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In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the

same gravitational field equations in general relativity (GR). A particularly intriguing example is the case

with couplings of the form ½1þ f2ðRÞ�Lm, where R is the scalar curvature, which induces an extra force

that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian

density Lm ¼ p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique

choice for the matter Lagrangian density, and that more natural forms for Lm do not imply the vanishing

of the extra force. Particular attention is paid to the impact on the classical equivalence between different

Lagrangian descriptions of a perfect fluid.
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I. INTRODUCTION

Recently, in the context of fðRÞ modified theories of
gravity, it was shown that a function of R-matter coupling
induces a nonvanishing covariant derivative of the energy-
momentum, r�T

�� � 0. This potentially leads to a devia-

tion from geodesic motion, and consequently the appear-
ance of an extra force [1]. Implications, for instance, for
stellar equilibrium in this context have been studied in
Ref. [2]. The equivalence with scalar-tensor theories with
two scalar fields has been considered in Ref. [3], and a
viability stability criterion was also analyzed in Ref. [4].
This novel coupling has attracted some attention and,
actually, in a recent paper [5], this possibility has been
applied to distinct matter contents, such as a massive scalar
field and a dust distribution. Regarding the latter, it was
argued that a ‘‘natural choice’’ for the matter Lagrangian
density for perfect fluids is Lm ¼ p, based on Refs. [6,7],
where p is the pressure. This choice has a particularly
interesting application in the analysis of the R-matter
coupling for perfect fluids, which implies in the vanishing
of the extra force. However, we point out that despite the
fact that Lm ¼ p does indeed reproduce the perfect fluid
equation of state, it is not unique. Other choices include,
for instance, Lm ¼ �� [7,8], where � is the energy den-
sity, orLm ¼ �na, where n is the particle number density,
and a is the physical free energy defined as a ¼ �=n� Ts,

with T being the fluid temperature and s the entropy per
particle. Indeed, all these are on shell representations of a
more general Lagrangian density, that is, obtained through
back substitution of the equations of motion into the related
action (see Ref. [7] for details). Furthermore, this equiva-
lence is established within the framework of general rela-
tivity (GR). In this work, we address the issue of the
Lagrangian formulation of perfect fluids in the context of
the proposed model with a nonminimal coupling of the
scalar curvature to matter, as depicted below.
This paper is organized as follows. In Sec. II, we review

the equations of motion in a curvature-matter coupling. In
Sec. III, we show the nonuniqueness of the relativistic
perfect matter Lagrangian densities. In Sec. IV, we analyze
the perfect fluid Lagrangian description with a nonminimal
scalar curvature coupling. In Sec. V, we present our con-
clusions. Throughout this work, we use the convention � ¼
8�G ¼ 1 and the metric signature ð�1; 1; 1; 1Þ.

II. EQUATION OF MOTION WITH
CURVATURE-MATTER COUPLINGS

The action for curvature-matter couplings, in fðRÞmodi-
fied theories of gravity [1], takes the following form:

S ¼
Z �

1

2
f1ðRÞ þ ½1þ �f2ðRÞ�Lm

� ffiffiffiffiffiffiffi�gp
d4x; (1)

where fiðRÞ (with i ¼ 1, 2) are arbitrary functions of the
curvature scalar R, and Lm is the Lagrangian density
corresponding to matter.
Varying the action with respect to the metric g�� yields

the field equations, given by
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F1R�� � 1
2f1g�� �r�r�F1 þ g��hF1

¼ ð1þ �f2ÞT�� � 2�F2LmR�� þ 2�ðr�r�

� g��hÞLmF2; (2)

where we have denoted FiðRÞ ¼ f0iðRÞ, and the prime
represents the derivative with respect to the scalar curva-
ture. The matter energy-momentum tensor is defined as

T�� ¼ � 2ffiffiffiffiffiffiffi�gp �ð ffiffiffiffiffiffiffi�gp
LmÞ

�ðg��Þ : (3)

Now, taking into account the generalized Bianchi identi-
ties, one deduces the following corrected conservation
equation

r�T�� ¼ �F2

1þ �f2
½g��Lm � T���r�R: (4)

If one considers the equivalence with a scalar field theory
(with two scalar fields, � ¼ R and  ¼ Lm) [3], it is clear
that the nonminimal coupling between curvature and mat-
ter yields an exchange of energy and momentum between
the latter and these scalar fields.

In the following, consider the equation of state for a
perfect fluid

T�� ¼ ð�þ pÞU�U� þ pg��; (5)

where � is the energy density and p, the pressure, respec-
tively. The four-velocity, U�, satisfies the conditions

U�U
� ¼ �1 and U�U�;� ¼ 0.

Introducing the projection operator h�� ¼ g�� þ
U�U�, gives rise to nongeodesic motion governed by the

following equation of motion for a fluid element:

dU�

ds
þ ��	
U

	U
 ¼ f�; (6)

where the extra force, f�, is given by

f� ¼ 1

�þ p

�
�F2

1þ �f2
ðLm � pÞr�Rþr�p

�
h��: (7)

One verifies that the first term vanishes for the specific
choice of Lm ¼ p, as noted by Ref. [5]. However, as
emphasized in the Introduction, this is not the unique
choice for the Lagrangian density of a perfect fluid, as
we shall outline below.

III. RELATIVISTIC PERFECT FLUID MATTER
LAGRANGIAN DENSITIES

In this section, we follow Ref. [7] closely, and review the
Lagrangian formulation of a perfect fluid in the context of
GR. The action is presented in terms of Lagrange multi-
pliers along the Lagrange coordinates 	A in order to en-
force specific constraints, and is given by

Sm ¼
Z
d4x½� ffiffiffiffiffiffiffi�gp

�ðn; sÞ þ J�ð’;� þ s�;� þ 
A	
A
;�Þ�:
(8)

Note that the action Sm ¼ Sðg��; J�; ’; �; s; 	A; 
AÞ is a

functional of the spacetime metric g��, the entropy per

particle s, the Lagrangian coordinates 	A, and spacetime
scalars denoted by ’, �, and 
A, where the index A takes
the values 1, 2, 3 (see Ref. [7] for details). The physical
interpretation of these parameters is given below.
The vector density J� is interpreted as the flux vector of

the particle number density, and defined as J� ¼ffiffiffiffiffiffiffi�gp
nU�. The particle number density is given by n ¼

jJj= ffiffiffiffiffiffiffi�gp
, so that the energy density is given as a function

� ¼ �ðjJj= ffiffiffiffiffiffiffi�gp
; sÞ.

Varying the action with respect to the metric, and using
the definition given by Eq. (3), provides the stress-energy
tensor for a perfect fluid

T�� ¼ �U�U� þ
�
n
@�

@n
� �

�
ðg�� þU�U�Þ; (9)

with the pressure defined as

p ¼ n
@�

@n
� �: (10)

Note that this definition of pressure is in agreement with
the first law of thermodynamics, d� ¼ �dnþ nTds. The
latter shows that the equation of state can be specified by
giving the function �ðn; sÞ, i.e., the energy density as a
function of number density and entropy per particle. The
quantity � ¼ @�=@n ¼ ð�þ pÞ=n is defined as the
chemical potential, which is the energy per particle re-
quired to inject a small amount of fluid into a fluid sample,
maintaining a constant sample volume and a constant
entropy per particle s. In addition, when imposing the
stress-energy tensor covariant conservation, i.e., T

��
;� ¼

0, the perfect fluid also implies the covariant conservation
of particle number, given by ðnU�Þ;� ¼ 0.

The variation of the action with respect to J�, ’, �, s,
	A, and 
A, provides the following equations of motion:

�S

�J�
¼ �U� þ ’;� þ s�;� þ 
A	

A
;� ¼ 0; (11)

�S

�’
¼ �J�;� ¼ 0; (12)

�S

��
¼ �ðsJ�Þ;� ¼ 0; (13)

�S

�s
¼ � ffiffiffiffiffiffiffi�gp @�

@s
þ �;�J

� ¼ 0; (14)

�S

�	A
¼ �ð
AJ�Þ;� ¼ 0; (15)
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�S

�
A
¼ 	A;�J

� ¼ 0: (16)

The first relationship, Eq. (11), provides the velocity rep-
resentation of the 4-velocity. The second equation,
Eq. (12), reflects the particle number conservation, i.e.,
ðnU�Þ;� ¼ 1ffiffiffiffiffi�gp J�;� ¼ 0. Equation (13) translates the en-

tropy exchange constraint. Equation (14) provides the

identification of T ¼ �;�U
� ¼ 1

n
@�
@s jn after comparing it

with the first law of thermodynamics. Equation (15) re-
flects the constancy of the parameter 
A along the fluid
flow lines, and finally, Eq. (16) restricts the fluid 4-velocity
to be directed along the flow lines of constant 	A.

One may now infer the physical interpretation for the
respective parameters. The scalar field ’ is interpreted as a
potential for the chemical free energy f, and is a Lagrange
multiplier for J

�
;�, the particle number conservation. The

scalar fields 
A are interpreted as the Lagrange multipliers
for 	A;�J

� ¼ 0, restricting the fluid 4-velocity to be di-

rected along the flow lines of constant 	A.
Note that taking into account Eq. (11) and the definitions

J� ¼ ffiffiffiffiffiffiffi�gp
nU� and � ¼ ð�þ pÞ=n, the action Eq. (8)

reduces to the on shell Lagrangian densityLmð1Þ ¼ p, with
the action given by

Sm ¼
Z
d4x

ffiffiffiffiffiffiffi�gp
p; (17)

which is the form considered in Ref. [6]. One should bear
in mind that this on shell Lagrangian density yields the
equations of motion (11)–(16) only if one considers that
the pressure is functionally dependent on the previously
considered fields’, s, �,
A,	

A, and on the current density
J�.

Now, it was a Lagrangian density given byLm ¼ p that
the authors of Ref. [5] use to obtain a vanishing extra force
due to the nontrivial coupling of matter to the scalar
curvature R. For concreteness, replacing Lm ¼ p in
Eq. (7), one arrives at the general relativistic expression

f� ¼ h��r�p

�þ p
: (18)

However, the on shell degeneracy of the Lagrangian den-
sities arises from adding up surface integrals to the action.
For instance, consider the following surface integrals
added to the action Eq. (8):

�
Z
d4xð’J�Þ;�; �

Z
d4xð�sJ�Þ;�;

�
Z
d4xðJ�
A	AÞ;�;

so that the resulting action takes the form

S ¼
Z
d4x½� ffiffiffiffiffiffiffi�gp

�ðn; sÞ � ’J
�
;� � �ðsJ�Þ;�

� 	Að
AJ�Þ;��: (19)

Note that this action reproduces the equations of motion,
Eqs. (11)–(16). Taking into account the latter, the action
reduces to

Sm ¼ �
Z
d4x

ffiffiffiffiffiffiffi�gp
�; (20)

i.e., the on shell matter Lagrangian density takes the fol-
lowing form Lm ¼ ��; as before, � is dependent on the
original fields present in the action Eq. (8). This choice is
also considered for isentropic fluids, where the entropy per
particle is constant s ¼ const [7,8]. For the latter, the first
law of thermodynamics indicates that isentropic fluids are
described by an equation of state of the form aðn; TÞ ¼
�ðnÞ=n� sT [7] (see Ref. [9] for a bulk-brane discussion
of this choice).
For this specific choice of Lmð2Þ ¼ �� the extra force

takes the following form:

f� ¼
�
� �F2

1þ �f2
r�Rþ 1

�þ p
r�p

�
h��: (21)

An interesting characteristic is that the term related to the
specific curvature-matter coupling is independent on the
energy-matter distribution.
Another interesting action functional is given by the

equation of state of the physical free energy as a function
of the number density and the temperature, aðn; TÞ. For this
we follow the reasoning of Ref. [7]. For instance, solving
Eq. (14) for s as a function of n and T (using the definition
T ¼ �;�J

�=jJj), and finally eliminating s from the action

Eq. (8), yields

Sm ¼
Z
d4x½�jJjaðn; TÞ þ J�ð’;� þ 
A	

A
;�Þ�: (22)

Using the definitions n ¼ jJj= ffiffiffiffiffiffiffi�gp
and T ¼ �;�J

�=jJj,
and varying the action with respect to J�, one ends up
with the equation of motion, Eq. (11). The remaining
equations of motion are readily obtained by varying S
with respect to ’, �A, and 
A. It is simple to show that
this action also provides the perfect fluid stress-energy
tensor. As before, one may consider the addition of the
following surface integrals to Eq. (8):

�
Z
d4xð’J�Þ;�; �

Z
d4xðJ�
A	AÞ;�;

so that the action takes the following form

Sm ¼
Z
d4xð� ffiffiffiffiffiffiffi�gp

naÞ: (23)

The matter Lagrangian density is given by Lmð3Þ ¼ �na.
The extra force in terms of this Lagrangian density yields
the following expression:
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f� ¼ 1

�þ p

�
� �F2

1þ �f2
ðnaþ pÞr�Rþr�p

�
h��:

(24)

Hence, it is clear that no immediate conclusion may be
extracted regarding the additional force imposed by the
nonminimal coupling of curvature to matter, given the
different available choices for the Lagrangian density;
moreover, one could doubt the validity of a conclusion
that allows for different physical predictions arising from
these apparently equivalent Lagrangian densities.

Thus, from the above point of view, there is no particular
reason to regard the choice of the on shell Lagrangian
density Lmð1Þ ¼ p as preferable over the others we have

discussed above. However, this degeneracy of the
Lagrangian density of a perfect fluid, which does not
appear in GR, is rather intriguing and object of further
discussion in the next section.

IV. PERFECT FLUID LAGRANGIAN
DESCRIPTION WITH NONMINIMAL SCALAR

CURVATURE COUPLING

There is a caveat in above treatment, which can easily
pass ignored: The discussion of the Lagrangian density
dependence of the extra force given by Eq. (7), and degen-
eracy thereof, implicitly admits that the equivalence be-
tween different on shell Lagrangian densities holds.
However, the latter is established in GR, and may not be
valid in the more general model considered here.

Clearly, one may argue that two Lagrangian densities are
equivalent if both generate the same energy-momentum
tensor, and if variation of the corresponding actions yields
the same equations of motion (11)–(16). As has been
shown above, the several on shell Lagrangian densities
Lmð1Þ ¼ p, Lmð2Þ ¼ ��, Lmð3Þ ¼ �na are all equivalent

to the original, ‘‘bare’’ Lagrangian density,

L m ¼ ��ðn; sÞ þ J�ffiffiffiffiffiffiffi�gp ð’;� þ s�;� þ 
A	
A
;�Þ: (25)

Hence, one must attempt to retrace the derivation of the
classical equivalence leading to these on shell quantities.
Clearly, if one simply includes the ½1þ �f2ðRÞ� factor of
Eq. (1) into action Eq. (8), that is,

S ¼
Z
d4x½1þ �f2ðRÞ�½� ffiffiffiffiffiffiffi�gp

�ðn; sÞ
þ J�ð’;� þ s�;� þ 
A	

A
;�Þ�; (26)

then the equations of motion (11)–(16) are unaffected, as
variation with respect to each field yields only a global
factor ½1þ �f2ðRÞ�.

However, the guiding principle behind the proposal first
put forward in Ref. [1] is to allow for a nonminimal
coupling between curvature and matter. Thus, the modifi-
cation of the perfect fluid action Eq. (8) should only affect

the terms that show a minimal coupling between curvature
and matter, i.e., those multiplied by

ffiffiffiffiffiffiffi�gp
. For this reason,

the current density term, which is not coupled to curvature,
should not be altered. This yields

S0m ¼
Z
d4x½� ffiffiffiffiffiffiffi�gp ½1þ �f2ðRÞ��ðn; sÞ þ J�ð’;�

þ s�;� þ 
A	
A
;�Þ�: (27)

The equations of motion (12), (13), (15), and (16) are
unchanged, while Eqs. (11) and (14) read

�S

�J�
¼ �½1þ f2ðRÞ�U� þ ’;� þ s�;� þ 
A	

A
;� ¼ 0;

�S

�s
¼ � ffiffiffiffiffiffiffi�gp ½1þ f2ðRÞ� @�@s þ �;�J

� ¼ 0: (28)

This results from the coupling of the variables J� and s
with the factor ½1þ f2ðRÞ� (since n ¼ jJj= ffiffiffiffiffiffiffi�gp

).

Recalling that J� ¼ ffiffiffiffiffiffiffi�gp
nU�, one obtains

� ½1þ �f2ðRÞ��U� ¼ ’;� þ s�;� þ 
A	
A
;�; (29)

T ¼ 1

n

@�

@s

��������n
¼ 1

1þ �f2ðRÞ�;�U
�; (30)

so that both the velocity representation and the temperature
reflect the nonminimal coupling of curvature to matter.
One may now proceed and substitute the modified equa-

tions of motion into action (27), in order to obtain the new
on shell Lagrangian density,

S0m ¼
Z
d4x

ffiffiffiffiffiffiffi�gp ½1þ �f2ðRÞ�p: (31)

Hence, one concludes that the on shell Lagrangian density
Lmð1Þ ¼ p is also obtained in the considered scenario. By

including extra surface integrals, a similar procedure (not
pursued here) also yields the previously discussed forms
Lmð2Þ ¼ ��, Lmð3Þ ¼ �na.

A. Gravitational field equations and the nonequivalence
between on shell and bare Lagrangian densities

The above discussion confirms that one may adopt any
particular on shell Lagrangian density as a suitable func-
tional for describing a perfect fluid, therefore leading to the
issue of distinguishing between different predictions for
the extra force. However, this is not quite correct: although
the above Lagrangian densitiesLmðiÞ are indeed obtainable
from the original action, it turns out that they are not
equivalent to the original Lagrangian density Lm. Indeed,
this equivalence demands that not only the equations of
motion of the fields describing the perfect fluid remain
invariant, but also that the gravitational field equations do
not change.
Recall that the terms in the field Eqs. (2) which depend

onLm arise from the presence of the nonminimal coupling
½1þ �f2ðRÞ�. However, the formulation of a perfect fluid
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action functional includes the presence of a current density
term, plus eventual surface integral terms B

�
;�. Writing

Lc ¼ ��ðn; sÞ, V� � ’;� þ s�;� þ 
A	
A
;�, for simplic-

ity, then

S0m ¼
Z
d4x½ ffiffiffiffiffiffiffi�gp ½1þ �f2ðRÞ�Lc þ J�V� þ B

�
;��;
(32)

one can see that only the nonminimal coupled term Lc

appears in the field equations, as variations with respect to
g�� of the remaining terms vanish:

F1R�� � 1
2f1g�� �r�r�F1 þ g��hF1

¼ ð1þ �f2ÞT�� � 2�F2LcR�� þ 2�ðr�r�

� g��hÞLcF2: (33)

Clearly, the appropriate energy-momentum tensor is still
obtained from Lc, definitions (10), and relations U

�U� ¼
�1 and J� ¼ ffiffiffiffiffiffiffi�gp

nU�.

One arrives not at a paradox, but a tautology: different
predictions for nongeodesic motion result from different
forms of the gravitational field equations. Therefore, the
equivalence between different on shell Lagrangian den-
sities LmðiÞ and the original quantity Lm is broken, so

that one can no longer freely choose between the available
forms.

By the same token, the additional extra force is unique,
and obtained by replacing Lc ¼ �� into Eq. (7), yielding
expression (21), here repeated for convenience

f� ¼
�
� �F2

1þ �f2
r�Rþ 1

�þ p
r�p

�
h��: (34)

B. Null dust case

Following Ref. [5], it is interesting to analyze the gen-
eralized conservation law, given by Eq. (4), in the case of a
null dust matter distribution. The latter is defined as the
particular case of a perfect fluid with vanishing pressure,
p ¼ 0. This is usually interpreted as expressing weakly
interacting nonrelativistic particles, with �c2 � p � 0.
However, given the previous discussion of the functional
description of a perfect fluid, where the pressure is not an
independent quantity, but defined by Eq. (10), a more
rigorous (and physically compatible) formulation corre-
sponds to an isentropic (s ¼ const) perfect fluid with an
equation of state of the form �ðnÞ ¼ n�, with a constant
chemical potential �.

The authors of Ref. [5] conclude that the extra force
arising due to the nonminimal coupling of dust with the
scalar curvature does not lead to nongeodesic motion, as it
preserves parallel transport (and only changes the parame-
terization of the geodesic). However, this result arises from
the particular choice Lm ¼ p, which is commonly used in
the framework of GR. As the previous discussion has

shown, in the context of the considered curvature-matter
coupling model, one cannot freely chose between available
on shell Lagrangian densities, since these do not lead to the
same gravitational field equations [10].
Instead, inserting the component of the original

Lagrangian density that couples to the geometry, Lc ¼
�� into Eq. (4), and considering the energy-momentum
tensor T�� ¼ �U�U�, one arrives at the following rela-

tionship:

ðU�r�U� þU�r�U� þU�U�r�Þ�

¼ � �F2�

1þ �f2
ðg�� þU�U�Þr�R: (35)

Following the notation of Ref. [5], one writes

� ¼ r�U� þ 1

�
U�r��þ �F2

1þ �f2
U�r�R; (36)

obtaining

U�r�U� ¼ ��U� � �F2

1þ �f2
r�R; (37)

which clearly shows that parallel transport is no longer
conserved, and one concludes that nongeodesic motion is
also followed by pressureless dust.

V. CONCLUSIONS

In this work we have discussed the degeneracy of
Lagrangian densities for a perfect fluid, in the context of
a gravity model where matter is coupled nonminimally
with the scalar curvature. This degeneracy problem is
well known in the context of GR, but in the discussed
nonminimally coupled model possesses some new and
rather surprising features, such as nongeodesical motion
(first discussed in Ref. [1]; see Ref. [11] for a recent
review); this dependency on the choice of the Lagrangian
density was pointed out in Ref. [5].
We show that this degeneracy does not appear in the

considered model, since different on shell Lagrangian
densities which are classically equivalent do not yield the
same gravitational field equations. Instead, we conclude
that only the part of the original Lagrangian density Lm

that is coupled to the geometry (via the
ffiffiffiffiffiffiffi�gp

factor)

appears in these field equations. Hence, it follows that
the motion of test particles is necessarily nongeodesic, if
the nonminimal nature of the coupling between matter and
curvature is properly accounted in the onset of fluid
treatment.
However, we should point out that this study only solves

the issue of an apparent degeneracy due to the classical
equivalence between on shell Lagrangian densities. This
should not be seen as an exhaustive account of the overall
problem, since it only lifts this degeneracy for a particu-
lar original Lagrangian density Lm. One can take a
Lagrangian density different from that of Eq. (8) to begin
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with, which also gives a full account of the behavior of a
perfect fluid, describing both the correct energy-
momentum tensor as well as its thermodynamics. As an
example, if the bare Lagrangian density of Ref. [12] is
considered (see Ref. [13] for a discussion), one obtains an
extra force that is corrected by a factor linearly dependent
on the Helmholtz free energy.

If one takes an initial Lm that is functionally different
from the one adopted in this study, and that still enables a
convenient description of a perfect fluid (and is suitably
interpreted through the use of the first law of thermody-
namics), then one could obtain different results for the
predicted extra force. This might lead to two different
interpretations: One can conjecture that there must exist
an underlying principle or symmetry that yields a unique
Lagrangian density for a perfect fluid, so that different
extra force predictions stem from an incomplete action
description of it; however, one might also posit that differ-
ent extra forces arising from different Lagrangian densities
are physically distinguishable. If so, the model under scru-
tiny would serve to discriminate between different fluids
that share the same energy-momentum tensor (and are thus
‘‘perfect’’), but have different thermodynamic formula-
tions. In the authors’ opinion, this has not been given due
attention in the literature, most likely because arbitrary
gravitational field equations depending on the matter
Lagrangian have not often been the object of scrutiny.

In fact, to judge which matter Lagrangian density is the
‘‘natural’’ one depends, to some extent, on the independent
variables that are considered. In this respect, an interesting
avenue for future research would be to consider the non-
minimal curvature-matter coupling using velocity poten-
tials [6]. In this case, there are no constraints in the action
principle, and one could compare this analysis with the one
where the comoving Lagrangian coordinates label the fluid
elements and that exhibits constraints [14] (we refer the
reader to Ref. [15] for a proof of the need for constraints
and related issues). However, this is not a trivial task, as no
Lagrangian is unique, even in the presence of the non-
minimal coupling, since it is invariant under the addition of
a divergence, as mentioned above. Work along these lines
is presently underway.
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