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Generating technique for U(1)? 5D supergravity
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We develop a generating technique for solutions of U(1)? 5D supergravity via dimensional reduction to
three dimensions. This theory, which recently attracted attention in connection with black rings, can be
viewed as a consistent truncation of the T® compactification of the 11-dimensional supergravity. Its further
reduction to three dimensions accompanied by dualization of the vector fields leads to a 3D gravity
coupled sigma model on the homogeneous space SO(4,4)/SO4) X SO4) or SO(4,4)/S0(2,2) X
SO(2,2) depending on the signature of the three-space. We construct a 8 X 8 matrix representation of
these cosets in terms of lower-dimensional blocks. Using it we express a solution generating trans-
formations in terms of potentials and identify those preserving asymptotic conditions relevant to black
holes and black rings. As an application we derive the doubly rotating black hole solution with three
independent charges. A suitable contraction of the above cosets is used to construct a new representation

of the coset Gy /(SL(2, R) X SL(2, R)) relevant for minimal five-dimensional supergravity.
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I. INTRODUCTION

Since the discovery of black rings [1] in five dimensions,
a variety of solution generation methods was developed to
derive these solutions in a regular way and to construct
their generalizations [2—18]. These methods allow one to
find solutions possessing a certain number of isometries
and they can be combined into three groups:
(i) applications of T-duality symmetries acting on scalar
and vector fields in any dimensions, (ii) the derivation of
three-dimensional sigma models on homogeneous spaces,
(iii) further reduction to two dimensions to apply soliton
techniques. Usually the third approach involves the second
one as an intermediate step. Dimensional reduction of
higher-dimensional supergravity theories to three dimen-
sions accompanied by dualization of the vector fields leads
to the enhanced U-duality symmetries (hidden symme-
tries) which contain transformations useful for generating
purposes. So far, only a restricted class of hidden symme-
tries of five-dimensional supergravity [the vacuum
SL(3, R) subgroup [19,20]] was applied to the black ring
problems. Nevertheless, an application of the level
(iii) technique based on this subgroup has led to impressive
new results for vacuum black ring solutions [5—15].

For charged black rings, only the T duality at level
(i) was used until recently to generate such solutions
from the uncharged ones. To proceed further to level (ii),
one has to specify the five-dimensional Lagrangian con-
taining vector fields. Pure Einstein-Maxwell theory in five
dimensions fails to produce a three-dimensional sigma
model on a symmetric target space. Adding the Chern-
Simons term, as prescribed by the minimal five-
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dimensional supergravity [21,22], one obtains a more sym-
metric three-dimensional sigma model with an exceptional
group G,y acting as the target-space isometry [23-35].
The corresponding generating technique was recently de-
veloped in [36,37]. It amounts to using the 7 X 7 matrix
representation of the coset Gy»)/(SL(2, R) X SL(2, R))
and opens a way to construct the most general five-
parametric black ring solution of the minimal five-
dimensional supergravity as well as its possible general-
izations such as charged Saturns.

The purpose of this paper is to generalize the same
approach to U(1)* five-dimensional supergravity with
three vector fields. This theory can be regarded as a trun-
cated toroidal compactification of the 11D supergravity:

1 1
Iy =——— Ry %11 —=F1 A% F
11 167Gy, [( 11 %11 5 14 1147[4]

1
~gFl A F A ABJ) ()

where F[4] = dA[3), according to an ansatz

dst, = dst + X'(dz} + dz3) + X*(dz} + dzj
+ X3(dz3 + dz}), )
App = A" Adzy Adzy + A* Adzy Adzy
+ A3 Adzs A dzg.

Here z/,i = 1, ..., 6 are the coordinates parametrizing the
torus T°. The three scalar moduli X’ (I = 1, 2, 3) and the
three one-forms A’ depend only on the five coordinates
entering dsg. The moduli X! satisfy the constraint
X'X?X3 =1, implying that the five-dimensional metric
ds§ is the FEinstein-frame metric. The reduced five-
dimensional action reads
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1
Is=—— |(Rs*x5s1 — =G;;dX! A *sdX’
5 167TG5,[< 5 %5 o 5

1 1
_EG[JF] /\*SFJ _galJKFI /\FJ/\AK),

G,y = diag((X") 72, (X?)72, (X?)72),
F, = dA,, I,J,K=123,

where the totally symmetric Chern-Simons coefficients
617k = 1 for the indices I, J, K being a permutation of
1, 2, 3, and zero otherwise. Supersymmetric solutions to
this theory were studied in a number of papers [38—48].
The most general ring solution to this theory constructed so
far [49] is a family of nonsupersymmetric rings parame-
trized by three conserved charges Q;, three dipole charges
g, and aradius of ', with the mass M and the two angular
momenta Jy, J4 being some functions of these seven free
parameters. An existence of a larger family of nonsuper-
symmetric black rings with nine independent parameters
(M, Jy, J 4, Q1. q1) is expected, which reduces to the solu-
tions of [45-48] in the supersymmetric limit. The generat-
ing technique developed in the present paper provides a
sufficient number of parameters to construct the nine-
parametric solution.

It is worth noting that the ansatz (2) is far from being the
general toroidal compactification of the 11D supergravity.
The generic toroidal reduction leads to the five-
dimensional theory with 27 vector fields and 42 scalar
moduli, parametrizing a coset Eg4)/USp(8). Cor-
respondingly, the general black ring must contain 27 con-
served charges and 27 dipole charges. More accurate
analysis [50] shows that 24 conserved charges can be
generated from the above three by duality transformations,
while the number of independent dipole charges is 15 (the
number of independent four-cycles of T°).

Contraction of the above theory to minimal 5D super-
gravity is effected via an identification of the vector fields:

1
Al=A2 =A% = A,
3

and freezing out the moduli: X! = X> = X3 = 1. This
leads to the Lagrangian

1 1
Ls=Rsks1l—=-FA*xsF———=FAFAA.

2 33

In this case our results go back to those of Refs. [36,37].
However, our matrix representation of the coset
S0(4,4)/S0(4) X SO(4) leads upon this contraction to a
new representation of the coset Gyp)/(SL(2, R) X
SL(2, R)), different and somewhat simpler than given in
[36,37].
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I1. 3D SIGMA MODEL

A. Dimensional reduction

To perform dimensional reduction of the 11D theory to
three dimensions, we follow an approach of Ref. [51]
(keeping all basic notations of that paper) which has an
advantage to provide the roots of the hidden symmetry
group directly in terms of the so called dilaton vectors
(coefficients in the dilaton exponentials entering the re-
duced action). For this purpose we go back to 11 dimen-
sions and consider compactification of 11-dimensional
supergravity on the torus 78 = T° X T? parametrized by
coordinates 7!, ..., z8. It will be convenient to distinguish
the six coordinates on the torus T°, corresponding to the
reduction to five dimensions, z/, i = 1, ..., 6, from those
on T?, corresponding to the reduction from five to three
dimensions, which will be denoted by elder indices p, g =
7, 8. The decomposition of the 11-dimensional metric in
terms of the five-dimensional and three-dimensional met-
rics incorporating a diagonal ansatz (2) on T (sector z)
and the Kaluza-Klein mechanism (KK) ansatz on 72 (sec-
tor z”) then reads in the notation of [51]:

6
ds?, = e"%ds2 + Z e27k°9 (dzk)?
=1
= eg'éds% + 5[ (d7’ + A7 + xdzg)?

6
+ keX7s e (dz8 + A8)?] + Z e277(dzK)?2,  (3)
=1

where A7, A? are three-dimensional Kaluza-Klein one-
forms from the reduction of the five-dimensional metric on
T?, x is an axion arising in the reduction of the four-
dimensional one-form A’ on the second cycle of T2
A7 = A7 + ydz® (in the notation of the Ref. [51] y =
A, the factor k = *1 is responsible for the signature:
k = 1 for a spacelike z%, and k = —1 for a timelike z®. The
eight-dimensional dilaton 6 is split into the sum of the 7
and 72 components:
6=35+ o

5':(0'1,...,0'6,0,0),

¢=1(0,....0, @1, 02),

and the dilaton vectors can be presented as

s =V2/((10 = KO — k),

[
~—~~

Sl,-..,ss),

Vi = 5(5 — fi,

5

fk = (0, 0, ey O, (10 - k)Sk, Sk+1s Sk+25 -+ +» Sg), (4)
k—1
k=1,...,8.

The relation between the dilatons and the moduli X! with
account for the constraint X' X>X3 = 1 is given by
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1
P = — + ©,, sra=0eX'1X2X3 =1,
¢ \/§€01 (%)
(5)
X! = e2V1°0 = 2727, X2 = e2V30 = 2747,
X3 = 62'?5-5' = 2% 5" (6)
I 2 I 1
7P = T =% g P = —(=¢1 — 2
2y 7 2y 5
(7

(95) = g(ax—}il)z

To rewrite the ansatz for the 11-dimensional three-form
potential Af3) in the notation of Ref. [51], we will use the
pairwise indices ii, jj',... taking three values ii’ =
(12, 34, 56), together with the indices on T2: p = 7, 8, so
that

Ay =3 AdZ A dZ + LAy, d2l Ade A dz.

ii'p
Here the one-forms A, = A!, A3, = A%, A5 = A3 are the
pullback of the five-dimensional one-forms introduced in
(2) onto the three-space (assuming A;; = —A;), and the
scalars Au’p (A127, Asa7, Aser, A1og, Asgg, Aseg) are axi-
ons arising in the reduction of the five-dimensional one-
forms on 72

Using the result of Ref. [51], we obtain the following
three-dimensional Lagrangian (for k = 1):

_ 1, . -
e;' L3 =R — 5(39)2 Ze””' O(F )
1<1
1 -
_ Zzebp«p(}‘py Z e’ (F iy p
p l<l N
1 - .
- Eebm“"(a/\/)z +e3! Lo, 3)

where the field strength two-forms are defined as
F'=dA7 —dyn A8,
Fl/ = dAii’ - dAii/p'yp A ﬂq,

Ft = dAS,
’)’77 =
dA;y

y88 = 1’

778 =X Flz’p 7 ii'q-

= 2(-1,0,0,-1),
G = +2(0,1,0,—1)

= V2(-1,0,-1,0), = V2(-1,

dzy = V2(=1,0,0,1),
5347 = \/5(01 0) 1’ 1))
dagg = V20, 1,0, 1),
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The newly introduced dilaton vectors are related to the
quantities defined in (4) via

iy = fi + fir =35,
= —f

ll]7 fl+fl+fp S,
by = fs — fr. )

Finally, the Chern-Simons term reads
Los = — e ail ga, A Ay, AA
s = "€ ii'p N AAgrg N Ajjs

where an eight-dimensional (7®) Levi-Civita symbol is
used.

In our truncated toroidal reduction, the six-dimensional
part of the dilaton & is effectively two-dimensional in view
of the four constraints (5) and (6). So, together with the
two-dimensional 72-dilaton &, one gets instead of the 8-
dimensional vector @ the four-dimensional vector d; =
(1, o, P53, P4) With the following components:

IR N
¢1 - \/5( 1[1(X ) + \/§¢)1 + @2), (10)
~ ey = L
¢2 \/z(ln(x ) \/ggol + @2))
1 2 1 X!
b3 = 7§<ln(x3) + ﬁgol), b, = 5 In5. (11)

It has the same norm:

3 -

and the corresponding exponents convert to the four-
dimensional ones as follows:

M»

k>
k=1

edit 6512'¢’ ebré 657"; .
b = (b1, b2, D3, Da),

while the four-dimensional dilaton coefficient vectors in
the new basis read

dse = 2(0, —1,—1,0),

dsgr = V2(1, - 1,0,0),
dses = \/5(1, 0,—1,0),
~1,0,0), b = V20, 1, —1,0).
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B. T?-covariant form

It will be useful to perform reduction on a torus 72 in the
2D-covariant form decomposing the five-metric as

dst = Ap,(dzP + aP)(dz? + a%) — k7 'ds3,

where the 2D metric A,, (p = 7, 8) is introduced:

A= e—(z/ﬁwl( ! Xf )
X X2 + ke 3p1—¢2 (12)

detd = —7 = ke I/ \Der—e,

and a” are the Kaluza-Klein one-forms: a’ = A7 —
x-A3, a® = A8, For the moduli X/, we have the following
expressions in terms of 7 and the dilatons ¢, ¢y:

(X2 = e*/z‘f’4(X3)’1, (X2)2 = e*ﬁdu(x.?)fl’

(13)
X3 = 7l V20,
Using the relations (10) and (11) we can rewrite the metric
G, of the moduli space as

G,y = — Zdiag(edn®, ein-d eds ), (14)
T

C. Dualization

To obtain a purely scalar 3D Lagrangian we have to
perform dualization of the 2-forms F;; and FP. First of all,
we change notation from that of Ref. [51] replacing the
pairwise indices ii’ = 12, 34, 56 by a capital Roman index
I =1, 2, 3, and relabeling the axions similarly:

Fl'= (Fy, F3, Fsg), u' = (A127, Az, Asgr),
vl = (A28, Asas, Asgs)-

It is important to realize that the indices [ are the vector
indices in the moduli space endowed with the metric G;;.
We also combine u! and v’ into the T?-covariant doublet
#f, = (u', v") with the index p relative to the metric A,
or, in the matrix form,
I
v=()

In what follows the summation over all the repeated in-
dices is understood. In this notation the field strength
tensors will read

Fl'=dA" — dy!, A a?, F' =dd + xdad,

15
F8 = dad. (15)

To perform dualization along the lines of [51], we
introduce into the Lagrangian (8) three Lagrange multi-
pliers u; ensuring the Bianchi identities for the two-forms
Fl' —yl,da? = dA" — d(},a?) and two Lagrange multi-
pliers w, ensuring the Bianchi identities for the two-forms
da? = y?,F9. We also rewrite the Chern-Simons term as
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follows [see Eq. (3.29) in [51] ]

Lcs =318 xeP(dhs A FE + 3dylylgKyrs A F9),

with €’ = —e9P, €’ = 1. Integrating by parts we can
present the Lagrangian (8) as

| | -
_ _ — “ii’;r'¢ it
Li=Ryx1 S*de Add EZe * Fii,

i<i',p

TK 1 -
/\Fii'p_TGU*FI/\FJ-FGI/\FI—EGIJMB

1 - -
*j—”7/\j-‘7—Kzeb8'¢*j-‘8/\j-”8+Gp/\j-“P,

where the one-forms G, G, are related to the scalars u,,
w , as follows:

G = du; + 38kdy s €7,
Gs = Vs — xV3,
V, =do, — ¢(du; + §8xdiiipf ),

G7 = V7,

Then, eliminating the initial two-forms FI, Fr via the
equations of motion

Fl' = 7171GY % G,, FT1 = —ke bd % G,

I (16)
fS = _e_bx‘d) * Gg,

we obtain the Lagrangian in the dual terms:

| | .
_ _ — a;f’p'¢ "
Li=Ry*1 S*dp Ad EZe * Fi,

1 |
/\Fii/p +5771G1‘]*G1/\G1 - KieihT(ﬁ *G7

1 . s
NGy — ze"’s'd’ * Gg A Gg,

where G is the inverse moduli metric G,;. Note that the
signs in the dilaton exponents were inverted under dual-
ization. Equation (15) together with the relations e?7'¢ =
—KTA77, e’ = 7(yA,5 — Agg), which follow from the
definitions (10)—(12), enable us to rewrite Eq. (16) as the
dualization equations covariant with respect to all indices:

TAp,dat =%V, dA'=dyl, Aa” + 177GV x G,

or, explicitly:

A olighls =

1 ijk
; hE kap

1
- #)(akﬁ’vl + 881JKak‘p{¢§€”):|; (17)

Pq
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o o .
oliall = gpligilyd + eiikGly
Vr 27vh

1
< (oums + 5 Buanfuher), (8)

where the antisymmetrization is assumed with 1/2.

Combining all the above formulas, we can present the
dualized action as that of a 3D gravity coupled sigma
model:

1 odA 9dB .
I; = [V|h|(R3 — Gas h”)dSX,
167TG3

axt ax/

where h'/ is the inverse metric of the three-space, Rj is the
corresponding Ricci scalar, and G,z(®P*) is the metric of

the target space parametrized by 16 scalar variables ®4 =

((;7), ', ur, x, ®,), which can be read off from the follow-
ing line element:

dP? = G,zd®AdDP
= %((dd?)z + keV261769(G)? + keV2b1—69(G,)>
+ Keﬁ(¢3+¢z)(G3)2 + eﬁ(¢3—¢4)(du1)2
+ V2t d3) (dy2)2 + eV2AS1=82) (dy3)>
+ keV2627) (qu! — ydu')? + ke bt b (dy?
— xdu?)* + keV21=8)(dvd — ydu®)?
+ Keﬁ(¢l+¢3)(G7)2 + e\/i(tﬁl‘“f’z)(Gg)z

+ Keﬁ(zﬁz—%)d/\ﬂ)_ (19)

This line element can be more concisely rewritten in the
T?-covariant form:

di? = 1G,(ax'dx’ + dy" A~'dy’) — 1r7' GV GG,
+ ITe(A1dAN T dA) + br72d7? = L v ATy

D. Hidden symmetry

The set of the dilaton vectors d;;, ;. b s 573 is directly
related to the root system of the isometry algebra of the
target space [51]. Enumerating them as

- 5;‘:" = (51, 52, 53); 51';'/7 = (54, 55, 56);

g = (€7, €, &9); —b, = (€10, €11); big = é,
one can easily see that these 12 four-dimensional vectors
form the system of positive roots of the algebra so(8).

Indeed, from the relations (9) and the property

8
ka = 95,
=

one can express €, é,, €3, €y, g, €q, €19, €1 in terms of &4,
és, &g, €1, as follows:

PHYSICAL REVIEW D 78, 064033 (2008)

e;= Z€K+3 e,
K71

€l = Zek+3 + e,
K

€r+6 = €143 T €qp,

en = Zel(+3 + 2eyy.
K

It is clear then that the vectors é,4, €5, &¢, €1, are the simple
roots forming the Dynkin diagram of so(8) [52].

The signature of the target space is +16 for k = 1
(dimensional reduction in all spacelike directions) and
(+8, —8) k = —1 (one of the reduced dimensions is time-
like). Then it is easy to recognize that the isometry group is
the noncompact form SO(4, 4) of the SO(8), whose Killing
metric has the signature (—12, +16), while the target space
is the coset SO(4,4)/SO(4) X SO(4) for k=1 and
SO0(4,4)/S0(2,2) X SO(2,2) for k = —1. For both these
symmetric spaces the scalar curvature is negative:

R = —96.

Denoting the four-dimensional Cartan subalgebra of
so(4,4) as H, and the generators corresponding to the
nonzero roots *é,, k=1,...,12 as P, W.,, Z.,,
QO*7, X* we will have the relations:

Pi[ Aand ié)[,

Wiy o xépys, Zip— Tépig

Qip Aand ié)p+3’ Xi Aand ié)lZ'

The commutators of these generators with the Cartan sub-
algebra H read

[H,Xi] = iglin,
[H Q%] = +&,,,077,

[H, 32,1 = %&/13-6 2%
[H, P = +&,P*,
(20)

where we have arranged W;, Z; into a column vector

The remaining nonzero commutators are obtained from the
relations between the root vectors

€3+ €1n = €6
(a=0,1),

er+3 T €516 = €k,
€r+3+1) T €1 = €qt10
e teyp=ce,

where in the first equations I, J, K are all different. One
finds
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[0, 2%,] = +€r98,,kP=F,
(28, 2%,] = =er5,,X™,
[X= W l=+Zsy
[X*, Zf] = FWy, (21)
[38, P™]= %6/Q%P,
[S2, PT] = =!8, 8KLS
[X*, Q7] = Q8.
We will give the generators of SO(4,4) as differential

operators acting on the target-space manifold in what
follows.

III. COSET REPRESENTATIVE
A. The strategy

As a convenient representative of the coset, one can
choose the upper-triangular matrix 'V which transforms
under the global action of the symmetry group G by the
right multiplication and under the local action of the iso-
tropy group H by the left multiplication:

V — V' = nd) Vg, g EG, h € H.
Given this representative, one can construct the
H-invariant matrix

M =VIKYV, (22)

where K is an involution matrix invariant under H:
D) Kh(P) =K (23)

(dependent on the coset signature parameter ). Then the
transformation of M under G will be

M- M =g Mg. (24)

The target-space metric (19) in terms of the matrix M will
read

AP = —Lu(dMd M. (25)

The desired upper-triangular matrix V' can be con-
structed by an exponentiation of the Borel subalgebra of
the Lie algebra of G consisting of the Cartan H and the
positive-root E. generators (in what follows we omit the
sign + in the indices):

V= VHVL = VHVXV\I'VQ pr

where the matrices Vy, Vy, V., Vg, Vp are the
exponentials:

V,, = el/2dH

VQ = e“’r’m,

VX = e)(x, V\p: e‘/’lzl’

Vp =eml (26)
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Using (25), one can rewrite the target-space metric in terms
of the matrix current 7 = d V V! as follows:

di? =1w(J?) + (T KITK ).

Using Eq. (26) and the commutators (20) and (21) for the
positive-root generators, one can show that the matrix
current one-form J is spanned by the Borel subalgebra
generators as follows:

T =dVV
1

NS

dd - H + e/ dgyx + Zel/%’ﬂ";’du’W,
7
+ Zel/zé'%"z’(dv’ — xdu')Z,
T

+ Zeméz)”"’;Gl,Qp + Zel/z‘?/"z’G,P’.
P 1

B. Matrix representation

We use the 8 X 8 matrix representation of the so(4, 4)
algebra given in Appendix A. The exponentiation of the
Borel subalgebra gives the coset representatives in the
following block form:

v-(3 %)

where S and R are 4 X 4 matrices which in turn have the
block structure:

_ sij a; _ a; r,-j N
S (bj s)’ R (s’ b;) Lj=1...,3.

In what follows we use the symbol 7 to denote trans-
position with respect to the minor diagonal and the symbol

A to denote A = —AT for a degenerate matrix A (detA =

0)and A = (A" for a nondegenerate A (detA # 0). In
particular,

@' =), P =),

@y =-(%)

When applied to a matrix written in the block form, this

means
-1 ~
g _ S~ a;
b] Sij

In the above blocks we use the following 3 X 3 matrix
potentials:

064033-6
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¢; 0 O 0 0 O :l( 1 = i = )
¢ = ( 0 ¢2 0 ), /f/ = (O 0 X>’ v 2 \P12 + 3(\1’3\1’12 + \PIZ\P3) + 12@3‘1’12‘1'3
0 0 000 1
” +=(1 «2).
0 uw - w; wg 0 2
Ys=|o o 0 ) ® = ( 00 0)’ The remaining exponentials are
0 0 0 0 0 O
000 Vi Sq = L) RQ=OQ,
I 0 1 0 0
M3 = m3 0 0), )
0 00 Q=b+ a.
and the 3-columns:
u“ Mg ( /'12 )’
\P(l = va > ﬂa = 0 .
0 0 ~ —II — : R .
M1

An explicit exponentiation in (26) gives the following 4 X

4 blocks for the partial coset representatives: For the K-involution matrix we have the following block

representation:

(1/V2)é 0
VH: SH = ¢ RH = 0,
e1/V2)p4 kR 0
Sk =€, E=(O 1), & = diag(k, k, 1),
VS (0 ) =0 E=xE  Rxk=0
= k€, « = 0.
v 1/2)¥3 T
els e/ ’ Multiplying all the matrices Vy, Vy, Vy, Vq,and Vp,
0 we obtain for the coset representative
(1/2)‘1’3qu P
—(° _(S R ¢ — (¢—I)T
( \Isze“/z)‘i’3> V= (0 5) S=670
where where

/D h o= Vs (/D=1 5 ~ ~
€ € te”’, € e *p A A A A
N ( B ) pra = oy + e, par = fip + /2N,

_ e/ Vde=1p,  e1/NDbe=R(eWs(Q — 1 — @1, ® fi,) + /25 32 Ve h,+ \p)
0 NURELIY

Finally, we construct the gauge-invariant representative of the coset (22):

M = (Q:’T):P T+TQQTZPQ) Q =S7IR, P = STES, P =3TES,

with the block components @ = — of.
o) foy +e”WAVPT 1] (W — V) + Q =, @ VT +1V,(3V, —~‘lf21)—‘i’§®ﬁ2—%(%\Iflz—‘lle)‘ig
0. o+ WTe (/20 :
(27)
I
d P: . .
T T
eVi Ae¥s, eViAp 0 A
?=?T=< P ) (28)
leAe 3 p2lAp21 +e 4 . 0 0 _ 3\ —1 .
where the 2 X 2 matrix AV, related to A as A = (X°) 71\, is

The matrix A entering this expression reads given by
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0 — o—Vigs[ 1 X
A=e ¢3<X XA+ xeV2(d3— ) )’
(29)
50 — a2 1 —X
AT = ke ¢2( v P+ ke =) )

The following relations are useful:

9 0 0
X°=—h X0 _ Mg /{Oz_)‘ss

77 ’ 78 H 88 ’
To To 7o

To= — det()\O) = _Ke—\/i(¢z+¢3), Fo = 751-

IV. ISOMETRIES OF THE TARGET SPACE

A. Transformation of the coset

To classify 28 isometry transformations SO(4, 4) of the
target space, we consider the action of one-parameter
subgroups generated by

H P, W.,  Ze Q. X%

(30)
In terms of the gauge-independent coset matrix M, the
isometries are represented by (24). In conformity with the
matrix representation (A1) we can distinguish three types
of the SO(4, 4) matrices g:

(1) The “right” upper-triangular matrices generated by
the B-type elements of so(4, 4):

1 eaB
— eaC — ,
8R 0 1

C = Pl, P3, Wz, Zz, 97, Qg,

whose action on the coset components P and Q
consists in the shift
P—-P =17, Q—-9'=09 +aB. (31

These correspond to gauge transformations.
(i) The “central” block-diagonal matrices with the
upper-triangular blocks

— ~aC — eaA 0
gsu=e =" i)

C = Pz, Wl’ W3, Zl’ Z3, X,

with the lower-triangular blocks

— ~aC — eaAT 0
8sa =€ = 0 ead? )

C = P_z, W—l’ W_3, Z_l, Z_3,X_,

and with the diagonal blocks

PHYSICAL REVIEW D 78, 064033 (2008)

eaA[Til_ 0
gs = eozC —
s air |’
0 e Hi

C=H, i=1..4
These act on the P and @ blocks as follows:
P — P = oM PeaM
Q— Q' = M Qer,

where M = A, AT or Ay for g = gg,» 8sa O &s
respectively.
(iii) The “left” lower-triangular type matrices

_ 1 0
8L eaB” 1)

whose action on the P and @ is highly nontrivial
P =P+ aPOB" + aBQTP
+ a?B(P + QTPO)BT,
P'Q'=PQ + aB(P + QTPYQ),
P+ QTPQ = inv.

(32)

It is this part of isometries which contains the
charging transformations.

Meanwhile, there exists a reflection symmetry of the root
diagram interchanging positive and negative roots. This
enables us to reparametrize the target-space metric intro-
ducing the dual coordinates @ in which the positive-root
generators look the same as the negative roots generators in
terms of the initial coordinates ®“. Thus, the dual coset
matrix M ,;(P4) constructed from the dual potentials will
be transformed under the action of the lower-triangular
generators in the same way as the coset matrix M(P4)
under the gauge transformation gz. We find that the dual
coset matrix is an inverse of the initial coset matrix:

_ P, . P94 _ -1
Ma (QZi”d ’Pd+Q5’Pde) M
_(P '+ 9P ' —-9P7!

_fP—lQT Pp-1 :

The transformation of the M components under g; is then
described as the shift of the dual matrix Q ;

rj);l_,(j)gl)lzjjgl’ Qi—9,=9,—aB.

B. Finite transformations explicitly

From now on we will assume « = —1. Using Egs. (31)
and (32) it easy to find the finite actions of the Cartan and
the positive-root transformations. The diagonal ones give
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Hy: ¢! = ¢y + 2ay, wh = w,e" ", The upper-triangular matrices (positive roots) produce
. Cw ;L w gauge transformations of the potentials ®4. Namely, the
s = e, Ma = e 7 generators P/ and Q, give simple gauge shifts of the
Hy: ¢ = ¢y + 20y, wy = wge ©, potentials u; and the KK potentials @, respectively:
v =vie ®, vh = v,e” %, uly = uze™,

! — —a ! — —«
M3y = pse 73, X = xe

Hy: ¢ = ¢5 + 203, wh = we” s,
up = ue” s, uh = uye™, vl = vze®,
M= pse” ™, Y= xe®,
Hy: ¢y = ¢y + 20y, g1 = e, Py = e,
By = pieT %, ph = paet
mp=p+ ay, w,=w,+ ab, other potentials invariant.

The generators W, and Z; of the electromagnetic sector produce the gauge shift of the axions u! and v’ respectively,
changing also some other potentials:

1
Wy (W) = u!' + af, wh=p;+ EBUKaﬁvK, no sum over /, K
/ 1 1 1,J0,,K / 1 1,0, K
wh = w; + a,uy +—Z§,,Kauu vr, wg = wg + —Zé,mauv v®, no sum over .
6 7% 6%
1
Z;: (W) =v' + al, wh=py = EBHKa{,uK, no sum over /, K
/ I 1 1,0, K / 1 1,,0,K
w8=w8+av,u,—828”,<avu e, w7=w7—626lmavu u®, no sum over 1.
LK TK
Finally, the generators X and X~ lead to finite transformations:
X: (W) =v+au wh = wg+ a,w
: x4 8 8 xYn
0 — )0 0 — )0 0 0 — )0 0 240
A7 = A7, Az = Agg T ayAg;, Agg = Agg T 20, Ag + ay Ay,
X () =u"+a_ W) = w; + a_,ws,
0 — )0 0 — )0 0 0 — )0 0 2 30
Ags = Asgs, AJs = Az T @y Ags, Ay = Agp + 2a ) Agg + az ) Ay,

with the remaining potentials invariant.

C. Killing vectors

To find the differential operators generating isometries (the Killing vectors X, of the target space) from the finite
transformations, one can use the defining equations:

v — Py d

T e | w00 ®Y
where @' = @A (DF, a;) are the potentials transformed under the action of the one-parametric subgroups. Here we give
X, corresponding to the Cartan, positive-root, and X~ generators. The other Killing vectors are much more complicated
and we will present them in the next section only for the vacuum seed potentials. Enumerating the potentials as ®4 =
(X', X% A0, ¢!, u;, w,) and the parameters as a; = (ay, ..., ay, af, ab, o), af, a,, a_,), we find the following set of

P
the Killing vectors:
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— 9)0 q q
Mpq—zAer'prerépa)raw +817/.L[ l,[fp a¢ y
q r q
H, +H 6 d d
= 2(X )2X2 1 '70]7 l//p > ?7_3_21“‘1—_ (1)1,—,
Nz 0X a¢p aw awp ou oo,
H, — H, 9 9
— = 2(X»)X' — W, —,
Nz ( aX2 g a¢2 Ry azpp ¢Pa¢p Sy xry
d d d d
27 = N - t =L Ly peray Kk — |
1 31//1 2 1JK€ l//q Ey M .6 k€Y Yo,
Or = 9 , Pl = L,
awp alu“l
[
where M7 are given by A. Asymptotic conditions

1 1 To find a proper direction in the target space which
M = — E(H |+ H), MP = — \/_i(H |+ H,), would lead to the solution with desired properties is a
nontrivial task, and usually it invokes an identification of
M2 =X, M =X". the subgroups of the isometry group preserving certain

V. SOLUTION GENERATING TECHNIQUE

The use of the target-space isometries for generating
purposes consists in three steps. First, one has to choose
the seed solution and to find the corresponding target-space
potentials. This involves solving the (differential) dualiza-
tion equations. Then the isometry transformations are ap-
plied to get the target-space potentials of the new solution.
Finally, one has to solve the dualization equations (18) to
obtain a new solution in terms of the metric and the matter
fields. The three-dimensional metric 4;; remains essen-
tially the same.

Since the dimensional reduction from eleven to five
dimensions does not involve dualization, the identification
of solution in five-dimensional or in 11-dimensional terms
is a matter of choice. Five target-space variables ¢, ¢,,
&3, ¢4, x enter the 11-dimensional metric algebraically,
via the moduli X', A,,:
ds3, = D X'((d)? + (dz")?)

Lii!
pg(dzl + aP)(dz? + a?) + 77 hydxdx/,

while the KK vectors a? in the T? sector are related to the
target-space potentials w , via dualization. In the form-field
sector,

Ap) = (A" + ¢lhdzP) A dz' A dZ? + (A + ¢2dzP) A dZP

Adzt + (A3 + idzP) A dZ A d2b,

the six quantities wf, are the target-space potentials, while

the remaining one-forms A’ are related to the potentials
via dualization.

asymptotic conditions for the metric (and/or the form
field). For the black hole/black ring applications several
such conditions are of interest.
(1) Minkowskian metric
Consider the 11-dimensional Minkowski metric in
the Cartesian coordinates (assuming k = —1)

7 3
dsll = Z(dzk)2 - (ng)2 + Z(dxi)z, A[3] = 0.
k=1 =

(33)

This corresponds to Agg = —1, A7; = 1 and all other
potentials zero. Consequently, the coset matrix
M,s = K. By virtue of Eq. (23), such an asymptotic
is preserved under isometries belonging to the iso-
tropy subgroup H of the SO(4, 4):

Pl + P
X+X,

ZI + Z—b W/ - W—l,
Q"+ Q77 08— 03

(i) Flat metric in the S*> X S' fibration
Another useful form of the flat metric appropriate to
the five-dimensional ring problem is

ds: = —(d1)?* + r’cos’0(dy)* + dr?
+ r2(d6* + sin*0d ¢?),

and the reduction is performed along ¢, ¢ where ¢ is
the angular variable along S' in the ring S? X S!
fibration. We identify 7’ = ¢, z% =1, then the
target-space  variables Agg = —1, Ay =71=
r’cos?f. Preservation of the above line element is
more restrictive: from an analysis of an infinitesimal
action of generators (30) we find the only combina-
tion of the Killing vectors
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Z,+7Z,

Mathematically, this is related to the coordinate
dependence of the asymptotical matrix M.
(ii1) Guisto-Saxena coordinates

However, one can perform dimensional reduction
with respect to the combinations ¢. = %((;/) * i)
instead of ¢, as suggested in Ref. [53]. In this case
the coset matrix M, will be coordinate indepen-
dent. The target-space potentials then read

Agg = —1, w7 =T, T=r
(34)

/\77 =T,

(other potentials zero), so the coset matrix M, will
be given through the following constant 4 X 4

blocks:
(—7‘1 0 0O O
0 -1 0 O
P = ,
0 0o ' 0
KO 0 0 1
(O 7 0 O
00 0 O
Q,as:
00 0 —71
KO 0 0 O

To find the appropriate combinations of the Killing
vectors consider their vacuum form setting all elec-
tromagnetic potentials to zero and taking X’ = 1
(in this case A° = 2):

d Jd
M, =2\, — + w,— + 5} ,
p kg Paw, 0w,
Hi+Hy _, 0 F)
—_— _—w _’
V2 X! Tow,
Hl_H4 8 6
e S P, S
V2 X2 Tow,
d
3=—,
1 61,0{,
d d
E11126"118 + A
q
I _ d
Iy
d
P71=—wp—,
g,
ar—_?_
Jw,
0P = 200, — 0 — (w0, + 7A,)
= w —\w,w T
pr%s a)lr_g p¥r pr 9 .

PHYSICAL REVIEW D 78, 064033 (2008)

Conditions (34) then give the following linear com-
binations preserving M,:
X-Q3

Z+Z_,, W_,+ P,

More general physically interesting asymptotic conditions
may be encountered for five-dimensional type D metrics as
discussed in [54].

VI. THREE-CHARGE BLACK HOLE WITH TWO
ANGULAR MOMENTA

Five-dimensional stationary charged black holes were
investigated for different couplings of vector fields to
gravity both for nonsupersymmetric [55-67] and super-
symmetric [68,69] configurations (for a recent review see
[70]). Somewhat surprisingly, the simplest Einstein-
Maxwell theory in five dimensions does not possess ana-
lytic solutions like the Kerr-Newman black hole in four
dimensions. This is related to the lack of hidden symme-
tries which are enhanced in the supergravity action due to
Chern-Simons term. The enhancement endows us with
charging symmetries which open the way to construct the
three-charge doubly rotating black hole solution from the
5D vacuum Myers-Perry metric. We assume the following
choice of coordinates: z; = ¥, z3 = t, r, 8, ¢, and denote
the rotation parameters as a, b. The seed solution then
reads

2.2
ds? = —dp’ + Edr + p2d0? + (1 + a)sin?0d
+ (2 + b*)cos?0dy* + p(dt + asin*6d ¢

+ bcos?0di)>. (35)

Using the relations between the metric components and the
target-space potentials:

Sy = A7,
gd"// == )‘78(’125 + )177(1;7{7,
g¢¢ = )lgg(afb)z + 2)\78612()0?]5 + )177(azﬁ)2 + T_1h¢¢,

8 = Ags, 8wy = Azg,

8ip = Aggdly + Aggal,

we find the o-model variables:

=—1+p, Ayg = pbcos?6,
Ay = (r? + b*)cos?6 + pb*cos*é,
7= (r? + b> — 13 + pa*cos’8)cos?6,

aly = 77" pabsin®fcos>6,

ai = —71p(r? + b2)asin?fcos?6,
w; = —pabcos*d, wg = — pacos>f.

The invariant three-metric reads
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22
hijdx'dx) = T(pAr

A 1

dr’ + p?de* + —sin2000520d¢2>, Vh = Esz sinf cosf,
T

where

2
p= %, p? = r* + a*cos’0 + b’sin’6, A=+ a®)(? + b?) — (ror)>.

To equip this vacuum solution with three electric charges, we perform the following transformation:

M’ =TTMII, I = [ex@+z-0,
L1

where the product of one-parametric exponentials reads explicitly:

(03 0 —-s3 0 0 0 0 0)
0 €162 0 —sica —cysa 0 —sysy O
R 0 C3 0 0 0 0 0
L S S R SRR GO
0 0 0 0 0 ¢ 0 s
0 —s15, 0 C15 s;ca 0 cjep O
KO 0 0 0 0 53 0 c3)

Using formulas of Appendix C, one can extract the transformed potentials in the following form:

gy =Ny = D‘2/3cos46’(pb2 —p ( 2(a® + b2) + 2abces + aZZs,sJ) — (a% — bz)(l + sz%)) + D3 p2cos20,
7

<7
ghy = Mg = D™*3cos?0p(be + sa — psa), gl =M =D"2B(p—1),

1/3
' =D137 (Xt = b .
D,
1, _ pcos® N pc,s,
(u ) == D (aCISJSK + bSICJCK), (U ) D
i I
D, +D
(u)) = —=L—"K pcos?6(as;c;cx + beysys), I+J+#K.
2D,Dy
20t
pcos*d
wh = w; — D { s(a®> + b*) + 2abs® + abKZJslsj
1
+ 3p(cs(a + bz)ZsI + ab(Zs,sj(sl +53) = ) sis3 + 352 + ZSZZS )) + pzabsz},
1<J <7
0
w§ = cwg + pC;)S {b + psb(3 + Zs,) +-p <(ca + sb)Zs,sJ + 3sb2s,) + placs }
<7
I
where the angular coordinates ¢ and ¢ together with the corre-

sponding rotation parameters ¢ — i, 0 — 6 + 7/2, a —

= = = = 2
e=[ler s=[ls D=IIDr Di=1+4psh p namely. g, = g1 g1y = 800 8 = 8o 8ug = Sues
Al, — Al,. We assume that this symmetry remains valid for
Note that metric (35) is invariant under an interchange of  the charged solution (35) as well. This simplifies an ex-
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traction of the final form of the solution avoiding the
inverse dualization. As a result we obtain the five-
dimensional one-forms A’ and the metric components as
follows:

Al = Dﬁ(slcldt + (bcysysg + asjcycg)sin’0d ¢
I

+ (ac;s;sg + bs;c cg)cos>0dy), I+J+#K

gld)¢ = D72/3sin40(pa2 — pz(sz(a2 + b2) + 2abcs

+ bzzsfsg) + (a* - b2)<1 + szf))

<7
+ D'/3 p2sin?6,
8l = D~ 23sin%0p(ac + sb — psb),

g{w = D_2/300520sin20p(ab — p(abKZJS%S%

+ (a® + b¥)es + 2absz)),

= DI/3 ﬁ

A
This solution can be compared with the limiting form of
the solution found by Cvetic, Lii, and Pope [57] within the
gauged 5D supergravity for vanishing gauge-coupling con-
stant g = 0. Our solution reduces to the latter under an
identification of the rotation parameters a = b = [ and
relabeling s; — —s;, ¥, ¢ — —f, —¢, Al — —A’. Note
that a close three-charge doubly rotating black hole solu-
tion within the compactified heterotic theory was given
earlier in [55].

hf’j = hij’ g 8’09 = D1/3P2-

VIL G,;) EMBEDDED IN SO(4, 4)

The present model reduces to minimal five-dimensional
supergravity under the following identifications:

V== =y,
A=A,

My = M2 = M3 = M,

X'=x*=x"=1, o

leading to the relations:
p=glr gl emgle )
1 \/E P2 \/§¢1 > 2 \/E P2 \/g@l )

2
b3 :\/;%, by = 0.

In this case the target-space metric of the three-
dimensional sigma model will read:

AP = Ydg? + dg3 + 3xe?> 1/ VDo1G2 + 362/ VD)1 g2
+ 3ke?> WD (dy — ydu)? + ke V301 G2

+ e202G2 + ke?2 V3¢ ), (37)

PHYSICAL REVIEW D 78, 064033 (2008)

where the one-forms are

G =du + vdu — udv,

G, =Vs,

Gs = Vs — xV7,

V,=dw, — ,3du + €'dj ).

This manifold is invariant under the G,y subgroup of the
SO(4, 4). Dimensional reduction of the 5D minimal super-
gravity to three dimensions was recently studied in [36,37].
In the notation of [36,37] the indices p, g, t take the values
0, 1, the coordinate z’ is timelike, and the matrix A is
related to the present one by transposition with respect to
the minor diagonal. In matrix terms the target-space metric
(37) reads

di? = ITr(A" 1 dAATYdA) + {772d 7 + 3dyT A dy
— % _IVT)\_IV _ % _IGZ.

This coincides with the result of [36,37] for the Euclidean
signature of the three-space (k = —1).

A. g5(;) subalgebra of so(4, 4)

The above contraction to G,(;) can be described in terms
of the root space as follows. Consider the root vectors of
the so(4, 4) algebra in the following basis:

ey =
55: _1) 1; 1)0)’
1
g = +_) __,1,0 3
€gq (s 3 S 3 )
- _(1_ 11 )
€7 > S, \) 2, 2,S B
1
58:<_1, 1,_5,5‘),
(s haml 1)
69 N 2,S 2) 2! >
. 3 R
ép = (O, 0,5, s), €, =1(0,0,0,2s),
3 3
212 = (0, 0, E,S), S = %

Examination of this pattern shows that the following com-
binations of the triplets of the so(4, 4) root vectors:

064033-13



DMITRI V. GAL'TSOV AND NIKOLAI G. SCHERBLUK
N ¢, . l <.
LEY gzeib dxp = gzei(l+3)’
1 1
. ¢
Ax3 = gzei(wé),
1

together with

+10 A+ = €+11,

Il
LY

s

form the standard set of the g, roots satisfying the rela-
tions:

The corresponding generators read

V2 2
M1=?(H1_H2+2H3), M, = g(Hl"‘Hz),

They obey the following commutation relations in the
Cartan-Weyl form:

1 V3

[P+,P_:| :EMI +—M2,

2
[W+r W—] = Ml’
1 V3
[Z,,Z_]1= _§M1 + TMZ’

3 V3

[Q7,Q77]= §M1 +—M,,

2
[QSJ 978] = \/7§M2)

3 3
[X+,X_] = _EMI + \/T_Mz,

[We, PZ] = %07,
[Z., P*] = Q7
W, Z.] = %P7,
[X= W.]=FZ%,
[X*, Q7] = Q8

and so on.

B. 8 X 8 matrix representation for the coset
Gy»)/(SL(2, R) X SL(2, R))

Contracting the set of the potentials ®* according to the
conditions (36), we obtain the following representation for
the coset blocks 2 and Q:

PHYSICAL REVIEW D 78, 064033 (2008)

B o= pil 0
Q=19 poy  @-wi" |
0, Y, —u
1 0
o= (0 0 )
L, n', 2
P=—r'ln an" -7 nu —TAP |,
o m'w— TP w1 gAYt
n = o3y
This gives a 8 X 8 representation of the coset
G2 /(SL(2,R) X SL(2,R)) of the minimal five-

dimensional supergravity reduced to three dimensions,
alternative to the 7 X 7 one given in [36,37].

VIII. CONCLUSIONS

In this paper we have constructed a generating technique
for the U(1)3 5D supergravity with two commuting Killing
symmetries. This theory is reduced to the three-
dimensional gravity coupled sigma model on symmetric
spaces SO(4,4)/S0(4) X SO(4) or SO(4,4)/S0(2,2) X
SO(2,2) depending on the signature of the three-space.
The classical U-duality group of the three-dimensional
theory is the 28-parametric noncompact group SO(4, 4)
which acts transitively on the target space. This enables
one to generate new five-dimensional solutions with the
same three-metric from the seed ones. We were able to
obtain finite transformations in terms of the target-space
potentials, and, in addition, we constructed the 8 X 8 ma-
trix representation of the coset, which is convenient for
performing the transformations explicitly. Particular com-
binations of transformations were identified which pre-
serve asymptotic conditions relevant for the black hole
and the black ring problems. We presented the action of
charging transformations on a neutral seed, assuming the
dimensional reduction in terms of Guisto-Saxena
coordinates.

As an application, we have constructed a new rotating
five-dimensional black hole with three independent
charges and two rotation parameters. Our technique allows
in principle to generate black rings with the maximal
number of parameters (a mass, two rotation parameters,
three electric charges, and three magnetic dipole mo-
ments), but so far our attempts to find such a solution in
a concise form were unsuccessful.

An identification of the three vector fields and freezing
out the two scalar moduli reduce the present theory to
minimal five-dimensional supergravity with the three-
dimensional U-duality group G,(,), which was extensively
studied recently along similar lines [36,37]. For this limit-
ing case we have presented a new matrix representation for
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the coset Gyp)/(SL(2, R) X SL(2, R)) in terms of the 8 X 8
matrices.
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APPENDIX A: 8 X 8§ MATRIX REPRESENTATION

We choose the following 8 X 8 matrix representation of
the so(4, 4) algebra:

A B
E‘(c —AT)’

where A, B, C are the 4 X 4 matrices, A, B being antisym-
metric, B= —B”, C = —C", and the symbol 7 in AT
means transposition with respect to the minor diagonal.
The diagonal matrices H are given by the following A-type
matrices (with B =0 = O):

(Al)

(Y2 0 0 0 /[0 0 0 0\

A, =] 0 00 0] AH=OﬁOO,
‘ 0 0 0 0 ? 0 0 00
\0 0 0 0/ \o 0 0 0/

/0 0 0 0\ (0 0 0 O\

A, — 00 0 O A — 00 0 O .
1o o V2 o) 1o 0 0 o0
00 0 O \0 0 0 \/i)

Twelve generators corresponding to the positive roots are

given by the upper-triangular matrices E;, k =1,..., 12.

From these the generators labeled by k = 2,2,4,6,7,9, 12
are of pure A-type (with B = 0 = C):

0001\ (00 0 0
00 0 0 000 O
Ay = . A = )
Ex \0000 Es 00 0 —1
0000 \0 0 0 0
(0100 (000 0
0000 00 0 —1
Ay = LA =
Es 000 0 E 000 0
\0000) \0 0 0 0
(00—10 00 0 0
Lo_loo 0 oo 1o
Es 0 0 ol Erz 00 0 0
\oo 0 00 0 0
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while the other six are of pure B type (with A = 0 = O):

100 0 (0000\
000 O 0 -1 00
Bg, = ,  Bp, = ,
1o 0o o0 o o o 10
000 —1) \0000)
[0 0 0 0) 0 000
BE:oooo’ BE:—looo’
s -1 000 s 0 0 0
0 10 0) \0010)
(010 0 001 0
BE:oooo BE:ooo—l
10 000 —-1] " 000 O
000 0) 000 O

The correspondence with the previously introduced gen-
erators is as follows (I = 1,2,3, p =17, 8):

Pl - E|, W; < Epys,
Q‘D Aand Ep+3’ X « E12.

Z; <= Epe

In this representation, the matrices corresponding to the
negative roots,

PT—E, W_; = E_(+3)
QP = E (4,43, X = E

Z_1 < E_(1+6)

are transposed with respect to the positive roots matrices:
E_, = (E)".
The following normalization conditions are assumed:
tr(H;, H;) = 46, pj=1...4
tr(E, E_p) =2,
and the involution matrix K is chosen as
K = diag(k, «, 1, 1, 1, 1, k, k).

The generators of the isotropy subgroup are selected by
Eq. (23). They are given by the following linear combina-
tions of the generators:

Pl — kP!
X — kX7,

Z[ - KZ,I,
Q7 — kQ77,

W[ - Wfl,
Q8 — Q8.

APPENDIX B: DETAILS OF THE COSET
MATRICES

The block matrices entering Sy and Ry, being expressed
through the target-space potentials, read
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5 T (uv? — wv?) 0 0 o0
el /2Pl = - , a=12; v, = —(v1u2 viv? 0),
—u wu? u? 0
vulu? — wdvlu?,  —udvlv? + 3! 0
Vv, + \Iflz‘i’3 = 0 0 wolv? — vl |, B
0 0 —viulu? + udv'lu?

} 0 0 (W)v'?—udvdv'u? —idv3v2u! + (V3)2ulu?
‘1’3\1,12\1,3 = O O O
0 0 0

The explicit form for Q is

w 4 UsVa— V3l w; — UsV Uy —2uzvpu) FUzU Uy Uy s ws + v3U V) — 203U U T U3V Uy Vopty 0
2 6 ’ 6
— — Vip—u1 vy
0 = L) L 0 ,
—Up 0
0

and the blocks entering P are

¢ 3 1 0 0
v _ [ K€ _ ([ u _ WA W, 2 T o
eVi A (Keﬁ‘ﬁ‘n X0>’ 7 ( 3), a=12e"Ae Ke 1<7])®(1,17 )+(O AO)'

—v
APPENDIX C: TRANSFORMATIONS PRESERVING ASYMPTOTIC FLATNESS
In this Appendix we exhibit the action of the transformations generated by linear combinations of generators

Z]+Z_I, W_1+P7[, X_978

on a neutral seed:

6
X'=x2=x=1, OB :\/Li<¢2+%¢l)y d’z:\%(ﬁoz_%%)y ¢3:\/?_¢’1, b, =0,

R
A=< 6 2), A= A" #0, T=7'0=e_\/5¢', w, #0, Yl =0, u;=0.

The relation e V241 = risa consequence of the condition X* = 1 [see Eq. (13)]. Such a seed may describe a neutral black
ring or a black hole with one or two independent rotation parameters. The three above transformations preserve asymptotic
flatness with the Guisto-Saxena choice of coordinates and generate some combinations of charges. For this seed the coset

blocks simplify to
(A O (0 QO
TO_(O 1)’ QO_(O o>’

and we obtain the following transformations of the potentials:

1.Z,+Z_,

Ny =D 3(Ajp2 —75%), Mg =D"chyg,  MNg=D Ay, 7 =1D"3

D! I=1
\/zd)l Tﬁl) I = 1’2 \/i(ﬁ/
evVe? = 3 , eV =1 D I1=2
D71, I1=3,
1, 1=3
(W'Y = 81 sc(l + )‘88), ') = 5115)‘78, (X7Y = D381 + DI/3(1 — &1,
D D
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wp =0, wh = w;, w§ = cwsg,
with
D = c? + s% g, ¢ = cosh(a), s = sinh(a).
LW, + P

. Ay, I=12 5o Ag(l = &) = Ap&s, =12

" BAn 1=3 "7 * Bl = &) = Anés), 1=3 "
_— {wa% —2A5é3(1 = &) + Agg(l — &) + (1 — 3€1), =12
88 = " . " ,

ﬁ—f(/\wf% = 2A58&5(1 — &) + Agg(1 — &)* + a*(1 = 1&))), =3

DT, I=1,2 Dyl I=1,2 Do/Dy, T =1
1 > 4 , e\/Ed’/l _ 27- ) ’ ) e\/zd’l; _ Dl/Dz’ I _
D\Dy%r, =3 Dy, 1=3 | s
wh = Dy w7(1 + &) — A7€)), wy = Dy Nwg(1 + &) — Agéy),
(W) = 8D a(Ayré5 + Ag(1 + &, — €1) — ws(1 = &), (') = 8D a(A;(1 — €)) — w;,(1 — &),

D\ -2/3 D\1/3
wh = 8;D; a(ws(1 + &) — A&y — 7), X7y = (D_z) S + (D_2> (1—8Y).
1

7=

1

where
f CYZ’T a2w7 2
L=

2

_ a’Ay

&4 2

Dy = (1= &) + 261 - %fl), D=+ &P —26(1+ %&).

3IXx-Q8

Ny = =07 + A3 8] — 2A5aw7é) + Agga’ w3,

Npg == a’r — %Xﬂafl(l + &)+ A€y + & +26,6) — Aggaws(1 + &),

N =

- 1 1. - -
Agg = _ZCY4T + ZA77012(1 +&1)? = Aga(l + &) + &) + Ag(1 + &,)%

¢, =0, V24l = Dweﬁ‘f’l, 7 =D,'r,
1
wh = D;1<w7(§1 — &)+ a(i aldy;; + )‘78)7)’
/ —1 L, 3
wy = D,'((wg + aw;)(&; — &) + @ 5% A+ Ea/\m + Agg)T ),
(W =0, wy =0, XN =1,
1, 1

2 1
Dw = (1 - awg — Ea (1)7) - a2<ZaZA77 + CVA78 + /\88)7', gl =1- awg, fz = §a2w7.
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APPENDIX D: POTENTIALS IN TERMS OF P AND @
Here we give the explicit expressions for the target-space potentials in terms of the components of the matrix P and 9 :
P = ;(D11,23D11,24 — Dy1,2D1134 ) P = <Q42 ) P = ( Pn/Py )
P11D112233 \ D1123D1134 — D112aD11 33 Qi —Pi3/Pu
where D;;; denotes the determinant of the 2 X 2 matrix constructed from P,;:
Diju = PPy — PuPy,

and Dy 5, 33 is the determinant of the 3 X 3 minor of the 4 X 4 matrix 7 with the diagonal P, P,, P;;. The remaining
quantities read

V21 = P X0=L(D11,22 D11,23> _ 1 P L P
Ke , , |
! Tn Dy Diigs pi=Qn 27)11( 1294+ Pi3Q4p)

_ Py 1
B2 =5 +5 ( vl —vdul), M3 = Qa3 + E(Uluz — v?ul).
1
eV26s = Puy — (uy + %(v3u1 — viu3))* Py — A(7)7U% - 2/\(7)81’1”1 - /\ggu%,
w7 = Qpy + uypy + tujuyvy — Jusuyvy + tuzuyvy,

1 1
wg = Q13+ vy — fuzv vy T U3V Uy — fUsvuy.
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