
Testing alternative theories of dark matter with the CMB

Baojiu Li,1,* John D. Barrow,1,+ David F. Mota,2,‡ and HongSheng Zhao3,x
1DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom

2Institute of Theoretical Physics, University of Heidelberg, 69120 Heidelberg, Germany
3Scottish University Physics Alliance, University of St. Andrews, KY16 9SS, United Kingdom

(Received 28 May 2008; published 26 September 2008)

We propose a method to study and constrain modified gravity theories for dark matter using CMB

temperature anisotropies and polarization. We assume that the theories considered here have already

passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a

modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density

contrast, which is completely controlled by the dark-matter stress history. We calculate how the stress

history with a given parametrization affects the CMB observables, and a qualitative discussion of the

physical effects involved is supplemented with numerical examples. It is found that, in general, alternative

gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There

exist, however, special cases where modified gravity cannot be distinguished from the CDM model even

by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by

other observables in perturbed cosmologies. Our results show how the stress properties of dark matter,

which determine the evolutions of both density perturbations and the gravitational potential, can be

effectively investigated using just the general conservation equations and without assuming any specific

theoretical gravitational theory within a wide class.

DOI: 10.1103/PhysRevD.78.064021 PACS numbers: 04.50.Kd, 95.35.+d, 98.70.Vc

I. INTRODUCTION

Various cosmological observations indicate that almost
95% of the energy content of our universe is in some dark
form that can only be detected through its gravitational
effects. The standard explanation for this ‘‘dark sector’’
involves some kind of cold dark matter (CDM), such as
heavy weakly interacting particles or primordial black
holes, and dark energy, which could be a manifestation
of a cosmological constant (�) or some exotic matter field.
This standard hybrid picture (�CDM) has so far passed
several different cosmological tests, and is dubbed the
‘‘concordance model.’’ Despite its successes, however, it
is not without problems in accounting for structure on
galactic scales—for example, the greatest challenge is to
form bulge-free bright spiral galaxies and dwarf spiral
galaxies. The galaxies in CDM have either a dominating
stellar bulge or a dominating CDM cusp at the center. In
essence, �CDM over predicts the dark-matter effects re-
quired by the empirical Tully-Fisher relation of spiral
galaxies—and is in need of an experimental identification
of the CDM particles with an understanding of why the
dark energy possesses its particular energy density.

Since dark energy affects cosmological models mainly
via gravitational effects, it is possible to imagine that the
effects of an explicit material source for the dark energy
can be mimicked by a change in the behavior of the

gravitational field at late times. This is an unusual require-
ment, since we have expected deviations from general
relativity to arise in the high spacetime curvature limit at
early times rather than in the low spacetime curvature limit
at late times. However, we should note that the addition of
an explicit cosmological constant to general relativity, as in
the concordance model of �CDM, is already a particular
example of such a low spacetime curvature correction.
There have been many investigations of gravitational alter-
natives to dark energy [1–10], and it appears that most of
these attempts create different problems in either local
gravitational systems or large-scale structure (LSS) forma-
tion, or even both [11–26] (see [27–32] on possible ways to
overcome these problems). In response to these investiga-
tions, frameworks to test modified gravitational dark en-
ergy models have also been developed [33–38].
The situation is nonetheless different in the dark-matter

arena, where the leading modified gravity model,
Milgrom’s modified Newtonian dynamics (MOND) [39],
appeared more than two decades ago, but lacked a con-
vincing general-relativistic formulation with a set of rela-
tivistic field equations applicable to cosmology. This
hurdle has recently been overcome by Bekenstein’s
tensor-vector-scalar (TeVeS) model [40], which reduces
to MOND in the relevant limit. Actually, what the TeVeS
model provides is more than a relativistic framework to
investigate cosmology—it has been found that in TeVeS
the formation of LSS, which was thought of as a problem
for modified gravity theories before, could also be made
consistent with observations [41,42]. Meanwhile, TeVeS
has also been shown to work well on smaller scales (e.g.,
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mimicking cold dark matter in strong gravitational lensing
systems [43,44], producing elliptical galaxies, barred spiral
galaxies, and even tidal dwarf galaxies [45,46], being
consistent with solar system tests and so on) and inherit
the advantages of MOND over the CDM model [47] (e.g.,
in explaining the Tully-Fisher law and galaxy rotation
curves), this discovery attracts much interest on TeVeS
and its generalizations. Also, since TeVeS manages to
grow large-scale structure using the growing mode of its
vector field, this stimulates the investigation of vector-field
cosmology [48] in general [49–57] (in Ref. [57], for ex-
ample, a very general vector-scalar field framework, the
so-called dark fluid, is proposed which can reduce to many
existing models in appropriate limits), and it is found that
the LSS in these theories could also be consistent with
observations [58].

Despite this encouraging success, one should bear in
mind that LSS only provides one test of any structure
formation model. In fact, the matter (or galaxy) power
spectrum we observe today only reflects the large-scale
matter-density perturbation today (�m0), rather than its
evolutionary history. Thus, even though the matter power
spectrum PðkÞ is compatible with observations, the evolu-
tion path of �m may well be different from that followed in
the �CDM paradigm. This situation is shown particularly
clearly in Fig. 3 (lower panel) of [42], where the growth
rate of baryon density perturbations is enhanced only at
late times. The different evolution history of matter-density
perturbations may have significant impacts on various
other cosmological observables, such as the cosmic micro-
wave background (CMB) power spectrum, and influence
the growth of nonlinear structure. We would like to deter-
mine what these impacts are.

In this paper we take a first step in that direction. Wewill
concentrate on the influences of general modified gravity
dark-matter models on CMB observables. Our main as-
sumption is that the modification to general relativity (GR)
can be expressed as an effective dark matter (EDM) term
and moved to the right-hand side of the field equations so
that the left-hand side is the same as in GR. This EDM
term, like the standard CDM (SCDM), governs both the
background and perturbation evolutions. This assumption
is justified by observing the fact that in TeVeS, as well as in
the general vector-field (or fðKÞ) theories, the terms in-
volving the vector field are essentially just the EDM term
described here. Furthermore, we make some simplifying
assumptions. First, any explicit dark energy is neglected.
The main effects of dark energy (if not too exotic in origin)
are to modify the background evolution at late times and
cause the decay of the large-scale gravitational potential.
Neglecting it does not affect the essential features of our
model but will simplify the numerics greatly. Second, the
background evolution is exactly the same as that in the
SCDMmodel, which should also be a good approximation.
Third, the matter power spectrum, or equivalently �m0, is

the same as that of SCDM, because any deviation from the
latter should be stringently constrained by LSS observa-
tions, and because both TeVeS and fðKÞ models have
claimed to reproduce the observed matter power spectrum.
Hence, we are fixing �m0 and investigating how different
evolutions of �mðaÞ (where a is the cosmic scale factor)
affect the CMB power spectrum. Our theoretical frame-
work is designed to be more general than is required for
this purpose alone, and could be used to investigate fea-
tures of other cosmological models.
This paper is organized as follows: in Sec. II, we set out

the theoretical framework for our investigation and intro-
duce more details of the cosmological model. In Sec. III,
we describe briefly how a general dark-matter component
affects the CMB power spectrum and then, in Sec. IV,
supplement this discussion with a numerical example.
We consider three special cases, which span all the possi-
bilities in the model, and explain them one by one. Finally,
in Sec. V, we provide a summary of our results together
with some further discussion of the assumptions on which
they are based.

II. THE THEORETICAL FRAMEWORK

In this analysis we use the perturbed Einstein equations
in the covariant and gauge invariant (CGI) formalism.

A. The perturbation equations in CGI formalism

The CGI perturbation equations in general theories of
gravity are derived in this section using the method of 3þ
1 decomposition [59]. First, we briefly review the main
ingredients of 3þ 1 decomposition and their application to
standard general relativity [59] for ease of later reference.
The main idea of 3þ 1 decomposition is to make space-

time splits of physical quantities with respect to the 4
velocity ua of an observer. The projection tensor hab is
defined as hab ¼ gab � uaub and can be used to obtain
covariant tensors perpendicular to u. For example, the

covariant spatial derivative r̂ of a tensor field Tb���c
d���e is

defined as

r̂ aTb���c
d���e � hai h

b
j � � � hckhrd � � � hseriTj���k

r���s : (1)

The energy-momentum tensor and covariant derivative of
the 4 velocity are decomposed, respectively, as

Tab ¼ �ab þ 2qðaubÞ þ �uaub � phab; (2)

raub ¼ �ab þ$ab þ 1
3�hab þ uaAb: (3)

In the above, �ab is the projected symmetric trace-free
anisotropic stress, qa the vector heat flux vector, p the
isotropic pressure, �ab the projected symmetric trace-free

shear tensor, $ab ¼ r̂½aub�, the vorticity, � ¼ rcuc �
3 _a=a (a is the mean expansion scale factor) the expansion
scalar, and Ab ¼ _ub the acceleration; the overdot denotes
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time derivative expressed as _� ¼ uara�, brackets mean
antisymmetrization, and parentheses symmetrization. The
4-velocity normalization is chosen to be uaua ¼ 1. The
quantities �ab, qa, �, p are referred to as dynamical
quantities and �ab, $ab, �, Aa as kinematical quantities.
Note that the dynamical quantities can be obtained from
the energy-momentum tensor Tab through the relations

� ¼ Tabu
aub; p ¼ �1

3h
abTab;

qa ¼ hdau
cTcd; �ab ¼ hcah

d
bTcd þ phab:

(4)

Decomposing the Riemann tensor and making use the
Einstein equations, we obtain, after linearization, five con-
straint equations [59]:

0 ¼ r̂cð"abcdud$abÞ; (5)

�qa ¼ � 2r̂a�

3
þ r̂b�ab þ r̂b$ab; (6)

B ab ¼ ½r̂c�dða þ r̂c$dða�"bÞecdue; (7)

r̂ bEab ¼ 1

2
�

�
r̂b�ab þ 2

3
�qa þ 2

3
r̂a�

�
; (8)

r̂ bBab ¼ 1

2
�½r̂cqd þ ð�þ pÞ$cd�"abcdub; (9)

and five propagation equations

_�þ 1

3
�2 � r̂aAa þ �

2
ð�þ 3pÞ ¼ 0; (10)

_� ab þ 2

3
��ab � r̂haAbi þ Eab þ 1

2
��ab ¼ 0; (11)

_$þ 2

3
�$� r̂½aAb� ¼ 0; (12)

1

2
�

�
_�ab þ 1

3
��ab

�
� 1

2
�½ð�þ pÞ�ab þ r̂haqbi�

� ½ _Eab þ �Eab � r̂cBdða"bÞec
due� ¼ 0; (13)

_B ab þ �Bab þ r̂cEdða"bÞec
due þ �

2
r̂c�dða"bÞec

due ¼ 0:

(14)

Here, "abcd is the covariant permutation tensor, Eab and
Bab are, respectively, the electric and magnetic parts of the
Weyl tensor W abcd, defined by Eab ¼ ucudW acbd and
Bab ¼ � 1

2u
cud"ac

efW efbd. The angle bracket means

taking the trace-free part of a quantity.
Besides the above equations, it is useful to express the

projected Ricci scalar R̂ into the hypersurfaces orthogonal
to ua as

R̂ ¼: 2��� 2

3
�2: (15)

The spatial derivative of the projected Ricci scalar �a �
1
2ar̂aR̂ is then given as

�a ¼ �r̂a�� 2a

3
�r̂a�; (16)

and its propagation equation by

_� a þ 2�

3
�a ¼ � 2

3
�ar̂ar̂ � A� a�r̂ar̂ � q: (17)

Finally, there are the conservation equations for the
energy-momentum tensor

_�þ ð�þ pÞ�þ r̂aqa ¼ 0; (18)

_q a þ 4
3�qa þ ð�þ pÞAa � r̂apþ r̂b�ab ¼ 0: (19)

As we are considering a spatially flat universe, the

spatial curvature must vanish on large scales and so R̂ ¼
0. Thus, from Eq. (15), we obtain

1
3�

2 ¼ ��: (20)

This is the Friedmann equation in standard general relativ-
ity, and the other background equations (the Raychaudhuri
equation and the energy-conservation equation) can be
obtained by taking the zero-order parts of Eqs. (10) and
(18), yielding

_�þ 1

3
�2 þ �

2
ð�þ 3pÞ ¼ 0; (21)

_�þ ð�þ pÞ� ¼ 0: (22)

All through this paper we only consider scalar perturba-
tion modes, for which the vorticity $ab and magnetic part
of Weyl tensorBab are at most of second order [59], and so
are neglected in our first-order analysis.

B. Perturbation equations in k space

For the perturbation analysis it is more convenient to
work in the k space, because we confine ourselves in the
linear regime and different k modes decouple. Following
[59], we shall make the following harmonic expansions of
our perturbation variables
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r̂a�¼X
k

k

a
XQk

a r̂ap¼X
k

k

a
XpQk

a

qa ¼
X
k

qQk
a �ab ¼

X
k

�Qk
ab r̂a�¼X

k

k2

a2
ZQk

a

�ab ¼
X
k

k

a
�Qk

ab r̂aa¼X
k

khQk
a Aa ¼

X
k

k

a
AQk

a

Eab ¼�X
k

k2

a2
�Qk

ab �a ¼
X
k

k3

a2
�Qk

a (23)

in which Qk is the eigenfunction of the comoving spatial

Laplacian a2r̂2
satisfying

r̂ 2Qk ¼ k2

a2
Qk

and Qk
a, Q

k
ab are given by Qk

a ¼ a
k r̂aQ

k, Qk
ab ¼ a

k r̂haQk
bi.

In terms of the above harmonic expansion coefficients,
Eqs. (6), (8), (11), (13), (16), and (17) can be rewritten as
[59]

2
3 k

2ð��ZÞ ¼ �qa2; (24)

k3� ¼ �1
2�a

2½kð�þXÞ þ 3Hq�; (25)

kð�0 þH�Þ ¼ k2ð�þ AÞ � 1
2�a

2�; (26)

k2ð�0 þH�Þ ¼ 1
2�a

2½kð�þ pÞ�þ kq��0 �H��;
(27)

k2� ¼ �Xa2 � 2kHZ; (28)

k�0 ¼ ��qa2 � 2kHA; (29)

where H ¼ a0=a ¼ 1
3 a�, and a prime denotes the deriva-

tive with respect to the conformal time 	 (ad	 ¼ dt). Also,
Eq. (19) and the spatial derivative of Eq. (18) become

q0 þ 4Hqþ ð�þ pÞkA� kXp þ 2
3k� ¼ 0; (30)

X 0 þ 3h0ð�þ pÞ þ 3H ðX þXpÞ þ kq ¼ 0: (31)

C. The main equations

Recall that we are treating the modifications to GR as an
EDM term and so include them in the (generalized)
energy-momentum tensor Tab to maintain the standard
form of the Einstein equations. Thus, we can distinguish
its different components �EDM, pEDM, qa;EDM, �ab;EDM and

their conservation. Depending on the specific model, the
expressions for these components can be very different, but
their conservation equations will take the same form. In
particular, since the EDM has no coupling with standard
model particles such as photons and baryons, it satisfies a
separated conservation equation, Eqs. (30) and (31)

v0
EDM þHvEDM þ kA� k�p þ 2

3k�� ¼ 0; (32)

�0
EDM þ kZ� 3HAþ 3H�p þ kvEDM ¼ 0; (33)

where we have defined the EDM peculiar velocity vEDM �
qEDM=�EDM, the density contrast �EDM � XEDM=�EDM,
and�p�Xp

EDM=�EDM,�� � �EDM=�EDM (c.f. Sec. II B)

for the EDM, and used the fact that pEDM ¼ 0 to reproduce
the standard CDM background evolution. The prime here
is the derivative with respect to the conformal time and
H ¼ a0=a.
On the other hand, the spatial derivative of Eq. (10) gives

the evolution equation for Z as

k0Zþ kHZ� kAþ 1
2�ðX þ 3XpÞa2 ¼ 0 (34)

and in this equation X, Xp are, respectively, the density
and pressure perturbations for all the matter species, in-
cluding the EDM. For convenience, we shall work in the
frame where A ¼ 0. In this case, if the Universe is domi-
nated by the EDM, then the three equations above can be
combined to eliminate Z and vEDM

�00
EDM þH�EDM � 1

2��EDMa
2�EDM � 2

3k
2�� þ 3H�0

p

þ
�
3H 0 þ 3H 2 � 3

2��EDMa
2 þ k2

�
�p ¼ 0: (35)

If other matter species could not be neglected, as is in the
radiation-dominated era and early-matter era, then we only
need to correct the above equation by adding to it
1
2��EDMa

2�EDM another term with 1
2��ba

2�b þ
��ra

2�r (where �b, �r are the baryon and radiation energy
densities), which comes from the last term in the left-hand
side of Eq. (34), and these new terms do not affect the
qualitative features of our discussion (we will include them
in the numerical calculation). Equation (35) tells us that the
evolution of the density perturbation in EDM is completely
controlled by its stress history: the EDM equation of state
wEDM ¼ pEDM=�EDM controls the background expansion
and is set to zero here; the other two stress variables �p,

�� then drive the evolution of �EDM through Eq. (35).
Note that the stresses of the EDM are external functions
determined by microphysics (for particle dark matter) or a
particular modified gravity theory, and must be specified to
close the system of Einstein equations and conservation
equations. In the special case where �p ¼ �� ¼ 0, we

reduce to the CDM model for which �CDM / a in the
matter era; but in general, there will be deviations from
this growing solution.
Next, we look at the evolution of the gravitational po-

tential � (see Secs. II A and II B). By manipulating
Eqs. (25)–(27) and (30), and working again in the A ¼ 0
frame, we can eliminate the terms involving q and obtain
the following evolution equation
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�00þ3H
�
1þp0

�0

�
�0þ

�
2H 0þH 2

�
1þ3

p0

�0

��
�þk2

p0

�0�

¼1

2
��a2

�
�p�p0

�0�
�
� 1

2k2
��a2�00

�� 1

2k2
��a2

�
��

5þ3
p0

�0

�
H þ2

�0

�

�
�0

�� 1

2k2
��a2

�
��

5þ3
p0

�0

��
H þ�0

�

�
H þ�00

�
þ
�
2

3
þp0

�0

�
k2
�
��;

(36)

where �, p are the total energy density and total pressure,
respectively, and � � �EDM, with p ¼ 0 for an EDM

dominated universe. The term 1
2��a

2ð�p � p0
�0 �Þ is zero

for radiation and baryons, but in general could be nonzero
for the EDM. Again, we see that the stress history of the
EDM completely specifies the evolution of �. As we shall
see in what follows, the dark-matter component influences
the CMB power spectrum through the gravitational poten-
tial, and so the stress history of the EDM is of crucial
importance for the CMB.

In summary, we have seen that the properties of the
(isotropic and anisotropic) stresses of the EDM determine
the evolution of the matter density perturbation and the
gravitational potential, and thereby determine the pre-
dicted matter power spectrum (through the former) and
the CMB spectrum (through the latter) [60]. As we dis-
cussed in Sec. I, the predicted matter power spectrum of a
theory records the matter energy density perturbation at a
specific time—today, and it is easier to make it consistent
with observations, as evident from the studies of TeVeS
and fðKÞ theories. Thus, in this work we shall start from an
EDM theory that is constructed already to predict an
acceptable matter power spectrum; that is, we fix the
matter energy density perturbation today and calculate
the influence of different �m evolution paths on the CMB
spectrum. In this way, we can reduce our model space to
one that is of realistic interests.

III. THE DARK-MATTER EFFECTS ON CMB

It is helpful to have a brief review of the CMB physics
and how it is affected by dark matter before we go into the
numerics to show the effects of EDM stresses on the CMB.
Here, we will just present a minimal description of this
topic; for more details see the reviews [61–64].

The primary CMB spectrum is determined by inhomo-
geneities in the CMB photon temperature at the time of
recombination. Prior to the recombination, photons couple
tightly by Thomson scattering with electrons, which them-
selves couple to baryons via Coulomb interaction; thus to a
first approximation photons and baryons combine into a
single fluid. Dark matter, on the other hand, does not
couple electromagnetically, but only interacts through

gravitational effects and so contributes to the gravitational
potential in which the baryon-photon fluid moves.
When the density perturbation in the photons grows, hot

(cold) spots appear where the local photon density is higher
(lower) than average. The higher photon density means
higher pressure, which will tend to counteract the growth
of local photon density. This will lead to acoustic oscilla-
tions of the gauge invariant photon temperature perturba-
tion �, which is also a characterization of the photon
number density perturbation. In reality, this picture be-
comes a bit more complicated because of the interplay
between baryons and dark matter: baryons couple tightly
to photons, and move with them so that the inertia of the
fluid is increased, while the gravitational potential pro-
duced by dark matter drives the oscillations. More specifi-
cally, if we use the multipole decomposition

� ¼ X
‘

ð�iÞ‘�‘P‘ð
Þ;

where P‘ is the Legendre function and k
 ¼ k � � with �
being the direction of photon momentum, then in the tight-
coupling limit the monopole �0 satisfies a driven-
oscillator equation [65]

�00
0 þ

R

1þ R
H�0

0 þ k2c2s�0 ¼ F; (37)

in which

F ¼ ��00 � R

1þ R
H�0 � 1

3
k2�; (38)

where

R � 3�b=4��; c2s � 1=3ð1þ RÞ
and

� ¼ �� 1

2

a2

k2
��; � ¼ ��� 1

2

a2

k2
��

are, respectively, the (frame-independent) Newtonian po-
tential and curvature perturbations. The dipole moment
�1, which equals the peculiar velocity of baryons thanks
to the tight coupling, satisfies k�1 þ 3H�0

0 þ 3�0 ¼ 0,
and all higher moments �‘ð‘ � 2Þ vanish because the
frequent scattering makes the photon distribution isotropic
in the electron rest frame.
Thus, on large scales the photon temperature perturba-

tion displays a pattern of driven and damped oscillation.
On scales smaller than the photon mean free path, which
itself grows in time, however, the tight coupling approxi-
mation is no longer perfect and quadrupole moments of the
temperature perturbation needs to be taken into account.
This introduces a dissipation term into the oscillator equa-
tion above, which damps the oscillations.
At the time of recombination, the number density of free

electrons drops suddenly, and there ceases to be coupling
between baryons and photons. The CMB photons then free
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stream toward us. This free-streaming solution is given by
[65]

�‘ð	0Þ � ð�0 þ�Þð	�Þð2‘þ 1Þj‘ðk�	�Þ
þ�1ð	�Þ½‘j‘�1ðk�	�Þ � ð‘þ 1Þj‘þ1ðk�	�Þ�
þ ð2‘þ 1Þ

Z 	0

	�
ð�0 ��0Þj‘½kð	0 � 	Þ�d	; (39)

where 	0, 	� are the conformal times today and at recom-
bination, �	� ¼ 	0 � 	� and j‘ðxÞ is the spherical Bessel
function of order ‘. The terms �0 þ� and �1 are, re-
spectively, the monopole and dipole moments of the CMB
temperature field at 	�, and can be calculated using the
equations above (a � is added to �0, which accounts for
the redshift in the photon energy, and thus temperature,
when it climbs out of the Newtonian potential). Finally, the
CMB temperature-temperature spectrum is defined as

2‘þ 1

4�
C‘ ¼ V

2�2

Z k3j�‘ð	0; kÞj2
2‘þ 1

d lnk: (40)

These are the leading-order effects in the CMB physics,
and we could see how they affect the CMB power spec-
trum. Because j‘ðxÞ peaks strongly at ‘	 x, so perturba-
tions on very large scales (small k) mainly affect the low-‘
spectrum. If the Universe is completely dominated by
matter at 	�, then the first term in Eq. (39) is given by
ð�0 þ�Þð	�Þ � �ð	�Þ=3, and accounts for the ordinary
Sachs-Wolfe effect; meanwhile, if the potential ��� ¼
2� decays between 	� and 	0, then the integration in
Eq. (39) will also make a significant contribution as pho-
tons travel in and out of many time-dependent potentials
along the line of sight, and this is the integrated Sachs-
Wolfe (ISW) effect.

Going to higher ‘ one can see the peak structures of the
CMB spectrum. The peaks appear since at 	�, when the
oscillating pattern of �0 [c.f. Eq. (37)] freezes, �0 might
be just at its extrema for some scales (k); and these extrema
are then converted to extrema of C‘ through Eqs. (39) and
(40). Since what appears in Eq. (40) is j�‘j2, both the
maxima and minima of ð�0 þ�Þð	�Þ will appear as peaks
in C‘. If there are no baryons and the potential � is
constant, then the even and odd peaks should be of the
same amplitude. The inclusion of baryons effectively in-
creases the inertia of the baryon-photon fluid and displaces
the balance point of �0 þ�, and as a result, after taking
j � � � j2; the odd and even peaks appear to have different
heights. At the same time, from Eqs. (39) and (40), we see
that the dipole �1ð	�Þ also contributes to C‘ through
modulation. But Eq. (39) shows that its power is more
broadly distributed, and so its contribution is significantly
smaller than that of the monopole. Where the monopole
vanishes the dipole becomes important and this is why the
troughs of C‘ are of nonzero amplitude.

If one goes to still higher ‘, there are two effects. First,
the higher ‘ moments mainly receive contributions from

the small-scale (large k) perturbations, which began oscil-
lating already during the radiation-dominated era (not
much earlier than 	�). Since in the radiation era the poten-
tial � decays, this decay will drive the monopole oscilla-
tion through the source term in Eq. (37) and lead to an
increase in the oscillation amplitudes. This explains why in
some models the third peak is higher than the second.
Second, as discussed above, on very small scales there is
severe damping of the oscillations because of photon dif-
fusion. The combination of these two effects causes the
CMB power in ‘s higher than the third peak to be signifi-
cantly damped.
We can now highlight the key places where the dark-

matter effects enter CMB physics through the gravitational
potential it produces and contrast the situation with that
when EDM is employed as a substitute. First, if CDM is
replaced by EDM, then in the analysis of Sec. II the time
evolutions of �, and thus of � and � are modified. If the
modification only becomes significant after 	�, the ISW
effect could be different from standard CDM (where it
effectively vanishes). If it differs from standard CDM
before 	�, then the Sachs-Wolfe effect will be altered as
well. Second, the deviation of� and� from their values in
standard CDM before 	� can change the zero point of the
monopole oscillation through baryon loading, thereby
modifying the relative heights of the odd and even peaks.
Third, the modification of � and � also changes the
driving force in Eq. (37), and results in different amplitudes
for the C‘ at high ‘. In Sec. IV, we shall give some
numerical examples showing these effects explicitly in
our EDM model.

IV. NUMERICAL EXAMPLES

In this section, we turn to some numerical examples to
illustrate the qualitative analysis of Sec. III. As mentioned
in Sec. II, we choose to fix the endpoint of the evolution of
the matter energy density perturbation. This gives us a
freedom to parametrize the evolution of �EDMðaÞ, which
is generally different from that of �CDMðaÞ / a (in matter
regime). Once the �EDM parametrization is given (or in
other words the model is set up), Eq. (35) becomes an
evolution equation for �p and ��. This is insufficient to

solve for �p and ��, so in the following numerical calcu-

lations we consider three cases: (1) �� ¼ 0, (2) �p ¼ 0,

and (3) a more realistic case where both �p and �� are

nonzero. Since any scale dependence of�EDM will alter the
shape of the matter power spectrum, and thus incur strin-
gent constraints, we parametrize �EDMðaÞ so that it is
independent of k.

A. The case of �� ¼ 0

When �� ¼ 0 and �EDM is specified, Eq. (35) becomes
a first-order evolution equation for �p
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3H�0
p þ

�
3H 0 þ 3H 2 � 3

2
��EDMa

2 þ k2
�
�p ¼ S;

(41)

where the source term S is given by1

S ¼ ��00
EDM �H�0

EDM þ 1

2
��EDMa

2�EDM

þ 1

2
��ba

2�b þ ��ra
2�r: (42)

The quantity �p does not appear directly in the expression

for gravitational potential [c.f. Eqs. (25) and (27)]; how-
ever, it does affect the potential � indirectly through the
evolution of vEDM Eq. (32). Consequently, there are now
two new variables (�p and vEDM) to evolve in the model,

and we need to specify their initial conditions.
Here, we adopt the simplest and most direct approach,

namely, to assume that the EDM evolves as CDM prior to
some initial time 	i, when the scale factor is ai and the
dark-matter density perturbation �i, and for a > ai the
dark-matter density perturbation begins to evolve as
�EDMðaÞ. This means that for a < ai the variables �p

and vEDM
2 will remain zero: this provides the desired

initial conditions. This simple approach captures most of
the interesting features about EDM. However, by assuming
that at early times EDM is just CDM, we cannot account
for more complicated issues such as the primordial power
spectrum, and we will comment on this in the concluding
section.

Now, we could turn to a specific example of �EDMðaÞ
parametrization. We let �EDMðaÞ equal �CDMðaÞ in the
standard CDM model at times ai and af, and assume that

the deviation from standard CDM occurs between ai and
af. Here, af 
 a0 and a0 ¼ 1 is the current time. In order

to characterize the deviation from standard CDM between
ai and af, we introduce a parameter b to denote the ratio of

�EDM to �CDM at the mean time a ¼ ðai þ afÞ=2. Since
for standard CDMwe have�CDMðaÞ / a, the parametrized
�EDM is simply a parabola, which passes through three

points ðai;�iÞ, ðaf;�iaf=aiÞ, and ðaiþaf
2 ; b �i

ai

aiþaf
2 Þ be-

tween times when the scale factor lies between ai and af

�EDMðaÞ ¼ �i

ai
a� 2

�i

ai

af þ ai

ðaf � aiÞ2
ðb� 1Þða� aiÞ

� ða� afÞ (43)

for a 2 ½ai; af�. Some examples of�EDMðaÞwith different
choices of b are shown in Fig. 1. It clearly shows that b
characterizes the deviation from a standard CDM evolution
(b ¼ 0). Note that the parametrization Eq. (43) is just an
example for illustration, and specific modified gravity

models like TeVeS and fðKÞ theory may lead to different
parametrization, which however can similarly be tested.
Then with the parametrization of �EDMðaÞ in Eq. (43),

we could numerically evolve the relevant perturbation
equations and see the changes in the CMB power spectrum.
First, we assume 	i > 	�. In this situation the CMB physics
prior to last scattering is unaffected and so from Eq. (39)
we see that only the integration is modified. This is because
in the standard CDMmodel the gravitational potential� ¼
ð���Þ=2 remains constant during the matter epoch, and
the integrand in Eq. (39) vanishes. For the present EDM
case, however, Eq. (36) dictates that �0 � 0 even in the
matter era; consequently, there will be a significant ISW
effect to boost the low-‘ CMB power. As shown in Fig. 2,
the earlier the EDM evolution deviates from that of CDM
(i.e., the smaller ai is), the earlier � begins to evolve and
the larger the cumulative ISW effect is.
Next, we consider the case where the deviation from

CDM evolution begins earlier than last scattering. In this
case the evolution of �EDM and thus the potential � is
changed before last scattering, and correspondingly the
first two terms in Eq. (39) are modified as well. In Fig. 3,
we have displayed the primary CMB power spectrum for
the �EDMðaÞ parametrization Eq. (43) with parameters
ai ¼ 0:0002, af ¼ 0:002,3 b ¼ 1:2, 1.0, 0.8, and the ISW

effect switched off for simplicity. A larger value of b
implies a larger EDM density perturbation (for the scales
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FIG. 1. Some example parameterizations for the evolution of
�EDM, normalized to its current value �EDM0, as described in
Eq. (43). The values of the parameter b are indicated; the other
parameters are ai ¼ 0:005 and af ¼ 1.

1Here, we include the effects of baryons and radiation
explicitly.

2Recall that we work in the A ¼ 0 frame, in which vCDM ¼ 0.

3Note that in reality the Universe is not completely matter
dominated between a ¼ 0:0002 and a ¼ 0:002, and as a result
the parametrization Eq. (43), with b ¼ 1, is not exactly the same
as �CDMðaÞ. The qualitative features, however, are not affected
by this small deviation.
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relevant to the first acoustic peak) before the last scattering
and therefore a deeper Newtonian potential�. This means
that the CMB photons experience larger redshifts when
climbing out of the potential after last scattering, and the
effective temperature ð�0 þ�Þð	�Þ is lower, leading to a
suppressed first CMB acoustic peak. When b is smaller the
opposite effect occurs (c.f. Fig. 3). At the higher-‘ peaks
this effect is less significant because the potential for the
relevant (smaller) scales has already decayed. However, as

discussed in Sec. III, the change in the potential prior to last
scattering also modifies the equilibrium point of the mono-
pole oscillation and alters the relative heights of odd and
even CMB peaks. If� is a constant, the difference between
odd and even peaks in j�0 þ�j is proportional to j�j
[62], so increasing b amplifies this difference by increasing
�, and as shown in Fig. 3, the third peak becomes higher
and the second peak becomes lower for larger values of b
and go oppositely for smaller b. In this figure, the fourth
peak and onwards are not affected significantly because
our parameters are chosen conservatively. There, however,
could be alternative dark-matter models where the higher
peaks also deviate from the CDM predictions, for an
example see Fig. 4 (upper panel) of [41].
The CMB power spectrum has been measured to high

precision by many experiments (see for example [66,67])
and will be further improved in the future, so it could be
used to constrain the EDM model here. For higher ‘s the
CMB data could be used directly. For lower ‘s its usability
is limited by the cosmic variance. If the deviation is
significant (such as those in Fig. 2), then we could use
CMB data alone to constrain the model, as in [68].
Otherwise, we could cross correlate the observed ISW
with the matter density perturbation observable [69]; be-
cause both are modified in the EDM model, we should
expect different correlations from those created by CDM.
Actually, this technique has been applied to TeVeS [70] but
may not serve as a perfect EDM discriminator because
there will be contaminations from the dark-energy compo-
nent in the galaxy-CMB correlation. Meanwhile, the gen-
eral EDM model has different gravitational potential,
matter density perturbation, as well as a possible different
redshift distribution of lensing galaxies, and these will also
change the weak lensing spectrum (see [71] for an appli-
cation to one modified dark-matter model). Finally, the
different evolution history of �EDMðaÞ may also have
implications for the formation of nonlinear structure.
These further possibilities are beyond the scope of this
work and will be further pursued elsewhere.

B. The case of �p ¼ 0

In the case of �p ¼ 0, Eq. (35) simply becomes an

algebraic equation for ��

2

3
k2�� ¼ �00

EDM þH�0
EDM � 1

2
��EDMa

2�EDM

� 1

2
��ba

2�b � ��ra
2�r: (44)

For the parametrization of �EDMðaÞ we will still use
Eq. (43). In this case, because Eq. (44) is algebraic, the
only variable to propagate in time is vEDM [c.f. Eq. (32)],
and as in Sec. IVAwe could take vEDM ¼ 0 prior to ai and
then evolve it using Eq. (32) for a > ai.
In Fig. 4 we have plotted the CMB spectrum for such a

model with b ¼ 1:001 and different choices of ai, from
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FIG. 3 (color online). (color online) The primary CMB spec-
trum with the ISW contribution removed, for the parameters
ai ¼ 0:0002, af ¼ 0:002 and b ¼ 1:2 (blue curve), 1.0 (black

curve) and 0.8 (red curve), respectively.
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FIG. 2 (color online). (color online) The CMB power spectrum
for our �� ¼ 0 model with �EDMðaÞ parameterized as in
Eq. (43). Three values of b are adopted: b ¼ 1:2 (blue curves),
b ¼ 1:1 (red curves), and b ¼ 1:0 (black curve). The dashed
curves are the cases where ai ¼ 0:005 and the solid colored ones
ai ¼ 0:05. For all the curves we set af ¼ 1:0.
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which we can see that the low-‘ CMB power is very
sensitive to both b and ai. The reason is that, although
the right-hand side of Eq. (44) is scale independent thanks
to our parametrization Eq. (43), its left-hand side is scale-
dependent through the k2 factor. Consequently, on large
scales (small k) the EDM anisotropic stress �� could be
very large, and so the gravitational potential � is signifi-
cantly different than that in standard CDM [c.f. Eq. (25)].
The late ISW effect is then modified, which enhances the
low-‘ CMB power. On smaller scales, �� is suppressed by
k�2, and its effects soon becomes negligible, explaining
why the high-‘ CMB power is not influenced. Also, the
smaller ai is, so the earlier the CMB evolution of the �p ¼
0 EDM model deviates from the standard CDM result.
Note that, in the case of standard CDM, the right-hand
side of Eq. (44) vanishes identically, and so there is no
influence on the last ISW.

It is then clear that the �p ¼ 0 EDM model with a

general scale-independent parametrization of �EDMðaÞ is
problematic and already stringently constrained. A pos-
sible way out of this trouble is to drop the scale indepen-
dence of �EDMðaÞ. We have numerically checked that if on
large scales �EDM grows as �CDM, then the low ‘ boosts of
the CMB power as shown in Fig. 4 disappear, and one
recaptures the standard CDM results of ISW effect.
Another possibility is to have both �� and �EDMðaÞ scale
independent and also include�p; this will be considered in

Sec. IVC.

C. General �p and ��

If the EDM arises from modifications to standard gen-
eral relativity, then in general neither �p nor �� would be

exactly zero. In this case, there are many more possibilities
because �p and �� cannot be uniquely solved from

Eq. (35). Of course, the evolution of � might also be
modified normally, and this could be used to constrain
�p and ��. Indeed, we could use the freedom to choose

�p and �� so that the evolution of � [c.f. Eq. (36)] is

exactly (or nearly) the same as that in standard CDM. Let
us consider such an example now.
In order that the gravitational potential evolves in the

same way as in standard CDM, we require the contribution
on the right-hand side of Eq. (36) from the EDM to vanish,
which leads to the following evolution equation for ��

�00
� � 3�m

4�r þ 3�m

H�0
� þ

�
4�r þ 2�m

4�r þ 3�m

k2 � 3H 0

� 12�r þ 3�m

4�r þ 3�m

H 2

�
�� ¼ k2�p; (45)

where �m and �r are, respectively, the energy densities of
nonrelativistic (baryons plus EDM) and relativistic (pho-
tons plus neutrinos) matter. Here, note that the time evo-
lution of�� is driven by�p, which itself evolves in accord

with Eq. (35), which is driven by�� plus the parametrized
�EDMðaÞ (with its time derivatives). So, in the numerical
calculation we have four more variables to propagate: �p,

vEDM, ��, and �0
�.

Note that if �p vanishes identically and �� ¼ 0 ini-

tially, then �� will remain zero all the time; also, if ��

vanishes identically, then so does �p. These restrictions

indicate that the two cases we have considered in the above
subsections cannot give rise to the same evolution of� and
different evolution of �EDM to that predicted by standard
CDM at the same time. The general case with�p,�� � 0,

however, is able to do this, as is shown in Fig. 5. There, we
plot the CMB power spectra of this general case with
different values of b ¼ 1:1, 1.0, 0.9, respectively, and
they are totally indistinguishable because the evolutions
of � are identical, leading to identical (zero) ISW effects.
In this figure, we have chosen ai ¼ 0:005 and af ¼ 1 so

that we only require the EDM to deviate from CDM after
last scattering. It must be emphasized that, although the
three curves are indistinguishable from each other, they do
correspond to different EDM properties. To show this point
clearly, we display in Fig. 6 the quantities c2s � �p=�EDM

and c2v � ��=�EDM, which characterize the importance of
�p and of ��, respectively, for the models. It is obvious

that in the b � 1 models these quantities could be very
different from the standard CDM value (0), and this can be
understood intuitively as follows: the pressure perturbation
term �p acts against gravitational collapse, when b > 1,

meaning that �EDM grows faster than �CDM early on and
more slowly later; �p needs to be negative early on and

positive later (and vice versa). The anisotropic stress term
�� dissipates fluctuations in �EDM [c.f. Eq. (35)] and
behaves similarly in the figure.
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FIG. 4 (color online). (color online) The CMB spectrum of the
model �p ¼ 0 with the �EDMðaÞ parametrization given in

Eq. (43) and parameters ai ¼ 0:01 (blue curve) and ai ¼ 0:05
(red curve), respectively. The black curve is the SCDM model.
The other parameters are b ¼ 1:001 and af ¼ 1:0.
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We have thus seen that the observations of the CMB and
matter power spectrum cannot rule out this general case (as
long as ai is after last scattering). Cross correlating ISW
with the galaxy distribution might help in this regard, but it
is still limited for two reasons: first, it is contaminated by

the effects of dark energy, and second, the cross-correlation
data only exists for late times and cannot effectively con-
strain models like ours where the deviation from CDM
occurs much earlier.
If we choose the ai & 10�3, which means that the

deviation of EDM from CDM starts before last scattering,
then although Eq. (45) guarantees that the � evolution is
not changed for arbitrary b, the CMB power spectrum will
generally be different from that of standard CDM because
the quantities � and �, which are directly relevant for the

primary CMB anisotropy, are modified since � ¼ ���
��a2

2k2
, � ¼ �� ��a2

2k2
. In Fig. 7, we present such an ex-

ample, for which we have used the parametrization
Eq. (43) of �EDMðaÞ with ai ¼ 0:0002 and af ¼ 0:002.

This shows that in general the small-angle (high-‘) CMB
power will be different even though the large-angle power
is fixed to be the same as in standard CDM. If the evolution
of �EDM prior to last scattering is significantly different
from that of CDM, then the deviation of CMB spectrum
might be very large, and this is why the CMB could
efficiently constrain such alternative gravitational dark-
matter theories as TeVeS and the fðKÞ models.
Another possible constraint comes from the CMB po-

larization. The linear polarization of CMB photons carries
information about the gravitational potential because it can
only be generated from the quadrupole moment of the
CMB temperature perturbation, which is related to the
anisotropic photon stress [72,73], through Thomson scat-
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FIG. 6 (color online). (color online) The quantities c2s �
�p=�EDM (solid curves) and c2v � ��=�EDM (dashed curves)

as functions of a. The black line is for SCDM (c2s ¼ c2v ¼ 0),
and the red/blue lines are for the model described in the text with
b ¼ 0:9, 1.1, respectively. All curves are for the scale k ¼
0:01 Mpc�1.
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FIG. 7 (color online). (color online) The CMB spectrum for
the general case [c.f. Eq. (45)] with �EDMðaÞ parameterized as in
Eq. (43). Here, we have chosen ai ¼ 0:0002 and af ¼ 0:002.

The blue dashed, black solid, and red dotted curves represent the
cases for b ¼ 1:2, 1.0, and 0.8, respectively, as also shown beside
the curves. The large-angle (‘ < 100) CMB powers are indis-
tinguishable for the curves as in Fig. 5 due to the identical
evolutions of � and identical ISW effects.
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FIG. 5. The CMB power spectrum for the model in which
�EDMðaÞ is parameterized as Eq. (43), both �p and �� are

nonzero and satisfy a relation as described in the text. The solid,
dashed and dotted curves represent the cases of b ¼ 1:0; 1.1, 0.9,
respectively, and they cannot be distinguished in the figure
because they experience identical gravitational potential evolu-
tion. The other parameters are ai ¼ 0:005 and af ¼ 1.
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tering. Furthermore, at earlier times the rapid scattering of
photons by electrons ruins the photon anisotropic stress
(c.f. Sec. III); consequently, the polarization only appear
close to last scattering when significant photon quadrupole
anisotropy can be produced. The localization of the gen-
eration in time, and the dependence on the quadrupole
moment, only mean that the polarization directly reflects
the gravitational potentials at the time of last scattering in a
special way and so provides invaluable information about
the EDM. This is in contrast to the CMB temperature
spectrum, which depends on the gravitational potentials
through the entire cosmic history up to now, and also on the
photon monopole and dipole moments, which complicate
the extraction of information. In Fig. 8, we plot the CMB
EE polarization and TE cross-correlation spectrum for the
same model as in Fig. 7. It can be seen that different
parameters give quite distinct peak features. The CMB
polarization was first detected in 2002 [74], with the pre-
cision gradually improved since then [75]. Although the
precision at present is still insufficient to place stringent
constraints on the EDM model, we expect that future
observations will change this situation.

We could also slightly change Eq. (45) to make the
evolution of � or � the same as that for standard CDM,
however, clearly this is not possible for both � and �
because in this case �� � 0. Because the primary CMB
anisotropy is determined by both of these two variables, it
will almost definitely differ between the EDM and CDM
models. Furthermore, in the most general cases the evolu-
tion of � will be changed as well, which gives rise to
different low-‘ CMB spectra. Therefore, we expect that the
CMB data will place stringent constraints on the general
EDM models, and can be used to distinguish alternative
gravitational theories of dark matter. Conversely, any at-
tempt of modification of general relativity, which claims to
have reproduced the observed large-scale structure, must
be confronted with the CMB fluctuation spectrum and
polarization to test its viability.

V. SUMMARYAND DISCUSSION

Motivated by the recent developments in producing the
large-scale structure formation with alternative theories of
gravity, we have considered the prospect of using the CMB
to constrain such theories in new ways. We take the con-
frontation with the matter power spectrum data as a first
test of the perturbed cosmological model in our alternative
gravity theory and assume that this test has been passed.
This is because the currently successful theories like
TeVeS and fðKÞ really are only able to reproduce the
observed LSS rather than all the perturbation observables,
and such a simplifying assumption efficiently restricts our
model space so that the degeneracy problem is somewhat
alleviated. As discussed in Sec. II, reproducing the ob-
served LSS is a rather weak requirement on the theory
because the LSS only reflects the density perturbations at
late time. This means that there is still considerable free-
dom to choose the evolution history of the dark-matter
density perturbation �EDM, which will generally lead to
different predictions about other cosmological observables
such as the CMB spectra and polarization.
We discussed how this freedom in the evolution history

can be utilized by considering an example of the parame-
trization [c.f. Eq. (43)] of �EDMðaÞ, which only reduces to
the familiar �CDMðaÞ result with the parameter choice b ¼
1:0. As was shown in Sec. II, the evolution of �EDM is
completely governed by the EDM stress history, which we
quantify using the two variables �p and ��. These same

two variables also control the evolution of gravitational
potential, which is important for the CMB power spectrum.
This implies that the CMB is an ideal test bed for EDM
models. In reality, we have one more freedom because
once the �EDMðaÞ is specified. Equation (35) becomes a
single equation for the two variables �p and ��, so, in

Sec. IV, we considered three separate cases: (I) �� ¼ 0,
�p � 0, (II) �� � 0, �p ¼ 0, and (III) �� � 0, �p � 0.

For simplicity, we have also made the following assump-
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FIG. 8 (color online). (color online) The CMB polarization spectra for the model with the same parameters as in Fig. 7. The red
dotted, black solid, and blue dashed curves are the cases b ¼ 0:8, 1.0, 1.2, respectively.
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tions: (1) the evolution of �EDM is scale independent, as is
implied by the observed LSS, (2) the cosmological con-
stant (or other form of explicit dark energy violating the
strong energy condition) is neglected to simplify the nu-
merics, (3) the EDM equation of state parameter, wEDM, is
assumed to be small enough so that we can assume the
standard CDM background evolution holds; and, (4) only
adiabatic initial conditions, a scale-independent ns ¼ 1
primordial power spectrum, and effectively massless neu-
trinos are considered (we will return to these assumptions
below).

For case I, the standard CDM relation � ¼ �� ¼ �
still holds, but the evolution of these potentials could be
changed. If the deviation of EDM from CDM only occurs
after the last scattering, then this change in � mainly
modifies the ISWeffect and, hence, the low-‘ CMB power.
If the EDM starts to deviate from CDM before last scat-
tering, however, then the early changes in � and � would
modify the CMB acoustic peak features in a complicated
manner, as we described qualitatively in Secs. III and IVA.
The evolution of �p can be understood qualitatively: since

the effect of the pressure perturbation is to counteract
gravitational collapse, in order that �EDM grows faster
than �CDM we need a negative �p, and vice versa

(c.f. Fig. 6).
The case II evolution is problematic as long as we stick

to the above simplifying assumption (1), i.e., requiring a
scale-independent growth of �EDM, because in this case
Eq. (35) implies a scale dependent �� (k2�� is indepen-
dent of k), which diverges on large scales (small k). As we
have seen in Sec. IVB, this leads to a strong late-ISW
effect, blowing up the low-‘ CMB spectrum even if the
EDM only differs slightly from standard CDM.
Furthermore, a natural EDM model with �p ¼ 0 and

�� � 0 does not exist in the literature, and this model is
different from case I, which arises naturally in fðKÞmodels
with c13 ¼ 0.

Of course, the most general situation is our case III,
where both �p and �� are nonzero. Needless to say, this

generality also makes its exploration more difficult. One
could, however, use the extra degree of freedom here in
model constructions. If we fix both the evolution of
�EDMðaÞ and that of the potential �, then �� and �p

can be solved uniquely at the same time. Such a construc-
tion has the advantage that we can fix the evolution of � to
be identical to that in standard CDM so that the ISWeffect
is not changed at all. If the deviation of EDM starts after
last scattering, then such a model is degenerate with stan-
dard CDM even after CMB and LSS data are taken into
account, and furthermore the CMB-galaxy cross-
correlation data is inefficient in constraining it. Allowing
EDM to deviate before last scattering, however, will almost
surely predict different CMB peak features, because in this
case � � �� � � and the acoustic oscillations of
photon-baryon fluid are changed with respect to standard

CDM (c.f. Sec. III). Dropping the requirement on the
evolution of � makes the situation even worse, because
in this case the ISWeffect and low-‘ structure of the CMB
spectrum are also changed. We stress that the CMB polar-
ization also provides invaluable information for constrain-
ing EDM models, because it depends only on the
quadrupole moment of the photon temperature perturba-
tion� (the photon anisotropic stress), and thus only on the
physics close to the time of last scattering.
Throughout this paper we have chosen to parametrize

�EDMðaÞ as in Eq. (43). This is fairly simple and sufficient
for our purposes as we only aim to show the importance of
CMB data in constraining alternative gravitational dark-
matter theories, but not to constrain any specified model or
given parametrization exactly. There are good reasons why
more detailed parametrizations are needed for more pre-
cise future studies. First, although �CDM / a is a good
approximation in the matter-dominated epoch, it breaks
down when the contribution from radiation is still signifi-
cant (including the time prior to and around last scattering)
and when a cosmological constant is included. Second,
because the physics at the time of matter-radiation equality
is relevant for EDM models, which deviate from CDM
earlier, we sometimes need to choose ai to be smaller than
the matter-radiation equality aeq, which means that the

evolution of �EDMðaÞ or �CDMðaÞ cannot be completely
scale independent (remember that aeq is relevant for the

bending of the matter power spectrum [76]). Thus, future
precise calculations, particularly those relevant for weak
lensing and the galaxy-ISW cross correlation, should use
parametrizations that reduce exactly to �CDMðaÞ in the
�CDM model in appropriate limits.
Notice that our logic here is different from other related

considerations of generalized dark matter (GDM) [60,77].
In Ref. [77], for example, the author parametrizes the stress
sector of the GDM with three quantities, wg, c

2
eff , and c2vis,

which, respectively, characterize the equation of state,
pressure perturbation, and anisotropic stress of the GDM.
The GDM effects on the CMB and matter power spectra
are then studied by assuming some specific values of these
quantities. Our approach tackles the problem from a differ-
ent direction and is therefore complementary to those ear-
lier works.
One interesting issue is the inclusion of hot dark matter,

which is needed by TeVeS itself. This can certainly be
achieved by setting special values forwg, c

2
eff , and c

2
vis as in

[77]. In our approach, we simply treat the EDM as a ‘‘black
box,’’ which is completely controlled by separate conser-
vation equations. By parametrizing �EDMðaÞ, we are able
to extract information on the pressure perturbation �p and
anisotropic stress �� from these conservation equations
without knowing exactly what is in the box—it can be
mixtures of modified gravitational effects and neutrinos, or
something else entirely.
The other issue is related to the initial conditions. In this

work we mainly focus on the adiabatic initial conditions as
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in [77]. However, it is well known that the adiabatic initial
condition is far from the only possibility, and there can be
four regular isocurvature modes [78]. These isocurvature
modes are predicted by many theoretical models and may
even correlate with the adiabatic one. In contrast to the
adiabatic mode, the isocurvature mode excites sinusoidal
oscillations of the photon-baryon fluid and so predicts the
first CMB acoustic peak to be around ‘	 330 rather than
220; consequently, a pure or dominating isocurvature ini-
tial condition is incompatible with basic CMB observa-
tions. Nonetheless, a subdominant contribution from
isocurvature initial conditions actually degenerates with
other cosmological parameters and cannot be ruled out
by the current data [79–82]. In our EDM model, if the
EDM evolves differently from CDM early in the radiation
era, then �EDM does not evolve adiabatically, and the
entropy perturbation SEDM ¼ �EDM � 3

4 �� is nonzero. In

this case, one might naturally expect that there should be
isocurvature modes in the initial conditions. A detailed
calculation of the consequences of introducing such
modes, however, generally requires thorough searches of
the new parameter space (which is enlarged compared with
the standard case, because now the amplitude, tilt of the
isocurvature modes and their correlation with the adiabatic
mode must be taken as free parameters) like in [79–82] and
is beyond the scope of this work. Moreover, allowing
different initial conditions (especially tilts of the isocurva-
ture mode, which are significantly different from 1) can
change the shape of matter power spectrum, which means
that the parametrization of �EDMðaÞ [c.f. Eq. (43)] should
be scale dependent for the same reasons as discussed
above. In this work, we adopt a more conservative ap-

proach by assuming that the EDM evolves like standard
CDM at earlier times and so adiabaticity is a natural
choice.
In conclusion, we propose ways to use the CMB in order

to constrain those alternative gravity theories for dark
matter, which claim to be compatible with the observed
LSS. We find that the CMB temperature and polarization
spectra are good discriminators between these theories in
general, especially when they deviate from the CDM para-
digm before last scattering. If the deviation starts after last
scattering, however, there can exist EDM theories that are
degenerate with respect to the standard �CDM model and
cannot be distinguished by CMB and matter power spectra.
This point is particularly interesting from the viewpoint of
model constructions. Our results also indicate that the
stress properties of dark matter, which determine the evo-
lutions of both density perturbations and gravitational
potential, can be studied and significantly constrained
with existing and future data by using just the general
conservation equations and without specializing to any
specific theoretical model.
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