼ ��p2

b cosð ��bbÞ: (3.19)

In accordance with the classical counterpart (2.26), we
define

pb

sinð ��bbÞ
��b

¼: � �Kbðt0Þ: (3.20)

The Hamiltonian constraint (3.14) now reads as

2 �KbKc þ �K2
b þ p2

b ¼ 0 (3.21)

and �Kb satisfies the differential equation:

d �Kb

dt0
¼ cosð ��bbÞð2 �KbKc þ �K2

bÞ: (3.22)

Substituting (3.18) and (3.20) into (3.11) and (3.13) yields

1

pc

dpc

dt0
� V

4�pc

dpc

d�
¼ 2 cosð ��ccÞ �Kb; (3.23)

1

pb

dpb

dt0
� V

4�pb

dpb

d�
¼ cosð ��bbÞ½ �Kb þ Kc�: (3.24)

Note that, as in the classical dynamics, it follows from
(3.22) that the flipping Kc ! �Kc gives rise to �Kbðt0Þ !
� �Kbð�t0Þ and thus corresponds to the time reversal ac-
cording to (3.23) and (3.24).
Equations (3.23) and (3.24) are the modifications of their

classical counterparts (2.31) and (2.32). Notice that the
presence of the cosð� � �Þ terms gives rise to the repulsive
behavior of gravity as the evolution departs from the
classical solution. More precisely, in the ��-scheme phe-
nomenological dynamics, pc and pb get bounced whenever
cosð ��ccÞ or cosð ��bbÞ flips signs, respectively. To find out
the exact moment of occurrence of the bounces, we inves-
tigate cosð ��ccÞ and cosð ��bbÞ in more detail.
By (3.18) and (3.20), we have

cosð ��ccÞ ¼ �½1� sin2 ��cc�1=2 ¼ �
�
1� �2K2

c�

p3
c

�
1=2

;

(3.25)

cosð ��bbÞ ¼ �½1� sin2 ��bb�1=2 ¼ �
�
1� �2 �K2

b�

p3
b

�
1=2

:

(3.26)

Consequently, pc and pb get bounced, as cosð ��ccÞ flips
signs in (3.23) and cosð ��bbÞ flips signs in (3.24) respec-
tively, whenever

pc ¼ ð�2K2
c�Þ1=3 � 4G2M2; (3.27)

pb ¼ ð�2 �K2
b�Þ1=3 � ð4�2K2

c�Þ1=3 � 44=3G2M2; (3.28)

where we have used (3.9) and exploited the fact that Kb !
�2Kc as the classical solution is close to the singularity.
To sum up, the classical black hole singularity is re-

placed by the quantum bounce, which makes both pc and
pb bounced at the (different) epochs when the conditions
(3.27) and (3.28) are met, respectively. [Furthermore, with
the cosð ��bbÞ term in (3.22), �Kb becomes flat (d �Kb=dt

0 ¼
0) exactly at the same time when pb gets bounced.] Across
the quantum bounce, the evolution tends to be classical
again [as cosð ��bbÞ, cosð ��ccÞ ! �1 eventually]; as a re-
sult, the classical solution is connected with another clas-
sical solution through the quantum bounce.
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Notice that the constantKc remains the same throughout
the evolution. However, this does not mean that the pa-
rameter used to parametrize the classical evolutions on
both sides of the bounce remains unchanged, since the
physical meanings of pbb and pcc are changed before
and after the bounce according to (3.15) and (3.16). In
order to characterize the classical behaviors of the evolu-
tion in different classical periods, we define the ‘‘effective
Kc’’ as

effective Kc :¼ ��1pc

�
�

p1=2
c

dpb

d�
� �pb

2p3=2
c

dpc

d�

�

¼ ��1 cosð ��bbÞpc

sinð ��ccÞ
��c

þ ��1½cosð ��bbÞ

� cosð ��ccÞ�pb

sinð ��bbÞ
��b

¼ cosð ��bbÞKc þ ½cosð ��bbÞ � cosð ��ccÞ� �Kb

(3.29)

and similarly the ‘‘effective Kb’’ as

effective Kb :¼ ��1pb

�
�

2p1=2
c

dpc

d�

�

¼ ��1 cosð ��ccÞpb

sinð ��bbÞ
��b

¼ cosð ��ccÞ �Kb: (3.30)

In the classical regimes, cosð ��bbÞ � cosð ��ccÞ � �1 and
we have

effective Kc � �Kc; (3.31)

effective Kb � �Kb: (3.32)

That is, on the other side of the bounce, both (classical) Kc

and Kb flip signs and consequently the quantum bounce
bridges the interior of a classical black hole with that of a
classical white hole and vice versa.

To know the mass of the white hole, in accordance with
(2.42), we define the ‘‘effective mass’’ as

effective mass :¼ G�1
ffiffiffiffiffiffi
pc
p
pb

jeffective Kcjjeffective Kbj:
(3.33)

Note that effective Kb approaches 	2Kc right before and
after the bounce, leaving the factor
jeffective Kbjjeffective Kcj unchanged; however, the ratioffiffiffiffiffiffi
pc
p

=pb is not fixed and thus (3.33) yields unequal masses

before and after the quantum bounce. Therefore, for a
given black hole mass M, generally, the mass of the con-
joined white hole (denoted asM0) is different fromM. The
exact value of M0 depends on the detail of the initial
condition, which involves the choice of I .

It is noteworthy that, in contrast to the classical dynam-
ics, the phenomenological dynamics in the �� scheme is
dependent on the choice of the finite sized interval I . In
particular, M0 depends on I ; moreover, (3.27) and (3.28),
which indicate occurrence of the bounce, are not invariant
under rescaling of I (recall pb / L, pc / L0, and Kc / L).
For this matter, one might think that the ��-scheme quan-
tization is simply ill defined and should be discarded.
However, it would be premature to dismiss the �� scheme
immediately as it is a common phenomenon that a quan-
tum system reacts to macroscopic scales introduced by
boundary conditions (for instance, the well-known ‘‘con-
formal anomaly’’ as a ‘‘soft’’ breaking of conformal sym-
metry). From the perspective of the full theory of LQG, the
inhomogeneous degrees of freedom, which have been
ignored in the symmetry-reduced minisuperspace formu-
lation, could give rise to a macroscopic scale and thus
account for the dependence on I . (In the lattice refining
model of [21], this is indeed the case that, depending on the
details of the refining procedure, the characteristic size of
the lattice may leave imprints on the coarse-grained homo-
geneous description.) This suggests that the choice of I is
not merely a gauge fixing but reflects the underlying phys-
ics of quantum inhomogeneity and thus has a physical
consequence. In the language of the no-hair theorem, this
physical consequence dictates that one extra parameter M0
(or equivalently, sayKc) is needed to completely character-
ize the extended Schwarzschild black hole, even though
the information of M0 is hidden by the horizon and inac-
cessible (at least semiclassically) to the external observer
(cf. the apparent problem of dependence on I is absent in
the phenomenological dynamics of the �� scheme as will be
seen in Sec. III B).
For given initial conditions, the equations of motion can

be solved numerically.6 The numerical solution is depicted
in Fig. 2. Note that the bounces of pc and pb occur at the
moments exactly as indicated in (3.27) and (3.28). Also
notice that pb is perfectly symmetric about the bounce,
since (3.22) and (3.24) are independent of pc and c and, as
a result, the evolution of pb is unaffected by the varying of
pc (but not vice versa).

B. Phenomenological dynamics in the ��0 scheme

The phenomenological dynamics in the ��0 scheme is
specified by the effective Hamiltonian (3.2) with ��b, ��c

replaced by ��0b, ��0c given in (3.4). To simplify the equa-

tions of motion, we choose a different lapse function N ¼

6The common numerical methods (e.g., the Runge-Kutta
method) encounter numerical instability at some point if we
directly solve the coupled differential equations (3.10), (3.11),
(3.12), and (3.13). To bypass this problem, which is only a
numerical artifact, we solve the reduced coupled equations:
(3.22), (3.23), and (3.24) for three variables: �Kb, pc, and pb.
The variables b and c can be obtained afterward via (3.18) and
(3.20).
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ðpb
ffiffiffiffiffiffi
pc
p Þ�1 associated with the new time variable dt00 ¼

pb
ffiffiffiffiffiffi
pc
p

d�. With the new lapse, the Hamiltonian (3.2) is

further rescaled to the simpler form:

H00��0 ¼ �
1

2G�2�

�
2 sinð ��0bbÞ sinð ��0ccÞ

þ sin2ð ��bbÞ þ�
�2

pc

�
: (3.34)

Because j sinð ��0IcIÞj 
 1, the vanishing of the Hamiltonian
constraint H00��0 ¼ 0 immediately implies

jpcj ¼ �2�

j2 sinð ��0bbÞ sinð ��0ccÞ þ sin2ð ��bbÞj
� �2

3
�:

(3.35)

This suggests that pc is bounded below.
To know the detailed dynamics for each individual pb

and pc, in addition to the Hamiltonian constraint, we study
the Hamilton’s equations:

dc

dt00
¼ fc;H00��0 g ¼ 2G�

@H00��0
@pc

¼ � c ��0c cosð ��0ccÞ sinð ��0bbÞ
��pc

þ b ��0b cosð ��0bbÞ½sinð ��0bbÞ þ sinð ��0ccÞ�
��pc

þ �

p2
c

;

(3.36)

dpc

dt00
¼ fpc;H

00
��0 g ¼ �2G�

@H00��0
@c

¼ 2 ��0c cosð ��0ccÞ sinð ��0bbÞ
��

; (3.37)

db

dt00
¼ fb;H00��0 g ¼ G�

@H00��0
@pb

¼ c ��0c cosð ��0ccÞ sinð ��0bbÞ
��pb

;

(3.38)

dpb

dt00
¼ fpb;H

00
��0 g ¼ �G�

@H00��0
@b

¼ ��0b cosð ��0bbÞ½sinð ��0bbÞ þ sinð ��0ccÞ�
��

: (3.39)

Note that (3.37) and (3.39) give us

sinð ��0bbÞ
��0b

¼ 1

cosð ��0ccÞ
�

2p1=2
c

dpc

d�
; (3.40)

sinð ��0ccÞ
��0c

¼ 1

cosð ��0bbÞ
�

p1=2
c

dpb

d�
� 1

cosð ��0ccÞ
�pb

2p3=2
c

dpc

d�
;

(3.41)

which are the modifications of (2.23) and (2.24) with
quantum corrections.
Inspecting (3.36), (3.37), (3.38), and (3.39), we have

d

dt00
ðpcc� pbbÞ ¼ �

pc

: (3.42)

In accordance with the constant Kc and the function Kbðt0Þ
used for classical solutions in (2.25) and (2.26), introducing
the time-varying function fðt00Þ, we set

pcc ¼ �ðKc þ fðt00ÞÞ (3.43)

and

pbb ¼: �ð �K0bðt00Þ þ fðt00ÞÞ; (3.44)

where �K0b satisfies

p2
bpc

d �K0b
dt00
¼ d �K0b

dt0
¼ �p2

b; (3.45)

which is to be compared with the classical counterpart
(2.26). Starting in a classical regime, we set Kc �
��1pcc and f � 0.
Substituting (3.43) and (3.44) into (3.34), we have the

complicated expression for the Hamiltonian constraint
H00��0 ¼ 0:

FIG. 2 (color online). Solution in the ��-scheme phenomeno-
logical dynamics: With the same initial condition as given in
Fig. 1 and the Barbero-Immirzi parameter is set to � ¼
ln2=ð ffiffiffi

3
p

�Þ. The conditions of (3.27) and (3.28) are indicated
by dashed lines, at which pc and pb get bounced, respectively.
The quantum bounce bridges the classical black hole (on the left
side) with the classical white hole (on the right side). The
asymptotic values of pc are different on both sides, indicating
that the black hole massM and white hole massM0 are different.
On the other hand, pb is symmetric and, in particular, the peaks
on both sides are of the same height, affirming that Kc flips signs
but its magnitude is unchanged as suggested in (3.31).
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2 sin

� ffiffiffiffiffiffiffiffiffiffiffi
��2

p2
bpc

s
ð �K0b þ fÞ

�
sin

� ffiffiffiffiffiffiffiffiffiffiffi
��2

p2
bpc

s
ðKc þ fÞ

�

þ sin2
� ffiffiffiffiffiffiffiffiffiffiffi

��2

p2
bpc

s
ð �K0b þ fÞ

�

¼ ���2

pc

; (3.46)

which reduces to

2 �K0bKc þ �K02b þ p2
b ¼ 0 (3.47)

in the classical limit as p2
bpc � ��2K2

� ��2K2
c 

��2K2
b;� and with f � 0.

As discussed earlier, in the �� scheme, the quantum
corrections take effect both near the classical singularity
and the event horizon. Thus, it is expected that the classical
singularity is resolved and replaced by the late time quan-
tum bounce and the event horizon is diffused by the early
time quantum bounce. Across the quantum bounces, we
would guess, the evolution becomes classical again; as a
result, the late/early time quantum bounce bridges one
cycle of classical evolution with the next/previous classical
cycle.

As in the �� scheme, the constant Kc remains fixed
throughout the evolution but since pbb and pcc have
different physical meanings before and after the quantum
bounce according to (3.40) and (3.41), analogous to (3.29),
(3.30), and (3.33), we define

effective Kc :¼ ��1pc

�
�

p1=2
c

dpb

d�
� �pb

2p3=2
c

dpc

d�

�

¼ ��1 cosð ��0bbÞpc

sinð ��0ccÞ
��0c

þ ��1½cosð ��0bbÞ

� cosð ��0ccÞ�pb

sinð ��0bbÞ
��0b

; (3.48)

effective Kb :¼ ��1pb

�
�

2p1=2
c

dpc

d�

�

¼ ��1 cosð ��0ccÞpb

sinð ��0bbÞ
��0b

(3.49)

and

effective mass :¼ G�1
ffiffiffiffiffiffi
pc
p
pb

jeffective Kcjjeffective Kbj
(3.50)

to characterize the classical evolution in different classical
periods.

Starting with f � 0 and pcc � �Kc in a given cycle of
classical phase, we would guess f varies widely when it

undergoes the bounce but anchors to a nonzero constant
(such that effective Kc � Kc þ f) in the consecutive clas-
sical cycle when it jumps over the bounce. (The numerical
analysis shows that this indeed is the case.) At the epoch
right before the late time bounce, we have effective Kc �
Kc, effective Kb � Kb � �2Kc, and pb � 0; immediately
after the late time bounce, we then have effective Kc �
Kc þ f, effective Kb � �2Kc þ f, and pb � 0, which
should satisfy the classical Hamiltonian constraint (2.27)
and thus give

2ð�2Kc þ fÞðKc þ fÞ þ ð�2Kc þ fÞ2 � 0: (3.51)

This yields f � 0 or f � 2Kc and consequently implies
that the effective Kc is altered to be Kc þ f � 3Kc and
effective Kb � Kb þ f � 0 right after the late time
bounce. Similarly, starting with effective Kc � Kc, effec-
tive Kb � Kb � 0, and pb � 0 at the epoch close to the
early time bounce, we can infer that f � �2Kc=3, effec-
tive Kc � Kc þ f � Kc=3, and effective Kb � Kb þ f �
�2Kc=3 immediately across the early time bounce. We
then conclude that the quantum bounce resolves the black
hole singularity and bridges it with the diffused horizon of
another black hole (not white hole); the parameter Kc in
one cycle of classical phase is shifted to 3Kc in the next
classical cycle and to Kc=3 in the previous cycle.
Schematically, the varying of the effective Kc is summa-
rized as

� � �Kc

32
 !bounceKc

3
 !bounce

Kc !bounce
3Kc !bounce

32Kc � � � : (3.52)

To find out the precise condition for the occurrence of
quantum bounces, by substituting (3.43) and (3.44) into
(3.37) and (3.39), we study the differential equations:

1

pc

dpc

dt0
� V

4�pc

dpc

d�

¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
p2
bpc

�2�

s
cos

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ðKc þ fÞ

�

� sin

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b þ fÞ

�
; (3.53)

1

pb

dpb

dt0
� V

4�pb

dpb

d�

¼
ffiffiffiffiffiffiffiffiffiffiffi
p2
bpc

�2�

s
cos

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b þ fÞ

�

�
�
sin

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b þ fÞ

�

þ sin

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ðKc þ fÞ

��
: (3.54)

These are the modifications of the classical counterparts
(2.31) and (2.32).
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Similar to the case of (3.23) in the �� scheme, pc gets
bounced once the ‘‘cosð� � �Þ’’ term in (3.53) flips signs.7

This happens when

cos

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ðKc þ fÞ

�
¼ 0) Kc þ f ¼ �

2

ffiffiffiffiffiffiffiffiffiffiffi
p2
bpc

�2�

s
:

(3.55)

Assuming pb also gets bounced roughly around the same
moment,8 at which (3.55) is satisfied, we have the approxi-
mation:

sin

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b þ fÞ

�
¼ sin

�
�

2
þ

ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b � KcÞ

�

¼ cos

� ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
ð �K0b � KcÞ

�

� 1� 1

2!

�2�

p2
bpc

ð �K0b � KcÞ2 þ 1

4!

�
�
�2�

p2
bpc

�
2ð �K0b � KcÞ4 þ � � � :

(3.56)

Taking (3.55) and (3.56) into (3.46), we have

0 � 2
p2
bpc

�2�

�
1� �2�

2p2
bpc

ð �K0b � KcÞ2 þ 1

4!

�
�2�

p2
bpc

�
2

� ð �K0b � KcÞ4
�
þ p2

bpc

�2�

�
1� �2�

2p2
bpc

ð �K0b � KcÞ2

þ 1

4!

�
�2�

p2
bpc

�
2ð �K0b � KcÞ4

�
2 þ p2

b þ � � � ; (3.57)

which, provided that pb, pc � �2� when the bounce
occurs,9 leads to the condition for occurrence of the bounce
in pc:

�2�

p2
bpc

� 2ð3� ffiffiffi
3
p Þ

ð �K0b � KcÞ2

�
� 2ð3� ffiffi

3
p Þ

9K2
c

for the late time bounce in pc;

2ð3� ffiffi
3
p Þ

K2
c

for the early time bounce in pc:

(3.58)

Here, we have exploited the fact that (2.28) and (3.45) are
formally identical and therefore �K0b remains almost con-

stant ( �K0b � Kb ! �2Kc or 0) close to the late/early time

bounce even when quantum corrections take effect later.
(In the bouncing period, the quantum effect varies f dra-
matically but modifies �K0b only slightly.)10

Similarly, pb gets bounced once the cosð� � �Þ term in
(3.54) flips signs. Following the same argument above, we
conclude that the big bounce of pb happens when

0 � 2
p2
bpc

�2�

�
1� �2�

2p2
bpc

ð �K0b � KcÞ2 þ 1

4!

�
�2�

p2
bpc

�
2

� ð �K0b � KcÞ4
�
þ p2

bpc

�2�
þ p2

b þ � � � ; (3.59)

which leads to the condition for occurrence of the bounce
in pb:

�2�

p2
bpc

� 6

ð �K0b � KcÞ2

�
� 2
3K2

c
for the late time bounce in pb;

6
K2

c
for the early time bounce in pb:

(3.60)

Since the Taylor series of cosx ¼ 1� x2=2þ x4=4!þ
� � � converges very rapidly, the approximation made above
is fairly accurate if

jxj ¼
ffiffiffiffiffiffiffiffiffiffiffi
�2�

p2
bpc

s
j �K0b � Kcj<�; (3.61)

which is satisfied for both (3.58) and (3.60).
Knowing the conditions for occurrence of bounces, we

are able to estimate the black hole mass in different clas-
sical cycles. Let M be the mass of a given classical cycle
with the constant Kc; (2.42) then tells us

G2M2 ¼ pcð�t00�Þ
�
Kbð�t00�ÞKc

pbð�t00�Þ2
�
2 � 4

pcð�t00�Þ
pbð�t00�Þ4

K4
c; (3.62)

where we denote the epoch of the late time bounce in pc as
�t00 and the instant right before �t00 as �t00�, at which the
quantum effect is still negligible and the evolution is
classical enough so that Kbð�t00�Þ ! �2Kc. On the other
hand, let M be the mass of the black hole in the next
classical cycle after the big bounce; (2.41) then gives us

7The numerical result further shows that once the cosð� � �Þ
term in (3.23) or (3.24) flips signs fromþ1 to�1, it quickly flips
back to þ1. Both cosð ��0ccÞ and cosð ��0bbÞ flip twice during the
bouncing period. This concurs with the previous finding that the
quantum bounce bridges the black hole with another black hole
(instead of a white hole). By contrast, in the �� scheme, cosð ��ccÞ
and cosð ��ccÞ flip from þ1 to �1 only once and thus the
quantum bounce conjoins a black hole with a white hole.

8This is because (3.53) and (3.54) are coupled through V ¼
4�pb

ffiffiffiffiffiffi
pc
p

. We can see that this is indeed the case in the
numerical solution.

9We will see that this is true until pc eventually descends into
the deep Planck regime in the far late time.

10Do not confuse �K0b with effective Kb. The former remains
constant through the bounce while the latter is offset by f.
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G2M2 ¼ pcð�t00þÞ
�

Kc

Kbð�t00þÞ þ 2Kc

�
2 � pcð�t00þÞ

4
; (3.63)

where we denote the instant right after �t00 as �t00þ, at which
the evolution is classical enough and thus Kbð�t00þÞ ! 0.
Meanwhile, at �t00, (3.58) also tells us

�2�

pbð�t00Þ2pcð�t00Þ
� 2ð3� ffiffiffi

3
p Þ

9K2
c

: (3.64)

Assuming that �t, �tþ, and �t� are fairly close to one another
so that pcð�tþÞ � pcð�t�Þ � pcð�tÞ and pbð�tÞ � pbð�t�Þ, we
can infer from (3.62), (3.63), and (3.64) that

M ðMÞ �
�

9

32ð3� ffiffiffi
3
p Þ

�
1=3

�
�2�M

G2

�
1=3

’ 0:605

�
�2�M

G2

�
1=3

: (3.65)

While this analysis gives a very good estimate with small
error due to approximation, the detailed numerical solution
gives the more precise result

M ðMÞ ’ 0:524

�
�2�M

G2

�
1=3 ’ 1:161ðm2

PlMÞ1=3; (3.66)

where mPl :¼
ffiffiffiffiffiffiffiffiffi
@=G

p
is the Planck mass. As a result, the

effective mass is tremendously decreased by the late time
bounces until it eventually approaches mPl; schemati-
cally, the varying of the effective mass is summarized as

� � �M�1ðM�1ðMÞÞ !bounce
M�1ðMÞ !bounce

M !bounce
MðMÞ

 !bounce
MðMðMÞÞ � � � : (3.67)

The differential equations (3.36), (3.37), (3.38), and
(3.39) can be solved numerically for a given initial condi-

tion. The numerical solution is shown in Fig. 3, which
depicts both the late time and the early time quantum
bounces. The vicinity of the early time bounce is zoomed
in in Fig. 4 and that of the late time bounce in Fig. 5. The
early/late time quantum bounce bridges a classical phase
with another classical phase in the previous/next cycle.
Contrary to the �� scheme, the epochs of bounces in pc

and pb are very close to each other (see footnote 8). Toward
the future, the effectiveKc becomes larger and larger while
the effective mass becomes smaller and smaller. As can be
seen in Fig. 5, the semiclassicality is less and less estab-
lished and eventually pb grows exponentially (with respect
to �) while pc asymptotically descends to a constant in the
deep Planck regime, in which the quantum fluctuations
become essential.
Although the validity of the semiclassical analysis might

break down when the solution descends into the deep
Planck regime,11 it is still instructive to know the asymp-
totic behavior within the same phenomenological frame-
work. To find out the asymptotic solution, we assume
pc ¼ �pc, pb ¼ �pbe

�� with constants �pc, �pb, and �. By
(3.37) and (3.39), we have

1

pc

dpc

d�
¼ 0 ¼ 2

�
ffiffiffiffi
�
p cosð ��0ccÞ sinð ��0bbÞ; (3.68)

1

pb

dpb

d�
¼ � ¼ 1

�
ffiffiffiffi
�
p cosð ��0bbÞ½sinð ��0bbÞ þ sinð ��0ccÞ�;

(3.69)

which yield ��0cc ¼ ð2nþ 1=2Þ� with n 2 Z [such that

FIG. 3 (color online). Solution in the ��0-scheme phenomenological dynamics: With the same initial condition as given in Fig. 1 and
the Barbero-Immirzi parameter is set to � ¼ ln2=ð ffiffiffi

3
p

�Þ. � is the proper time and �0 ¼ �ðt00Þ. The event horizon is diffused by the early
time bounce and connected to another black hole of a larger mass. The classical singularity is resolved and replaced by the late time
bounce, which bridges the black hole with another black hole of a smaller mass. The vicinity of the early time bounce is zoomed in in
Fig. 4 and that of the late time bounce in Fig. 5.

11In particular, the cotriad component !c ¼ L
ffiffiffiffiffiffiffi
gxx
p

grows
exponentially and the quantum corrections on it have to be taken
into account.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4 (color online). Zoom in of the early time bounce in Fig. 3: (a) pbð�Þ and pcð�Þ ¼ g��ð�Þ. The epochs of bounces in pb and pc

are very close to each other. (b) gxxð�Þ. (c)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�=ðp2

bpcÞ
q

, which signals the occurrence of bounces. The conditions of (3.58) and (3.60)

are indicated by dashed lines. (d) cosð ��0bbÞ and cosð ��0ccÞ, fairly close to each other; both flip signs twice when undergoing the quantum
bounce. (e) Effective mass, with the constants M and M�1ðMÞ indicated by dashed lines. See (3.67). (f) fð�Þ. f � 0 in the classical
cycle on the right and f � �2Kc=3 on the left. (g) Effective Kc, with the constants Kc and Kc=3 indicated by dashed lines.
(h) Effective Kb, which becomes 0 on the right of the bounce and�2Kc=3 on the left. [For (f)–(h), see (3.52) and the text prior to it for
the details.]
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(a) (b)

(d)

(f)

(h)

(c)

(e)

(g)

FIG. 5 (color online). Zoom in of the late time bounce in Fig. 3: (a) pbð�Þ and pcð�Þ ¼ g��ð�Þ. A few classical cycles are connected
through quantum bounces. The semiclassicality of these cycles is however less and less established; eventually, pc descends into a
deep Planck regime as pc ! �pc and pb grows exponentially as pb ! �pbe

�� with constants given by (3.78) and (3.79). (b) gxxð�Þ.
(c)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�=ðp2

bpcÞ
q

, which signals the occurrence of bounces. The conditions of (3.58) and (3.60) with corresponding effective Kc are

indicated by dashed lines. (d) cosð ��0bbÞ and cosð ��0ccÞ, which are close to þ1 in classical cycles but oscillate rapidly when the

semiclassicality breaks down and eventually cosð ��0ccÞ ! 0 and cosð ��0bbÞ ! cos� as given in (3.77). (e) Effective mass, with the

constants M, MðMÞ, MðMðMÞÞ, . . .indicated by dashed lines. See (3.67). (f) fð�Þ, which becomes constant in each classical cycle.
(g) Effective Kc, with the constants Kc, 3Kc, and 3

2Kc indicated by dashed lines. (h) Effective Kb. [For (f)–(h), see (3.52) and the text
prior to it for the details.]
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cosð ��0ccÞ ¼ 0, sinð ��0ccÞ ¼ 1], ��0bb ¼ � being a constant

and consequently

� ¼ 1

�
ffiffiffiffi
�
p cos�ðsin�þ 1Þ: (3.70)

Substituting these into (3.36) and (3.38), we have

db

d�
¼ 0) b ¼ �b being a constant; (3.71)

dc

d�
¼ �pbe

��

�
� cos�ðsin�þ 1Þ

��
ffiffiffiffiffiffi
�pc

p þ �

�p3=2
c

�
) c

¼ �ce�� with a constant �c: (3.72)

Additionally, ð2nþ 1=2Þ� ¼ ��0cc ¼ c
ffiffiffiffiffiffiffiffiffi
�pc�

p
=pb yields

�c ¼
�
2n�þ �

2

�
�pbffiffiffiffiffiffiffiffiffi
�pc�

p : (3.73)

Taking (3.73) into (3.72), we have�
2n�þ �

2

�
� ¼ � cos�ðsin�þ 1Þ

�
ffiffiffiffi
�
p þ �

ffiffiffiffi
�
p
�pc

: (3.74)

Finally, the Hamiltonian constraint (3.34) reads as

2 sin�þ sin2�þ��2

�pc

¼ 0: (3.75)

Summing up (3.70), (3.74), and (3.75), we have�
2n�þ �

2

�
cos�ðsin�þ 1Þ ¼ � cos�ðsin�þ 1Þ

� 2 sin�� sin2�;

(3.76)

the numerical solution of which is given by

� ’ 2n�� 0:587233; cos� ’ 0:832477: (3.77)

By (3.70) and (3.75), this leads to

�p c ’ 1:24823�2� ’ 0:0280788‘2Pl (3.78)

and

� ’ 0:371235��1��1=2 ’ 2:47518‘�1Pl : (3.79)

These precisely agree with the asymptotic behaviors shown
in Figs. 5(a) and 5(d). Also note that (3.78) is fairly close to
the lower bound in (3.35).12

Finally, as to the issue of dependence on I , (3.40) and
(3.41) imply that the quantities ��0bb, ��0cc depend only on

p�1b dpb=d�, p
�1
c dpc=d� and thus are independent of I

(recall pb / L, pc / L0). Consequently, (3.43) and (3.44)
tell us that Kc, �Kb, and f all scale as / L. Therefore, the
phenomenological dynamics given by (3.53) and (3.54) is
completely independent of the choice of I as is the clas-
sical dynamics. In particular, the choice of I has no effect
on the conditions of bounce occurrence in (3.58) and
(3.60). This is a desirable feature that the �� scheme does
not have. (However, if we further impose the quantum
corrections on the eigenvalue of the cotriad operator !̂c,
this invariance is broken again.)

IV. SCALING SYMMETRY

We have noted that the classical dynamics and the
phenomenological dynamics in the ��0 scheme are both
completely independent of the choice of the finite sized
interval I , whereas the phenomenological dynamics in the
�� scheme reacts to the physical size of I . This can be
rephrased in terms of the scaling symmetry13; that is, the
classical dynamics and the ��0-scheme phenomenological
dynamics are invariant under the following scaling:

pb; pc ! lpb; pc; b; c! b; lc;

Kc ! lKc; M ! M:
(4.1)

(Note that the scaling for Kc should be accompanied by the
same scaling onKb in classical dynamics and on �K0b as well
as f in the ��0 scheme; that is Kb, �K0b, f ! lKb, l �K

0
b, and

lf.) On the other hand, the �� scheme does not respect this
scaling. In particular, the conditions for bounce occurrence
given in (3.27) and (3.28) depend on I while those in (3.58)
and (3.60) do not.
This implies that in the �� scheme the choice of I has a

physical consequence, and in the language of the no-hair
theorem, one extra parameter (M0 or Kc) is required to
completely characterize the extended Schwarzschild solu-
tion. In the ��0 scheme, by contrast, the choice of I is
physically irrelevant, and the no-hair theorem holds the
same.
Additionally, the classical dynamics also admits the

symmetries given by

�! �; �! ��; pb; pc ! 2pb; 
2pc;

b; c! �b; �c; Kc ! 2Kc; M ! M:

(4.2)

The scaling symmetry regarding �! �� is expected,
since the Barbero-Immirzi parameter � has no effect on

12It was claimed in [15] that the ��-scheme phenomenological
dynamics extends a classical Schwarzschild black hole to a patch
of a nonsingular charged Nariai universe, which gives constant
pc. However, a closer look suggests that the extended part is not
a patch of the classical Nariai universe but instead represents the
quantum spacetime which formally exhibits a Nariai-type metric,
as the asymptotic constant �pc is in the deep Planck regime ( &
‘2Pl).

13A dynamical system is said to be invariant under a certain
scaling if for a given solution [pbð�Þ, pcð�Þ, bð�Þ and cð�Þ] to the
dynamics, the rescaled functions also satisfy the equations of
motion (i.e., Hamilton equations and vanishing of Hamiltonian
constraint). For the classical dynamics, the equations to be
satisfied are (2.18), (2.19), (2.20), (2.21), and (2.22); for the
�� scheme, (3.10), (3.11), (3.12), (3.13), and (3.14); and for the
��0 scheme, (3.36), (3.37), (3.38), (3.39), and (3.46).
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the classical dynamics. The scaling symmetry regarding
�! � is also easy to understand, since there is no tem-
poral scale introduced in the Hamiltonian.14 However, very
surprisingly, the scaling symmetry involving �! � is
violated for both the ��-scheme and the ��0-scheme phe-
nomenological dynamics. Curiously, this symmetry is re-
stored if �! � is accompanied by �! �� and one extra
scaling is also imposed at the same time:

�! ��22�: (4.3)

This intriguing observation seems to suggest, albeit specu-
latively, that in the context of quantum gravity the funda-
mental scale (area gap) in spatial geometry gives rise to a
temporal scale via the nonlocality of quantum gravity (i.e.,
using holonomies) and the Barbero-Immirzi parameter �
somehow plays the role bridging the scalings in time and
space. [This reminds us that, in LQG, the precise value of
the area gap � is proportional to �, and � is also the
parameter which relates the intrinsic geometry (encoded
by spin connection �i

a) with the extrinsic curvature (Ka
i)

via Aa
i ¼ �i

a � �Ka
i.] Moreover, taking (4.2) and (4.3)

into (3.66), we also have

M ! M: (4.4)

The above observations for scaling symmetry draw close
parallels to those in [10,16] for the phenomenological
dynamics of LQC in the Bianchi I and Kantowski-Sachs
models. Because of the absence of any matter content,
however, some implications thereof are missing here; par-
ticularly, the occurrence of bounces is no longer indicated
by the (directional) matter energy density. Nevertheless, if
we define ‘‘energy density’’ � and ‘‘directional densities’’
�b, �c as

� :¼ K2
c

8�Gp2
bpc

; �b :¼ K2
c

8�Gp3
b

; �c :¼ K2
c

8�Gp3
c

;

(4.5)

then according to (3.27), (3.28), (3.58), and (3.60), the
bounces can still be said to take place whenever energy
density or directional density approaches the Planckian
density �Pl :¼ ð8�G�2�Þ�1 (up to a numerical factor).
This not only paraphrases the condition of bounce occur-
rence in a universal form as (generalized) energy density
being the indicator for the bounce but also suggests that we
should put the anisotropic shear on the equal footing as

matter content and take into account the energy density
arising from it.15 From this perspective, the ideas of rela-
tional interpretation of quantum mechanics remarked in
[10,16] can be carried over even without matter content.
Unfortunately, all the scaling symmetries break down in

the detailed construction for the quantum geometry of the
Schwarzschild interior. The fundamental quantum theory
only respects the scaling symmetries at the leading order.
This is due to the fact that the quantum evolution in the
fundamental theory is governed by a difference equation,
in which the step size of difference introduces an additional
scale in the deep Planck regime [12]. In fact, already in the
level of phenomenological dynamics, the scaling symme-
tries are violated if we further take into account the loop
quantum corrections on the cotriad component !c. For the
fundamental quantum theory, if we take the aforemen-
tioned symmetries seriously, we should revise the detailed
construction to have the step size in the difference equation
scale accordingly such that the symmetries are respected.

V. SUMMARYAND DISCUSSION

To summarize, we list the important facts for the classi-
cal dynamics, ��-scheme, and ��0-scheme phenomenologi-
cal dynamics in Table I. The conjectured Penrose diagrams
are depicted in Fig. 6. In the following, the main results are
restated and their implications are discussed.
In the ��-scheme phenomenological dynamics, the clas-

sical singularity is resolved and replaced by the quantum
bounce, which bridges the black hole interior with the
interior of a white hole. The black hole massM is different
from the white hole mass M0 in general while the constant
Kc flips signs but its magnitude is unchanged.
On the other hand, in the ��0-scheme phenomenological

dynamics, the classical black hole singularity is resolved
and the event horizon is diffused by the quantum bounce.
Jumping over the quantum bounce, the classical black hole
with Kc and M gives birth to a baby black hole with 3Kc

and the decreased mass MðMÞ in the consecutive classical
cycle. The baby black hole also brings forth its own baby
and this scenario continues, giving the extended spacetime
fractal structure, until eventually pb grows exponentially
and pc asymptotes to a fixed value in the deep Planck
regime, where the spacetime is essentially quantum me-
chanical and the semiclassical analysis could be
questioned.

14For the Bianchi I cosmology studied in [10], a different
scaling pI ! pI with cI ! �1cI is chosen to respect the
symmetry regarding �! �. This alternative scaling does not
work in the case of Kantowski-Sachs spacetime, since it violates
the Hamiltonian constraint (2.17). That is to say, the presence of
the spatial curvature [i.e., the �2p2

b term in the bracket in (2.17)]
ties the temporal scale with the spatial scale; as a result, only the
scaling pb, pc ! 2pb, 

2pc (which gives the spatial direction
the same scaling as in the temporal direction) with b, c! b, c
preserves the symmetry.

15As remarked in Sec. II.B of [16], the dynamics with
Kantowski-Sachs symmetry closely resembles that in the
Bianchi I model, implying that Kc and Kb characterize aniso-
tropic shear and the Hamiltonian constraint can be understood as
the relation which relates anisotropy with spatial curvature (and
matter energy if any). Moreover, it has been shown in
Appendix B of [9] that the anisotropic shear behaves as a kind
of anisotropic matter: the quantities defined in (4.5) can be
considered as the ‘‘energy density of the classical anisotropic
shear’’ (portioned to the specific direction).
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With regard to the finite sized interval I chosen to make
sense of the Hamiltonian formalism, the phenomenological
dynamics in the �� scheme depends on the choice of I .
Particularly, given the black hole mass M, the exact value
M0 of the conjoined white hole depends on I . In the

language of the no-hair theorem, two parameters M and
M0 (or alternatively, say M and Kc) are required to com-
pletely characterize the (extended) Schwarzschild solution,
although the information of M0 is hidden by the horizon
and inaccessible (at least semiclassically) to the external

TABLE I. Summary of the classical dynamics, ��-scheme, and ��0-scheme phenomenological dynamics.

Classical dynamics Phenomenology in �� scheme Phenomenology in ��0 scheme

2�pb ¼ 2�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxg��
p ¼ Ax� ¼ Ax� 2�pb ¼ 2�L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxg��
p ¼ Ax� ¼ Ax� 2�pb ¼ 2�L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxg��
p ¼ Ax� ¼ Ax�

�pc ¼ �g�� ¼ A�� �pc ¼ �g�� ¼ A�� �pc ¼ �g�� ¼ A��

b ¼ � d
d�

ffiffiffiffiffiffiffiffiffiffi
g��
p ¼ �

2p1=2
c

dpc

d�
sinð ��bbÞ

��b
¼ 1

cosð ��ccÞ
�

2p1=2
c

dpc

d�

sinð ��0
b
bÞ

��0
b
¼ 1

cosð ��0ccÞ
�

2p1=2
c

dpc

d�

c ¼ � d
d� ðL

ffiffiffiffiffiffiffi
gxx
p Þ ¼ �

p1=2
c

dpb

d� � �pb

2p3=2
c

dpc

d�
sinð ��ccÞ

��c
¼ 1

cosð ��bbÞ
�

p1=2
c

dpp

d� � 1
cosð ��ccÞ

�pb

2p3=2
c

dpc

d�
sinð ��0ccÞ

��0c
¼ 1

cosð ��0
b
bÞ

�

p1=2
c

dpp

d� � 1
cosð ��0ccÞ

�pb

2p3=2
c

dpc

d�

pcc ¼ �Kc pc
sinð ��ccÞ

��cc
¼ �Kc pcc ¼ �½Kc þ fðt00Þ�

pbb ¼ �Kbðt0Þ pb
sinð ��bbÞ

��bb
¼ � �Kbðt0Þ pbb ¼ �½ �K0bðt00Þ þ fðt00Þ�

2KbKc þ K2
b þ p2

b ¼ 0 2 �KbKc þ �K2
b þ p2

b ¼ 0 2 sinð
ffiffiffiffiffiffiffiffi
��2

p2
b
pc

r
ð �K0b þ fÞÞ sinð

ffiffiffiffiffiffiffiffi
��2

p2
b
pc

r
ðKc þ fÞÞþ

sin2ð
ffiffiffiffiffiffiffiffi
��2

p2
b
pc

r
ð �K0b þ fÞÞ þ ��2

pc
¼ 0

1
pc

dpb

dt0 ¼ V
4�pc

dpc

d� ¼ 2Kbðt0Þ 1
pc

dpc

dt0 ¼ 2 cosð ��ccÞ �Kbðt0Þ 1
pc

dpc

dt0 ¼ 2

ffiffiffiffiffiffiffiffi
p2
b
pc

�2�

r
cosð

ffiffiffiffiffiffiffiffi
�2�
p2
b
pc

r
ðKc þ fÞÞ

� sinð
ffiffiffiffiffiffiffiffi
�2�
p2
b
pc

r
ð �K0b þ fÞÞ

1
pb

dpb

dt0 ¼ V
4�pc

dpb

d� ¼ Kbðt0Þ þ Kc
1
pb

dpb

dt0 ¼ cosð ��bbÞ½ �Kbðt0Þ þ Kc� 1
pb

dpb

dt0 ¼
ffiffiffiffiffiffiffiffi
p2
b
pc

�2�

r
cosð

ffiffiffiffiffiffiffiffi
�2�
p2
b
pc

r
ð �K0b þ fÞÞ

� ½sinð
ffiffiffiffiffiffiffiffi
�2�
p2
b
pc

r
ð �K0b þ fÞÞ

þ sinð
ffiffiffiffiffiffiffiffi
�2�
p2
b
pc

r
ðKc þ fÞÞ�

dKb

dt0 ¼ V
4�

dKb

d� ¼ �p2
b

d �Kb

dt0 ¼ � cosð ��bbÞp2
b

d �K0
b

dt0 ¼ �p2
b

pc, pb ! 0
toward classical singularity.

pc bounces whenever pc ¼ ð�2K2
c�Þ1=3; pc bounces around the moment when

�2�
p2
b
pc
� 2ð3� ffiffi

3
p Þ

ð �K0
b
�KcÞ2 �

8<
:

2ð3� ffiffi
3
p Þ

9K2
c

;

2ð3� ffiffi
3
p Þ

K2
c

:

pc ! 4G2M2, pb ! 0
toward event horizon.

pb bounces whenever pb � ð4�2K2
c�Þ1=3. pb bounces around the moment when

�2�
p2
b
pc
� 6
ð �K0

b
�KcÞ2 �

� 2
3K2

c
6
K2

c

Epochs of bounces in pb and pc

could be very separate.

pb, pc bounce roughly around

the same moments.

No quantum bounce.

Kc fixed. M fixed.

Classical singularity is resolved by

the quantum bounce, which bridges

the classical black hole with a

classical white hole:

Kc $ �Kc, M $ M0.

Classical singularity is resolved

and event horizon is diffused;

quantum bounces conjoin

classical cycles of black holes:

� � � $ 3�1Kc $ Kc $ 3Kc $ � � � ,
� � � $M�1ðMÞ $ M $MðMÞ $ � � �
Eventually, pc descends into deep

Planck regime while pb

grows exponentially.

Symmetry of scaling: Symmetry of scaling: Symmetry of scaling:

�! � �! � �! �
�! �� �! �� �! ��
pb, pc ! l2pb, 

2pc pb, pc ! 2pb, 
2pc pb, pc ! l2pb, 

2pc

b, c! �b, l�c b, c! �b, �c b, c! �b, l�c
Kc ! l2Kc Kc ! 2Kc ðKc þ fÞ ! l2ðKc þ fÞ
M ! M M ! M M, M! M, M

�! ��22� �! ��22�

DAH-WEI CHIOU PHYSICAL REVIEW D 78, 064040 (2008)

064040-18



observer. By contrast, the phenomenological dynamics in
the ��0 scheme is completely independent of I as is the
classical dynamics and the no-hair theorem remains
unchanged.

In addition to the symmetry related to the choice of I ,
both schemes admit additional symmetries of scaling,
which are suggestive that the fundamental scale (area
gap) in spatial geometry may give rise to a fundamental
scale in temporal measurement. These symmetries, how-
ever, break down in the construction for the fundamental
quantum theory.

While the ��0 scheme has the advantage that its phe-
nomenological dynamics is independent of I , the funda-
mental quantum theory of the Schwarzschild interior based
on the ��0 scheme is difficult to construct. Both the �� and
��0 schemes have desirable merits and it is still disputable
which one (or yet another possibility) is more faithful to
implement the underlying physics of loop quantum geome-
try. This issue is in the same status as that in the Bianchi I
[10] and Kantowsi-Sachs [16] cosmological models.
Hopefully, the detailed investigations in this paper on
both schemes would help elucidate this issue. However,
we should keep in mind that the validity of the phenome-
nological analysis remains to be justified. Some initial
attempt has been made in [22] to construct the semiclassi-

cal wave functions in the original �o scheme. It would be
worthwhile to extend the previous work to the improved ( ��
or ��0) scheme and compare the results with those obtained
here.
Meanwhile, it has been suggested [23] and recently

analyzed in detail for 2-dimensional black holes [24] that
quantum geometry effects may provide a possible mecha-
nism for recovery of information that is classically lost in
the process of Hawking evaporation, primarily because the
black hole singularity is resolved and consequently the
quantum spacetime is sufficiently larger than the classical
counterpart. It would be very instructive to study the
information paradox in the context of loop quantum ge-
ometry of the Schwarzschild black hole, as both resolution
of the classical singularity and augmentation of spacetime
have been observed at the level of phenomenological
dynamics.
Additionally, in the ��0 scheme, the quantum effects not

only resolve the singularity but also modify the event
horizon. The fact that the event horizon is diffused may
have an impact on the Hawking evaporation process.
However, the homogeneous framework used on this paper
only allows us to study the interior of the black hole and it
is unclear how exactly the horizon is diffused and pieced
together with the exterior (regions I or IV in Fig. 6). In

(a)

(b) (c)

FIG. 6 (color online). (Conjectured) Penrose diagrams: (a) (Maximally extended) classical Schwarzschild spacetime. Region II is the
black hole; region III is the white hole; region I is the asymptotically flat region, external to the black hole; and region IV is the other
asymptotically flat region. The wiggly lines are the black hole and the white hole singularities. (b) Schwarzschild spacetime in the
�� scheme. Both the classical black and white hole singularities are resolved by the quantum bounces (shaded areas), which bridge
black holes with white holes. (c) Schwarzschild spacetime in the ��0 scheme. The classical black hole singularity is resolved and the
event horizon is diffused by the quantum bounce. As a result, jumping over the quantum bounce (shaded area), the black hole gives
birth to a baby black hole with increased Kc and drastically decreased mass. This lineage continues until eventually pb grows
exponentially and pc descends into a constant in the deep Planck regime as the spacetime becomes highly quantum mechanical. [The
shaded areas indicate the regions where the quantum effects are significant (the darker the shade, the stronger the quantum effects). The
patches for regions I and IV drawn in (b) and (c) are only conjectural.]
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order to extend the results to cover the whole spacetime,
the next step would be to apply the techniques described
here to the inhomogeneous formulation of spherically
symmetric loop quantum geometry such as was developed
in [25,26]. This in turn could enable us to study the
collapsing scenario of loop quantum black holes.
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APPENDIX: PHENOMENOLOGICAL DYNAMICS
IN THE �o SCHEME

One of the virtues of the improved strategy ( �� or
��0 scheme) in both the isotropic and Bianchi I models of
LQC is to fix the serious drawback in the original strategy
(�o scheme), whereby the critical value of matter density
�� (in the isotropic model) or of directional densities %I (in

the Bianchi I model) at which the bounce occurs can be
made arbitrarily small by increasing the momentum p� of

the matter field, thereby giving the wrong semiclassical
behavior [4,8,10]. In the case of the Schwarzschild interior,
without the reference of matter content, it is not clear
whether the �o scheme is problematic in regard to semi-
classicality. For comparison, the phenomenological dy-
namics in the �o scheme is presented here.

In the phenomenological theory of the �o scheme, we
take the prescription to replace c and b with sinð�o

ccÞ=�o
c

and sinð�o
bbÞ=�o

b by introducing the fixed numbers �o
c and

�o
b for discreteness. Analogous to (3.2), we have the ef-

fective (rescaled) Hamiltonian constraint:

H0�o
¼ � 1

2G�

�
2
sinð�o

bbÞ
�o

b

sinð�o
ccÞ

�o
c

pbpc

þ
�
sinð�o

bbÞ
�o

b

�
2
p2
b þ �2p2

b

�
: (A1)

To get an idea where the quantum corrections become
appreciable, employing the classical solution given by
(2.29), (2.33), and (2.34), we estimate the quantities �o

bb
and �o

cc:

�o
bb ¼ ��o

b

Kb

pb

!
�1 as t0 ! 1;
0 as t0 ! �1; (A2)

�o
cc ¼ ��o

c

Kc

pc

!
�1 as t0 ! 1;
��o

cKc

4G2M2 as t0 ! �1: (A3)

This suggests that the quantum corrections are significant
near the classical singularity and negligible on the horizon
provided that

Kc � 4G2M2

��o
c

; (A4)

which can always be satisfied if we choose I small enough
for a given M.
The equations of motion are given by the Hamiltonian

constraint H0�o
¼ 0 and Hamilton’s equations:

dc

dt0
¼ fc;H0�o

g ¼ 2G�
@H0�o

@pc

¼ �2��1pb

sinð�o
bbÞ

�o
b

sinð�o
ccÞ

�o
c

; (A5)

dpc

dt0
¼ fpc;H

0
�o
g ¼ �2G�@H0�o

@c

¼ 2��1pbpc cosð�o
ccÞ sinð�

o
bbÞ

�o
b

; (A6)

db

dt0
¼ fb;H0�o

g ¼ G�
@H0�o

@pb

¼ ���1pc

sinð�o
bbÞ

�o
b

sinð�o
ccÞ

�o
c

� ��1pb

�
sinð�o

bbÞ
�o

b

�
2 � �pb; (A7)

dpb

dt0
¼ fpb;H

0
�o
g ¼ �G�@H0�o

@b

¼ ��1pb cosð�o
bbÞ

�
pb

sinð�o
bbÞ

�o
b

þ pc

sinð�o
ccÞ

�o
c

�
;

(A8)

which follow

d

dt0

�
pc

sinð�o
ccÞ

�o
c

�
¼ 0) pc

sinð�o
ccÞ

�o
c

¼ �Kc (A9)

and

pc

sinð�o
bbÞ

�o
b

¼: �Ko
bðt0Þ;

dKo
b

dt0
¼ ��2p2

b cosð�o
bbÞ:
(A10)

These are exactly the same as (3.17), (3.18), (3.19), and
(3.20) except that the discreteness variables ��c and ��b are
now replaced by �o

c and �o
b.

Therefore, exploiting the close resemblance between the
�� scheme and the �o scheme, we can readily repeat the
calculation we did in Sec. III A and obtain the differential
equations [cf. (3.22), (3.23), and (3.24)]:

dKo
b

dt0
¼ cosð�o

bbÞð2Ko
bK

o
c þ �K2

b � K2
�Þ; (A11)

1

pc

dpc

dt0
¼ 2 cosð�o

ccÞKo
b; (A12)
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1

pb

dpb

dt0
¼ cosð�o

bbÞ½Ko
b þ Kc�; (A13)

where

cosð�o
ccÞ ¼ �½1� sin2�o

cc�1=2

¼ �
�
1�

�
��o

cKc

pc

�
2
�
1=2

; (A14)

cosð�o
bbÞ ¼ �½1� sin2�o

bb�1=2

¼ �
�
1�

�
��o

cK
o
b

pb

�
2
�
1=2

; (A15)

which give the bouncing solution similar to that given in
the ��-scheme phenomenological dynamics except that the

exact conditions at which the bounce takes place are given
differently by [cf. (3.27) and (3.28)]

pc ¼ ��o
cKc � 4G2M2; (A16)

pb ¼ ��o
bjKo

bj � 2��o
cKc � 8G2M2: (A17)

The phenomenological dynamics of the �o scheme
closely resembles that of the �� scheme. The classical
singularity is resolved and replaced by the quantum
bounce, which bridges a black hole interior with a white
hole interior. The dynamics also depends on the choice of
I . The exact solution with �o

b ¼ �o
c ¼ � can be found in

[14,15].
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