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In the Lin-Lunin-Maldacena (LLM) bubbling geometries, we compute the entropies of black holes and

estimate their horizon sizes from the fuzzball conjecture, based on coarse-graining on the gravity side. The

differences of black hole microstates cannot be seen by classical observations. Conversely, by counting the

possible deformations of the geometry which are not classically detectable, we can calculate the entropy.

We carry out this method on the black holes of the LLM bubbling geometries, such as the superstar, and

obtain the same result as was derived by coarse-graining directly on the conformal field theory (CFT)

(fermion) side. Second, by application of this method, we can estimate the horizon sizes of those black

holes, based on the fuzzball conjecture. The Bekenstein-Hawking entropy computed from this horizon

agrees with that microscopic entropy above. This result supports the fuzzball conjecture.
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I. INTRODUCTION

In string theory, black holes are very interesting and
important objects. They are macroscopic systems with
nonvanishing entropies, and in fact they have large num-
bers of quantum microstates which account for the entro-
pies. This can be shown on the dual conformal field theory
(CFT) side in many cases, as was first derived in [1]. Even
black holes with classically vanishing horizon areas have
many corresponding microstates, such as the D1–D5
system.

However, on the gravity side, one can ask how these
microstates are coarse-grained and give the black hole
geometry with the horizon (or the stretched horizon in
the small black hole case), which obeys the (generalized)
Bekenstein-Hawking area law [2–5]. On this problem, one
interesting and plausible proposal is the fuzzball conjecture
[6–19]. This conjecture was originally proposed as a reso-
lution of the information loss paradox [20], and it includes
the following statements:

(1) Each microstate of a black hole is approximated by a
supergravity geometry by taking some appropriate
basis of the Hilbert space.1 These geometries are all
smooth, without singularities or horizons.

(2) These geometries are not distinguishable for a clas-
sical observer at a distant point, who cannot observe
the Planck scale physics. They are distinguishable
from one another only within the region correspond-
ing to the inner of the black hole macroscopically,
and the boundary of the region becomes the horizon.
Out of the horizon, all the microstates are observed
as the black hole geometry.

On the D1–D5 system, the geometries corresponding to
the microstates, called fuzzball solutions, were constructed
in [6] and shown to be smooth in [10]. In [6] they discussed
the coarse-graining of these solutions and showed that their
horizon from the fuzzball conjecture leads to the
Bekenstein-Hawking entropy expected from the micro-
states counting. In spite of the fruitful results including
this, the D1–D5 fuzzball solutions have problems. They are
indeed smooth, but we can also construct fuzzball-like
singular solutions. In fact, smooth fuzzball solutions are
generated from these singular solutions by some kind of
smearing process. This fact makes it difficult to understand
why the smooth solutions are more fundamental and rep-
resent semiclassical pure states.
Thus it is natural to ask if there are any other systems

suitable for the investigation of the fuzzball conjecture or
not. Fortunately we have candidates—the bubbling geome-
tries [21]. The bubbling geometries are asymptotic AdS
solutions of 10d=11d supergravities, which correspond to
some operators or states on the CFT side, based on the
AdS/CFT correspondence [22].
In this paper, we will deal with the 1=2 Bogomol’nyi-

Prasad-Sommerfield (BPS) bubbling geometries on
AdS5 � S5 background. Smooth bubbling geometries are
naturally regarded as fundamental and semiclassical states,
which are the microstates of singular geometries, i.e., black
holes [23–31]. Then they play roles of fuzzball solutions.
We discuss the coarse-graining of these ‘‘fuzzball solu-
tions’’ on the gravity side, in terms of classical observa-
tions. While a similar approach was attempted in [28], our
method is more faithful to the principle of coarse-graining.
This leads to a formula of the leading term of the entropy of
singular geometries, which is the same as the one given on
the dual CFT side directly [29,31]. Next we consider
observations at closer points to black holes, and determine
the order of the horizon size based on the fuzzball con-
jecture. Substituting this into the naive black hole geome-
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try, we get a Bekenstein-Hawking entropy which coincides
with the microscopic entropy above. An early work in this
direction is found in [27], although it was not successful.

The construction of this paper is following. In the next
section we shortly review the Lin-Lunin-Maldacena
(LLM) bubbling geometries [21] and black holes among
them, especially the superstar [32,33]. In Sec. III we dis-
cuss the coarse-graining of them, deriving the entropy
formula. In Sec. IV we compute the horizon size from
the fuzzball conjecture and compare it with the entropy.
In the last section we give some remarks and discussion.

II. LLM GEOMETRIES AND SUPERSTAR:
REVIEW

In this section, we shortly review the LLM bubbling
geometries and black holes among them, especially the
superstar.

A. LLM bubbling geometries

In the AdS/CFT correspondence, there is one-to-one
correspondence between a state (geometry) on the AdS
side and an operator (or a state) on the CFT side. For the
correspondence between the type IIB theory on AdS5 � S5

and N ¼ 4 SUðNÞ Yang-Mills theory, the classical ge-
ometries on the AdS side which are dual to some kinds of
operators on the CFT side are known manifestly.

The most representative examples are the 1=2 BPS
chiral primary operators. On the CFT side, using the
state-operator mapping, they are rewritten as the states of
the system of nonrelativistic (1þ 1)-dimensional N free
fermions in a harmonic oscillator potential [34–36]. The
LLM bubbling geometries [21] are the classical geometries
of type IIB supergravity, corresponding to these states.
They are stationary geometries with SOð4Þ � SOð4Þ sym-
metries, and the metric and the Ramond-Ramond 5-form

field strength Fð5Þ are given as follows:

ds2 ¼ �h�2ðdtþ Vidx
iÞ2 þ h2ðdy2 þ dxidxiÞ

þ yeGd�2
ð3Þ þ ye�Gd ~�2

ð3Þ; (1a)

Fð5Þ ¼ F ^ d�ð3Þ þ ~F ^ d ~�ð3Þ; (1b)

h�2 ¼ 2y coshG; (1c)

y@yVi ¼ ��ij@ju; yð@iVj � @jViÞ ¼ ��ij@yu; (1d)

u ¼ 1
2ð1� tanhGÞ; (1e)

F ¼ dBt ^ ðdtþ VÞ þ BtdV þ dB̂;

~F ¼ d ~Bt ^ ðdtþ VÞ þ ~BtdV þ d ~̂B; (1f)

Bt ¼ �1
4y

2e2G; ~Bt ¼ �1
4y

2e�2G; (1g)

dB̂ ¼ 1

4
y3 �3 d

�
u� 1

y2

�
; d ~̂B ¼ 1

4
y3 �3 d

�
u

y2

�
; (1h)

where

uðx1; x2; yÞ ¼ y2

�

Z
R2

dx01dx
0
2

u0ðx01; x02Þ
ðjx� x0j2 þ y2Þ2 ; (2a)

Viðx1; x2; yÞ ¼ � �ij
�

Z
R2

dx01dx
0
2

u0ðx01; x02Þðxj � x0jÞ
ðjx� x0j2 þ y2Þ2 ; (2b)

and �3 is the Hodge dual in the ðx1; x2; yÞ space. Here i, j ¼
1, 2 and y � 0. All other gauge fields are vanishing and the
dilaton and the axion fields are constant. Notice that in this
coordinate system, xi and y have dimensions of ðlengthÞ2.
Since the dilaton field is constant, there is no distinction
between the Einstein frame and the string frame. Thus
lengths measured by this metric are physical. These ge-
ometries are completely determined by the single function
u0ðx1; x2Þ ¼ uðx1; x2; 0Þ through u and Vi. When u0 satis-
fies the following conditions

9R; x21 þ x22 > R2 ) u0ðx1; x2Þ ¼ 0; (3a)Z
R2

dx1dx2u0ðx1; x2Þ ¼ �L4; (3b)

(1) is asymptotically AdS5 � S5 with RAdS ¼ RS5 ¼ L. In
the AdS/CFT correspondence

RAdS ¼ ð4�NÞ1=4lp; (4)

so Z
R2

dx1dx2u0ðx1; x2Þ ¼ 4�2l4pN: (5)

On the dual fermion side, the u0ðx1; x2Þ corresponds to
the distribution of the fermions on the phase plane ðq; pÞ. A
fermion occupies the phase plane area 2�@, soZ

R2
dx1dx2u0ðx1; x2Þ ¼ 2�@N: (6)

In this paper when we refer to @, it is always that on the
fermion side. Comparing (5) and (6), we find

@ ¼ 2�l4p: (7)

B. Smooth geometries

The bubbling geometry (1) has a causal structure with-
out closed timelike curves if and only if

0 � u0ðx1; x2Þ � 1; (8)

is satisfied [37]. In particular, when

u0ðx1; x2Þ 2 f0; 1g for 8ðx1; x2Þ; (9)

the geometry is smooth, without singularities or horizons.
Otherwise it has naked singularities, as we will see in the
next subsection.
On the fermion side, ‘‘semiclassical states’’ consist of

fermions each of which is individually localized within an
area of about 2�@ on the phase plane. Then, u0 correspond-
ing to such a state is approximated by N droplets, which
have u0 ¼ 1 inside the droplets and u0 ¼ 0 outside those,
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and the area of each droplet is 2�@.2 This represents a
smooth geometry on the gravity side. By contrast, u0 with
value halfway between 0 and 1 corresponds to some su-
perposition of semiclassical states on the fermion side, so
the state with such u0 cannot be regarded as a semiclassical
state. From the facts above, it is very natural to assume that
only the smooth bubbling geometries are semiclassical,
and singular ones are not.

Therefore it is convenient to take a basis of the Hilbert
space which consists of smooth geometries on the gravity
side. We will make use of them as the ‘‘fuzzball solutions’’
later. Take the one particle Hilbert space H 1 on the
fermion side. As is well known, the set of one particle
coherent states localized around a phase lattice point

ð ffiffiffiffiffiffiffiffiffi
2�@

p
m;

ffiffiffiffiffiffiffiffiffi
2�@

p
nÞ spans a basis of H 1 [40,41]. Then for

the Hilbert space of the N fermions system, the set of the
states with N fermions localized at different phase lattice
points individually, spans a basis, at least approximately.
This is also an approximately orthogonal basis.

C. Singular geometries

A singular bubbling geometry cannot be interpreted as a
semiclassical pure state, as was discussed in the previous
subsection. Rather, it should be regarded as a coarse-
grained state, which gives an average description of
many semiclassical microstates. This is very well coinci-
dent with the fact that black holes have nonvanishing
entropies generally.

1. Superstar

The simplest and representative example of singular
geometry is following. Take the u0 configuration as

u0 ¼
�
� ðr < r0Þ
0 ðr > r0Þ; (10)

where 0<�< 1 and we took the polar coordinates ðr; �Þ
on the ðx1; x2Þ plane. From (6), we see that r0 and �
satisfies the following relation

�r20� ¼ 2�@Nð¼ �R4
AdSÞ: (11)

For this configuration, (2) leads to

u ¼ �

2

�
1� r2 � r20 þ y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ r20 þ y2Þ2 � 4r2r20

q
�
; (12a)

V� ¼ ��

2

�
r2 þ y2 þ r20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ r20 þ y2Þ2 � 4r2r20

q � 1

�
; (12b)

Vr ¼ 0: (12c)

Here we perform the coordinate transformation ðt; y; rÞ to
ð~t; �; �Þ

y ¼ RAdS� cos�; (13a)

r ¼ R2
AdS

ffiffiffiffiffiffiffiffiffi
fð�Þ

q
sin�; fð�Þ ¼ 1

�
þ �2

R2
AdS

; (13b)

~t ¼ RAdSt; (13c)

(0 � � � �
2 , � � 0). The metric in this coordinate system

is

ds2 ¼ � 1ffiffiffiffi
D

p
�
cos2�þD

�2

R2
AdS

�
d~t2 þ 2RAdSffiffiffiffi

D
p sin2�dtd�

þ R2
AdSHffiffiffiffi
D

p sin2�d�2 þ ffiffiffiffi
D

p ðf�1d�2 þ �2d�2
ð3ÞÞ

þ R2
AdS

ffiffiffiffi
D

p
d�2 þ R2

AdSffiffiffiffi
D

p cos2�d ~�2
ð3Þ; (14a)

D ¼ sin2�þHcos2�; H ¼ 1þ
�
1

�
� 1

�
R2
AdS

�2
:

(14b)

Furthermore, by the dimensional reduction of the S5 part to
go to the 5-dimensional N ¼ 2 gauged supergravity, the
metric is described as [33]

ds2ð5Þ ¼ �H�2=3fd~t2 þH1=3ðf�1d�2 þ �2d�2
ð3ÞÞ: (15)

This is the AdS-background black hole solution known as
the superstar [32].
In this form of the superstar geometry, � ¼ 0 is a curva-

ture singularity, and furthermore, it is a naked singularity
without horizon. However, it is believed that by the effect
of higher derivative terms, this kind of naked singularity
develops a stretched horizon and hides itself behind [42].
These properties of the superstar are very general for the
singular geometries (i.e., black holes) in this sector.

III. OBSERVING THE LLM GEOMETRIES

In the case of ordinary matter, e.g., gas in a box, it has a
nonvanishing entropy because we cannot distinguish the
microstates. In other words, the entropy corresponds to the
number of the states which are not distinguishable from
one another by macroscopic observations.
This principle can also be straightforwardly applied to

black holes. In the case of the LLM bubbling geometries,
we know the complete set of the semiclassical microstates

2We could define u0 as some distribution like Wigner or
Husimi distribution functions [38,39] for a superposition of
(largely) different semiclassical states. However, such a distri-
bution function has no classical meaning and is useless, because
a classical observation on it destroys the superposition. Thus on
the gravity side, we expect that the bubbling geometries corre-
sponding to such u0 should not be regarded as microstates. For
details, see [31].
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in this whole sector. Thus we can carry out this fundamen-
tal method in practice, to determine the set of the micro-
states of a black hole and calculate the entropy.

A similar approach was attempted in [28]. However the
basis used in it was the set of the Fock states on the fermion
side, as well as they assumed a certain ensemble by hand.
By the nature of this method, we need not, and should not,
assume any certain ensemble. It is, on the contrary, auto-
matically determined by the observation. Furthermore, in
order to discuss in terms of macroscopic or classical ob-
servation, we have to adopt a set of semiclassical states as
the basis. It corresponds to the coherent basis on the
fermion side.

A. Small differences of geometries

We take two similar configurations u0ðx1; x2Þ and
u00ðx1; x2Þ, where

u00 ¼ u0 þ �u0: (16)

In order that the corresponding geometries have the same
asymptotic AdS radii, the numbers of fermions, N, should
be same, thus we require

Z
R2

dx1dx2�u0 ¼ 0: (17)

Under this condition, the leading source of the differences
�u and �Vi is the dipole moment of �u0. Since the con-
tributions of the higher multipole moments decrease more
rapidly for long distance, they are expected to be negligible
for typical configurations. So we approximate the �u0 as

�u0ðx1; x2Þ ¼ 2�@nf�2ðx� �Þ � �2ðx� �Þg; (18a)

l ¼ j� � �j; (18b)

and define the dipole moment Q of �u0 as

Q ¼ n � lffiffiffiffiffiffiffiffiffi
2�@

p : (19)

Later we will estimate the dipole moment Q for the differ-
ences between typical geometries.

We observe these geometries at ðx1; x2; yÞ with
�� 	2R2

AdS; (20)

where �2 ¼ x21 þ x22 þ y2, and 	 is some dimensionless
constant. First, we assume that � is of macroscopic size,
i.e.,

	 * 1: (21)

In this case, generically

x1 � x2 � y� �; (22)

and we will assume it below.

From (2a), the difference �uðx1; x2; yÞ of uðx1; x2; yÞ is

�u ¼ y2

�

Z
R2

dx01dx
0
2

�u0ðx01; x02Þ
ðjx� x0j2 þ y2Þ2

¼ 2@ny2
�

1

ðjx� �j2 þ y2Þ2 �
1

ðjx� �j2 þ y2Þ2
�

� 8@ny2
ð� � �Þ � x

�6
�Q

�
l2p
�

�
3 �Q	�6N�3=2: (23)

Similarly, we see that

�Vi �Q

�

�
l2p
�

�
3 � Q

R2
AdS

	�8N�3=2: (24)

B. Classical observables

Along our strategy, we have to estimate how large
differences of u and Vi are detectable for a classical
observer. We assume that one can only measure physical
quantities up to the UV scale 
 and the IR scale �, where3


� lp; (25a)

�� ffiffiffiffi
�

p � 	N1=4lp: (25b)

This is a similar assumption as was used in [28].
The values of u and Vi themselves are not observable

quantities. We have to measure the geometry, and calculate
u and Vi from it. We can determine the elements of the
metric by measuring distances. Because of the limitation of
classical observations noted above, the measured distance
is shorter than �, and includes an error comparable to 
.

So, perturbations smaller than the original value times 

� �

	�1N�1=4, are not detectable.
The magnitudes of u and Vi are

u� y2
N@

�4
� 	�4; (26a)

Vi �
N@ � xj
�4

� 1

R2
AdS

	�6: (26b)

From this, one can easily see that the variation �g of any
nonzero element g of the metric (1) satisfies

�g

g
� �u

u
þ �V1

V1

þ �V2

V2

�Q	�2N�3=2: (27)

So, the variation of the geometry due to �u0 is detectable
for a classical observer, when Q satisfies

Q	�2N�3=2 *



�
; [ Q * 	N5=4: (28)

This result means that we can make more precise observa-
tions when we are near the origin. Sowe assume that	� 1
in the next subsection.

3We will use only the ratio 
=� below.
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C. Entropy of geometries

In [29,31], a way of coarse-graining the LLM geome-
tries and calculating the entropy was proposed, by directly
dealing with the u0 configuration on the fermion side
(while similar analyses were made in [30] for the Lin-
Maldacena bubbling geometries and for the D1-D5 fuzz-
ball geometries in [18]). Now using the result (28), we can
rederive their entropy formula, in terms of classical obser-
vation on the gravity side.

For a small but macroscopic (finite at N ! 1) differ-
ence �u0, the corresponding n and l are

n� N; (29a)

l� N1=2
ffiffiffiffiffiffiffiffiffi
2�@

p
; (29b)

so

Q� N3=2 	 N5=4: (30)

Then such a difference is indeed classically detectable.
While this was assumed in the fermion side approaches
above, we have now successfully derived it on the gravity
side.

The next question is the detection bound of smaller
differences. We can detect macroscopic differences of u0
as above, however, we cannot detect sufficiently small
ones—where is the threshold?

As was done in [31], we divide the ðx1; x2Þ plane into
small regions with area of order 2�@M and deform u0 so
that the mean value of u0 in each small region is invariant.
Then we write �u0 ¼ P

k�u
k
0, in which �uk0 has a support

in the region k. Such �uk0 can be approximated by some

dipole moment with

nk �M; (31a)

lk �M1=2
ffiffiffiffiffiffiffiffiffi
2�@

p
; (31b)

so

Qk �M3=2: (31c)

The number of the regions is �N=M, and typically, each
Qk has a random direction, different from one another. So
the magnitude of the total dipole moment Q scales as the

square root of the number of the regions, � ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
, simi-

larly as the traveling distance of a random walk. Then we
see that

Q�M3=2 �
ffiffiffiffiffi
N

M

s
�M

ffiffiffiffi
N

p
: (32)

Comparing (28) and (32),

M * N3=4 (33)

is necessary for classical detection. In [31], M was as-
sumed as a large number, but not specified. Now we find
that the suitable magnitude of M is

M� N3=4; (34)

in our setting.
Let us compute the entropy, assuming that we cannot

detect deformations within the regions of some size M0. In
each region k, the number of the configurations of u0 with
the mean value uk0 fixed is

M0CM0uk � exp½�M0fuk0 loguk0 þ ð1� uk0Þ logð1� uk0Þg
;
(35)

therefore the total entropy is

S � �M0X
k

fuk0 loguk0 þ ð1� uk0Þ logð1� uk0Þg

� �
Z dx1dx2

2�@
f �u0 log �u0 þ ð1� �u0Þ logð1� �u0Þg;

(36)

where �u0ðx1; x2Þ is the mean value of u0 around ðx1; x2Þ.
This formula of the leading term of the entropy is valid as
long as 1 � M0 � N. Since (34) satisfies this condition,
the entropy of the geometry is given by (36).

IV. HORIZON SIZE FROM FUZZBALL
CONJECTURE

Nowwe consider the case of smaller	. According to the
fuzzball conjecture, the horizon of a black hole is the
surface of the region in which the typical microstates are
different from each other. A similar attempt is found in
[27].
In the current case, it is the region in which the entropy

formula (36) breaks down. This means M0 � 1. The corre-
sponding 	 is very small, so the approximations in (23),
(24), and (26) are not applicable.
Take 	 very small. Note that in this region, what is

important is the magnitude of y, rather than �. Here we
take

y� 	2R2
AdS: (37)

In this case, the effect on uðx1; x2; yÞ from the dipole mo-
ment QX � 1 (which means nXlX � l2p) at the point

ðX1; X2Þ on the y ¼ 0 plane can be computed as

�uX � y2
l6p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx1 � X1Þ2 þ ðx2 � X2Þ2
p

fðx1 � X1Þ2 þ ðx2 � X2Þ2 þ y2g3 ; (38)

similarly as (23). Then the total contribution is, similarly as
(32),

�u�
�Z dX1dX2

2�@
ð�uXÞ2

�
1=2

� l4py
2

�Z R2
AdS

0
rdr

r2

ðr2 þ y2Þ6
�
1=2

� l4p

y2
� 	�4N�1: (39)
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Here u� 1 because the observer is near the boundary y ¼
0, so the observable condition of this �u is

	�4N�1 * 	�1N�1=4; [ 	 & N�1=4: (40)

We can easily get the same condition for �Vi similarly.
Thus we find that the position of the horizon is

y� N�1=2R2
AdS: (41)

This means y� l2p, but this coordinate scale is not physical.

In the case of the superstar, under the coordinate trans-
formation (13), this leads to

� � N�1=2RAdS; (42)

which precisely agrees with the result in [29], estimated by
the Bekenstein-Hawking entropy based on the naive metric
of the superstar. Indeed, the ‘‘Bekenstein-Hawking en-
tropy’’ computed as the area of the surface with (42) of
the geometry (15) satisfies S� N, and the entropy formula
(36) also means S� N. Therefore on the superstar and
similar black holes, we have found that the fuzzball con-
jecture reproduces the Bekenstein-Hawking law for the N
dependence. This can be regarded as an evidence for the
fuzzball conjecture.

V. DISCUSSION

In this paper, we discussed the coarse-graining of the
LLM bubbling geometries and the ‘‘horizons’’ from the

fuzzball conjecture. We have successfully derived the en-
tropy formula of the black holes in terms of the classical
observations and determined the size of the stretched hori-
zon. These two quantities exhibited a good agreement with
the Bekenstein-Hawking law.
Unfortunately, however, here is one difficult problem. In

the region around this stretched horizon, the curvature is
very large, and so the ‘‘fuzzball geometries’’ as well as the
singular geometry are not reliable in truth. This is already
pointed out, for example, in [19]. But in spite of the large
curvature, the horizon area is rather large, proportionally to
N. Therefore it is presumable that, in the presence of
correction terms, the horizon size would be altered but
invariant in the order.
Resolution of this difficulty is left as a future problem.

One possible way is to deal with black holes with macro-
scopic horizons, in which the higher derivative terms will
be negligible. Applications of our method to bubbling
geometries with less supersymmetries (such as the 1=16
BPS sector) would be interesting, while there might be
some technical difficulties.
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