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Several fðRÞ modified gravity models have been proposed which realize the correct cosmological

evolution and satisfy solar system and laboratory tests. Although nonrelativistic stellar configurations can

be constructed, we argue that relativistic stars cannot be present in such fðRÞ theories. This problem

appears due to the dynamics of the effective scalar degree of freedom in the strong gravity regime. Our

claim thus raises doubts on the viability of fðRÞ models.
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I. INTRODUCTION

The current accelerated expansion of the Universe is one
of the deepest mysteries in cosmology [1]. This accelera-
tion may be due to some unknown energy-momentum
component having the equation of state p=� � �1, or
may be due to a modification of general relativity. In this
paper, we are interested in the latter possibility. The sim-
plest phenomenological way of modifying gravity is to
consider a gravitational action described by a function of
the Ricci scalar, fðRÞ, instead of the Einstein-Hilbert ac-
tion. An early attempt is found, e.g., in [2], where a
modification like fðRÞ ¼ Rþ R2=�2 was used to explain
the accelerated expansion in the early Universe. More
recently, fðRÞ modified gravity theories are often consid-
ered as a possible origin of the current acceleration of the
Universe [3].

Any modified theories of gravity must account for the
late-time cosmology which is well established by observa-
tions, and at the same time must be consistent with solar
system and laboratory tests of gravity. However, since fðRÞ
gravity has the equivalent description in terms of the
Brans-Dicke theory with the Brans-Dicke parameter ! ¼
0 [4], naively constructed models would result in violation
of the above requirements [5–7]. For example, the original
proposal of [8] employs fðRÞ ¼ R��4=R, which admits
an acceleratedly expanding solution even in the absence of
a dark energy component. In order to accommodate a late-
time acceleration, however, one must introduce a very low
energy scale, ��H0 (the present Hubble scale), leading
to a very light scalar field, which predicts the parametrized
post-Newtonian (PPN) parameter � ¼ ð1þ!Þ=ð2þ
!Þ ¼ 1=2. Obviously, this result contradicts the observa-
tional constraint j�� 1j & 10�4 [9]

To circumvent this difficulty, it is important to notice
that the presence of matter may affect the dynamics of the
extra scalar degree of freedom. The key idea is essentially

the same as that of the ‘‘chameleon’’ model [10–12], in
which the effective mass of the scalar field depends on the
local matter density. In particular, the scalar field is very
light for the cosmological density and is heavy for the solar
system density, though the actual mechanism is slightly
more complicated. The most successful class of fðRÞmod-
els [13–21] incorporates this chameleon mechanism to
evade local gravity tests. The experimental and observa-
tional consequences of this kind of fðRÞ models are found
in Refs. [22–24]. (See also [25].)
In this paper, we consider the strong gravity regime of

the carefully constructed models of [19–21]. The strong
gravity aspects of fðRÞ theories have not been explored so
much before. Recently, Frolov suggested that such fðRÞ
models generically suffer from the problem of curvature
singularities which can be easily accessed by the field
dynamics in the presence of matter [26]. In other words,
a curvature singularity may be caused not by diverging
gravitational potential depth, j�j ¼ 1, but rather by a
slightly large gravitational field, j�j & 1=2. This moti-
vates us to study relativistic stars in the context of fðRÞ
gravity. Spherically symmetric stars in fðRÞ gravity have
been investigated so far in [27–30]. (We confine ourselves
to a metric theory of fðRÞ gravity. Using the Palatini
formalism, polytropic stars have been studied in [31].)
We shall show, both analytically and numerically, that
stellar solutions with relatively strong gravitational fields
cannot be constructed. Using the specific example of rela-
tivistic stars, we clarify how the singularity problem arises
in the strong gravity regime of fðRÞ theories. The singu-
larity problem was also identified in [32] in a cosmological
setting.
This paper is organized as follows. In the next section we

derive equations of motion for fðRÞ modified gravity, and
define the specific model we study. In Sec. III, we reinter-
pret the problem of finding the desired stellar configuration
as the problem of the particle motion in classical mechan-
ics. We give some analytic arguments in Sec. IV, and then
we present our numerical results in Sec. V. Finally, we
draw our conclusions in Sec. VI.
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II. PRELIMINARIES

A. fðRÞ gravity
The action we consider is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fðRÞ
16�G

þLm

�
; (1)

where fðRÞ is a function of the Ricci scalar R, and Lm is
the Lagrangian of matter fields. Variation with respect to
metric leads to the field equations

fRR�� �r�r�fR þ ðhfR � 1
2fÞg�� ¼ 8�GT��; (2)

where fR :¼ df=dR and T�� :¼ �2�Lm=�g
�� þ

g��Lm. The trace of Eq. (2) reduces to

hfR ¼ 8�G

3
T þ 1

3
ð2f� fRRÞ: (3)

We now introduce an effective scalar degree of freedom by
defining � :¼ fR. Inverting this relation, the Ricci scalar
can be expressed in terms of �: R ¼ Qð�Þ. Thus, Eqs. (2)
and (3) are equivalently rewritten as

�G�
� ¼ 8�GT�

� þ ðr�r� � ��
�hÞ�� �2Vð�Þ��

�; (4)

h� ¼ 8�G

3
T þ 2�3

3

dV

d�
; (5)

where the effective potential V is given by

Vð�Þ :¼ 1

2�2
½�Qð�Þ � fðQð�ÞÞ�; (6)

and

dV

d�
¼ 1

2�3
½2fðQð�ÞÞ � �Qð�Þ�: (7)

Equations (4) and (5) are equivalent to the Jordan frame
equations of motion in the Brans-Dicke theory with! ¼ 0,
if we ignore the potential term Vð�Þ. One can move to the
Einstein frame by performing the conformal transforma-

tion ~g�� ¼ �g�� with � ¼ expð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G=3

p
�Þ, where � is

the canonical scalar field. The potential for � is then given
by Vð�ð�ÞÞ. Although the Einstein frame equations of
motion are sometimes convenient, we shall not use this
and work in the Jordan frame directly throughout the paper,
so as to avoid confusion concerning the coupling between
matter fields and the effective scalar degree of freedom.

B. The model

In order to be explicit, we take fðRÞ in the following
form [19]:

fðRÞ ¼ Rþ 	R0

��
1þ R2

R2
0

��n � 1

�
; (8)

where n, 	ð>0Þ, and R0ð>0Þ are parameters. This model is
carefully constructed so that it gives viable cosmology and

satisfies solar system and laboratory tests. Suppose that the
de Sitter solution in this theory is expressed as R ¼ R1 ¼
constant ¼ x1R0. We may define the ‘‘cosmological con-
stant’’ as�eff :¼ R1=4. Since the de Sitter solution follows
from dV=d� ¼ 0, one has

	 ¼ 1

2

x1ð1þ x21Þnþ1

ð1þ x21Þnþ1 � 1� ðnþ 1Þx21
: (9)

Thus, we may use x1 as a model parameter instead of 	. We
will take as x1 the maximal root of Eq. (9) for a given 	,
because it corresponds to the de Sitter minimum of the
potential.
The scalar field � is written in terms of R as

� ¼ 1� 2n	
R

R0

�
1þ R2

R2
0

��n�1
: (10)

One sees that � ! 1 as R ! �1 and R ! 0. Note that
curvature singularities, R ¼ �1, is mapped to the finite
value of � ¼ 1. The value of � at the de Sitter minimum is
given by

�1 ¼ 1� nx21
ð1þ x21Þnþ1 � 1� ðnþ 1Þx21

: (11)

A typical form of the potential Vð�Þ around the de Sitter
minimum is shown in Fig. 1. In fact, the potential is a
multivalued function of �, and its shape is complicated,
probably even pathological, away from the plotted region.
However, since our discussion here focuses on the behavior
of � around the de Sitter minimum, there is no difficulty
with such a complicated potential.
Though we shall confine ourselves to the specific model

defined by Eq. (8), the result will apply to other fðRÞ
models as well. In particular, the models proposed by Hu
and Sawicki [20] and by Appleby and Battye [21] fall into

FIG. 1 (color online). The effective potential Vð�Þ for
Starobinsky’s fðRÞ model with n ¼ 1 and x1 ¼ 3:6 (	 ’ 2). �
is the effective scalar degree of freedom defined by � :¼ df=dR.
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the same class as [19] in the sense that the potential around
the de Sitter minimum has the same structure.

III. SPHERICALLY SYMMETRIC STARS IN fðRÞ
GRAVITY

A. Basic equations

To study stellar configurations in fðRÞ gravity, we take
the ansatz of a spherically symmetric and static metric:

ds2 ¼ �NðrÞdt2 þ 1

BðrÞ dr
2 þ r2ðd
2 þ sin2
d’2Þ:

(12)

The energy-momentum tensor of matter fields is given by

T�
� ¼ diagð��; p; p; pÞ: (13)

From the energy-momentum conservation, r�T
�
� ¼ 0, we

obtain

p0 þ N0

2N
ð�þ pÞ ¼ 0: (14)

Here and hereafter a prime denotes differentiation with
respect to r. The (tt) and (rr) components of the field
equations (4) yield, respectively,

�

r2
ð�1þ Bþ rB0Þ ¼ �8�G�� �2V

� B

�
�00 þ

�
2

r
þ B0

2B

�
�0
�
; (15)

�

r2

�
�1þ Bþ rB

N0

N

�
¼ 8�Gp� �2V � B

�
2

r
þ N0

2N

�
�0:

(16)

The equation of motion for � [Eq. (5)] gives

B

�
�00 þ

�
2

r
þ N0

2N
þ B0

2B

�
�0
�
¼ 8�G

3
ð��þ 3pÞ

þ 2�3

3

dV

d�
: (17)

Wewill not integrate the angular components of the field
equations. Instead, we will use them to check the accuracy
of our numerical results, because those are derived from
other equations via the Bianchi identity.

To specify the boundary conditions at the center of a star,
assuming the regularity, we expand the variables in the
power series of r as

NðrÞ ¼ 1þ N2r
2 þ . . . ; BðrÞ ¼ 1þ B2r

2 þ . . . ;

�ðrÞ ¼ �c

�
1þ C2

2
r2 þ . . .

�
;

�ðrÞ ¼ �c þ �2

2
r2 þ . . . ; pðrÞ ¼ pc þ p2

2
r2 þ . . . ;

(18)

where �c, �c, and pc are the central values of the scalar
field, the energy density, and the pressure, respectively.
Note that using the scaling freedom of the t coordinate,
we set Nð0Þ ¼ 1. From Eqs. (15)–(17), we obtain

3B2 ¼ �8�Ĝ�c � �cVc � 3C2; (19)

B2 þ 2N2 ¼ 8�Ĝpc � �cVc � 2C2; (20)

3C2 ¼ 8�Ĝ

3
ð��c þ 3pcÞ þ 2�2

c

3
V�c

; (21)

where Ĝ :¼ G=�c is the effective gravitational constant,
Vc :¼ Vð�cÞ, and V�c

¼ dV=d�j�¼�c
. These three equa-

tions are rearranged to give

B2 ¼ � 8�Ĝ

9
ð2�c þ 3pcÞ � �c

3
Vc � 2�2

c

9
V�c

; (22)

N2 ¼ 8�Ĝ

9
ð2�c þ 3pcÞ � �c

3
Vc � �2

c

9
V�c

; (23)

C2 ¼ 8�Ĝ

9
ð��c þ 3pcÞ þ 2�2

c

9
V�c

: (24)

Then, p2 is derived from the conservation equation:

p2 þ N2ð�c þ pcÞ ¼ 0: (25)

The Ricci scalar is given by R ¼ Rc þOðr2Þ with Rc ¼
�6ðB2 þ N2Þ near r ¼ 0.
If the energy density is constant inside the star, � ¼ �0,

Eq. (14) immediately gives

NðrÞ ¼
�
�0 þ pc

�0 þ pðrÞ
�
2
: (26)

In the rest of the paper, we focus on constant density stars
for simplicity.

B. A classical mechanics picture

Given �0, pc, and �c (or, equivalently, Rc), Eqs. (14)–
(17) can be integrated outwards from the center to the
surface of the star, r ¼ R, which is defined by pðRÞ ¼
0. Then, one integrates the vacuum field equations from the
star surface to sufficiently large r, finding the exterior
profile of the metric and the scalar field. Unlike in general
relativity, we have the extra scalar degree of freedom
corresponding to the choice of �c. However, not all values
of �c can lead to a physically reasonable solution inside
and outside a star. The desired solution is such that �ðrÞ !
�1 as r ! 1, i.e., the asymptotically de Sitter solution with
the cosmological constant �eff .
We can formulate the problem of finding the physical

configuration of stars as follows. Equation (17) can be
written as
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d2

dr2
�þ 2

r

d

dr
� ¼ �dU

d�
þF ; (27)

where

dU

d�
:¼ 1

3
½fRQ� 2f� ¼ � 2�3

3

dV

d�
(28)

and

F :¼ � 8�G

3
ð�� 3pÞ: (29)

Here we neglect the effect of the metric for the moment to
comprehend the essential point. [Later we will solve the
full set of Eqs. (14)–(17) numerically.]

Regarding r as a time coordinate, we find that Eq. (27) is
a ‘‘dynamical’’ equation describing the motion of a particle
in the potential U under the time-dependent force F . The
second term in the left-hand side of Eq. (27) represents
frictional force, which may also affect the dynamics in
some cases. The potential for the particle Uð�Þ, defined by
Eq. (28), is different from the inverted potential �Vð�Þ.
However, the structure ofU around � ¼ �1 is quite similar
to �V, as is shown in Figs. 2 and 3: the point A (� ¼ 1)
corresponds to a curvature singularity, R ! 1, and the
point B (� ¼ �1) is the de Sitter extremum.

In Ref. [26], Frolov similarly introduced the potential
�Uð�Þ and the force term which is essentially given by the
trace of the energy-momentum tensor. For the purpose of
solving for the radial profile, it is more convenient to
consider the inverted potential�ð�UÞ ¼ U, as in the cases
of bubble nucleation [33] and of the chameleon model [10]

Suppose that the initial position of the particle, �c, lies
between points A and B. The particle starts at rest since
�0jr¼0 ¼ 0. The force term F depends on the matter

configuration inside the star and plays a crucial role in
this problem. When � > 3p, we have F < 0. Since the
pressure becomes smaller for larger r, the force jF j is
stronger near the surface than in the central region of the
star. The force vanishes for r >R (if one assumes the
vacuum exterior).
For fixed �0 and pc, the behavior of the particle depends

on its initial position. If �c is sufficiently close to 1, the
slope of the potential is bigger than the force term F
initially, so that � will rapidly roll down to the curvature
singularity, � ¼ 1. Let �s be the minimum value of �c for
which this occurs. Specifically, �s is found by solving the
equation ½F � dU=d���s

¼ 0. If �c < �s, the particle

initially climbs up the potential hill under the force F <
0. The force vanishes at r ¼ R, but the particle keeps
climbing up the potential for the moment. For r >R, the
scenario one can easily deduce is as follows: The particle
cannot reach the top of the potential hill and turns around at
some r, ending up with the curvature singularity � ¼ 1, or
goes through the top and rolls down to the left, depending
on the initial position �c [34]. In this case, one finds a
critical value �crit between the ‘‘turn-around’’ and ‘‘-
rolling-down’’ solutions. By fine-tuning the initial position
so that �c ¼ �crit, we can realize the asymptotically
de Sitter solution for which � ! �1 as r ! 1. Thus, the
problem reduces to a boundary value problem.
However, there is another possibility that the particle

inevitably overshoots the potential even for the possible
maximum value of �c (i.e., �s). In this case, one cannot
obtain the desired solution: the particle rolls down into the
curvature singularity right after it starts to move, or over-
shoots the potential. Since the gravitational potential pro-
duced by a star is proportional to ð�0R3Þ=R ¼ �0R2, a
stronger gravitational field implies stronger force and/or a
longer period during which the force term survives effec-

FIG. 2 (color online). The (inverted) potential Uð�Þ for
Starobinsky’s fðRÞ model with 	 ¼ 2 and n ¼ 1. The point A
corresponds to a curvature singularity (R ¼ þ1), and the point
B is the de Sitter extremum. (See also Fig. 1 of Ref. [26].)

FIG. 3 (color online). Motion of a particle near the de Sitter
extremum of Uð�Þ. The particle feels the force F (< 0) which
arises from the trace of the energy-momentum tensor of the
matter, F / T.
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tively. As a result, the fine-tuned initial location �crit goes
toward the right as the star accommodates a larger gravi-
tational potential, and �crit will eventually reach the point
�s. Therefore, it is expected that there is a maximum value
of the gravitational potential for a star to exist.

IV. ANALYTIC ARGUMENT

Before solving the full set of Eqs. (14)–(17) numerically,
in this section we shall provide some analytic arguments.
The analysis with approximate solutions will help to under-
stand our numerical results presented in Sec. V.

First let us consider the interior of a star: r <R. To give
a tractable argument, we assume that

jB� 1j; jN � 1j � 1; jB0=Bj; jN0=Nj � r�1: (30)

Then, the solution to Eq. (17) which is regular at the center
is given by

�0 ’ � 2G�

3R3
r; � ’ �c � G�

3R3
r2; (31)

where we have defined

� :¼ 4�

3

�
�0 � �3

c

4�G
V�c

�
R3: (32)

Here we have ignored the pressure p relative to �0, and
made a rough approximation �3V� � �3

cV�c
. Using

Eqs. (15) and (31), we obtain

B ’ 1� 2ĜðM��=3Þ
R3

r2; (33)

where M :¼ 4��0R3=3. Here we have neglected the
‘‘cosmological constant’’ �2V. (We remind the reader

that Ĝ :¼ G=�c.)
To derive the exterior solution, we approximate

2�3

3

dV

d�
’ �� �1

	2
�

; (34)

where 	�2
� :¼ ð2�3

1=3Þd2V=d�2j�1
, and analyze the be-

havior of � around �1. The exterior solution to Eq. (17)
is found to be

� ’ �1 þ C
e�ðr�RÞ=	�

r
: (35)

Matching this to the interior solution (31) at r ¼ R, we
obtain

C ’ 2G�

3
; (36)

�c ’ �1 þG�

R
; (37)

where we have used 	� � Oð��1=2
eff Þ � R. Given �0,

Eq. (37) determines �c. Solving Eq. (15) and matching
the solution to the interior one (33) at the surface of the

star, we find

B ’ 1� 2ĜðM��=3Þ
r

: (38)

Then, Eq. (16) implies that

N ’ N1
�
1� 2ĜðMþ�=3Þ

r

�
; (39)

where the asymptotic value N1 is not unity because of our
boundary condition at the center, but it can be set to unity
by rescaling of the time coordinate. From Eqs. (38) and
(39), the PPN parameter � is found to be

� ¼ 3M��

3Mþ�
: (40)

Now let us define the gravitational potential evaluated at
the surface of the star:

� :¼ ĜðMþ�=3Þ
R

: (41)

In terms of this, Eq. (37) can be written as

�

�
¼ 3�

3Mþ�
with � :¼ �c � �1

�c

: (42)

The ‘‘thin-shell’’ condition is given by � � � [10]. This
is equivalent to � � M, which leads to C � GM and
indeed suppresses the deviation of �ðrÞ from �1 outside
the star. This situation is realized if 4�G�0 � �3

cV�c
� 0.

On the other hand, if 4�G�0 � �3
cV�c

, and hence � ’ M,

the thin-shell condition does not hold. It is easy to see that
� ’ 1=2. In this ‘‘thick-shell’’ case, �c must be not too far
from �1 so as not to fall into the curvature singularity, � ¼
1. Therefore, we require that �c < 1. This condition to-
gether with Eq. (37) gives the bound

�<�max ¼ 4
3ð1� �1Þ; (43)

i.e., stars with �>�max cannot exist. As shown later by
numerical solutions, the thin-shell condition is violated as
long as the exterior is vacuum.

Specifically, for n ¼ 1 one needs x1 >
ffiffiffi
3

p
in order to

have a de Sitter minimum. This leads to 1� �1 < 1=3
(�max < 4=9). For x1 ¼ 3:6 (	 ¼ 2:088), we have 1�
�1 ¼ 0:077 16 (�max ¼ 0:1029). For n ¼ 2, one needs

x1 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13

p � 2
p

, giving 1� �1 & 0:2705 (�max &
0:3606).

V. NUMERICAL RESULTS

A. Stars in fðRÞ gravity
We numerically integrate Eqs. (14)–(17) outwards from

the center, imposing the appropriate boundary conditions
given by Eq. (18) with Eqs. (22)–(25). We reconstruct R ¼
RðrÞ from the metric and compare it with the solution for
the scalar degree of freedom, R ¼ Qð�ðrÞÞ, to make sure
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that numerical errors are sufficiently small. The angular
component of the field equations is also used for the same
purpose.

The sets of the model parameters we use are: (i) n ¼ 1
and x1 ¼ 3:6 (	 ¼ 2:088), for which �1 ¼ 0:9228;
(ii) n ¼ 2 and x1 ¼ 3:6 (	 ¼ 1:827), for which �1 ¼
0:9903. For numerical solutions we shall take 4�G�0 ¼
106�eff . This is not a realistic value, e.g., for neutron stars,
but we do not have to be concerned about this point
because the properties of stellar solutions which we are
interested in are basically characterized by the gravita-
tional potential rather than the energy density itself, pro-
vided that G�0 � �eff . This is expected from the analytic
result, and we have confirmed that it is indeed true for our
numerical solutions.

1. n ¼ 1 and x1 ¼ 3:6

Taking 4�G�0 ¼ 106�eff and pc ¼ 10�4�0, we find an
asymptotically de Sitter solution of a star for Rc ¼
2:001� 10�6 � 8�G�0. The solution agrees well with
the analytic approximation in Sec. IV.

A numerical calculation has been performed also in the
case of 4�G�0 ¼ 106�eff and pc ¼ 5� 10�2�0. We find
a solution by tuning Rc ¼ 3:462� 10�6 � 8�G�0 (�c ¼
0:9836), for which

4�

3
Ĝ�0R2 ¼ ĜM

R
’ 0:066 87: (44)

Our numerical result is shown in Figs. 4–6. One can see
from Fig. 5 that R ! x1R0 and � ! �1 as r ! 1. Since
� ¼ 0:061 76 is almost the same as the gravitational po-
tential (44), the thin-shell does not form. A numerical
fitting leads to the approximate expression for the exterior
metric:

N ’ N1
�
1� 2c1

R
r
� c2

3
�effr

2

�
; (45)

B ’ 1� 2c3
R
r
� c4

3
�effr

2; (46)

with

N1 ¼ 1:332; c1 ¼ 0:087 16; c2 ¼ 0:9973;

c3 ¼ 0:047 47; c4 ¼ 0:9993: (47)

The PPN parameter turns out to be � ’ c3=c1 ’ 0:5446,
which is close to 1=2, as expected.

To explore stars with larger ĜM=R, we have tried to
find numerical solutions for 4�G�0 ¼ 106�eff and pc ¼
0:1� �0. A solution which is regular inside the star is
obtained, e.g., for Rc ¼ 0:7000� 8�G�0, but this is the
rolling-down solution (see Fig. 7). Hence it is unphysical

FIG. 6. The pressure profile pðrÞ of a nonrelativistic star.
Parameters are the same as those in Fig. 4.

FIG. 5 (color online). Numerical solutions of the Ricci scalar
and � for a nonrelativistic star. Parameters are the same as those
in Fig. 4. Dashed line is a plot of the analytic approximation (31)
and (35). Since R ! x1R0 and � ! �1 as r ! 1, this is the
desired solution with asymptotically de Sitter geometry.

FIG. 4 (color online). Metric for a nonrelativistic star.
Parameters are given by n ¼ 1, x1 ¼ 3:6, 4�G�0 ¼ 106�eff ,
and pc ¼ 5� 10�2�0. The central value of the Ricci scalar is
tuned to be Rc ¼ 3:462� 10�6 � 8�G�0. The radial coordinate
is normalized by the radius of the star R.
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(NðrÞ ! 0 and BðrÞ ! 1 as r ! 1), though the gravita-
tional potential is as ‘‘large’’ as

ĜM

R
’ 0:1203: (48)

Taking a slightly larger value of the central curvature,
Rc ¼ 0:7001� 8�G�0, the Ricci scalar rapidly diverges
inside the star. This corresponds to the case in which �
starts to move to the right toward the curvature singularity,
� ¼ 1. Note that since �3V � R=2, Rc ¼ 0:7� 8�G�0

implies 4�Gð�0 � 3pcÞ � �3
cV�c

� 0.

2. n ¼ 2 and x1 ¼ 3:6

For 4�G�0 ¼ 106�eff and pc ¼ 5� 10�4�0, we find
the stellar configuration with de Sitter asymptotic behavior
by tuning Rc ¼ 2:035� 10�6 � 8�G�0 (�c ¼ 0:9911).

In this case, ĜM=R ¼ 7:491� 10�4. The thin-shell con-
dition does not hold (� ¼ 7:448� 10�4), and � ¼ 0:5005.

Looking for stars with stronger gravitational fields, we
take 4�G�0 ¼ 106�eff and pc ¼ 10�2�0. When Rc ¼
0:9700� 8�G�0, a rolling-down solution is found with

ĜM=R ¼ 0:014 65, while a slightly larger value Rc ¼
0:9701� 8�G�0 leads to a curvature singularity R ! 1
inside the star.

From the above numerical analysis, we conclude that
stars with strong gravitational fields cannot be present in
this class of fðRÞ theories.

B. Stars in surrounding media

So far we have examined the case of the vacuum exte-
rior. Although we can indeed construct a stellar configura-
tion provided that gravity is weak, the exterior metric is not
given by the de Sitter–Schwarzschild solution in general
relativity and the PPN parameter is found to be � ’ 1=2.
This simply reflects the fact that the thin-shell condition is

violated in the present case. However, we can make the
chameleon mechanism effective by taking into account the
effect of surrounding media (e.g., dark matter). Let us
make a brief comment on this point.
In a ‘‘realistic’’ situation, exterior matter is present

around a star, giving rise to the force term F ext ’
�8�G�ext=3 there. Then, to obtain a viable stellar con-
figuration, one has to take a shot at the point �	 satisfying
the equation F ext � dU=d� ¼ 0 rather than the top of the
potential hill, �1. Since �	 > �1, the difference in � be-
tween inside and outside the star becomes smaller, and
hence it is easier to satisfy the thin-shell condition. Indeed,
the chameleon mechanism has been shown to work in the
fðRÞ model which is very similar to the current one,
reproducing � ’ 1 in the solar vicinity [20].
The above argument, however, only applies to stars with

weak gravitational fields. When gravity is strong, for any
initial condition of �c which avoids the curvature singu-
larity, the scalar field � inevitably overshoots the potential.
It is clear from this fact that one cannot stop � at any value
of �	 >�1. Therefore, a relativistic star cannot be present
even with surrounding medium.

VI. CONCLUSIONS

In this paper, we have studied the strong gravity aspect
of fðRÞ modified gravity models that reproduce the con-
ventional cosmological evolution and evade solar system
and laboratory tests [19–21]. It is known that fðRÞ theories
can be recasted simply in the Brans-Dicke theory with! ¼
0, but the potential for the effective scalar degree of free-
dom may play a complicated and nontrivial role.
Moreover, the presence of matter may affect dynamics of
the scalar field, possibly mimicking the chameleon model
[10].
We have explored uniform density, spherically symmet-

ric stars and their exterior geometry in the fðRÞ model of
[19]. The main result of the present paper is summarized as
follows: given model parameters, there is a maximum
value of the gravitational potential produced by a star,
above which no asymptotically de Sitter stellar configura-
tions can be constructed. We show this both analytically
and numerically. For example, the model with n ¼ 1 and
	 � 2 gives �max � 0:1. This raises a warning sign for a
class of fðRÞ theories, because neutron stars cannot be
present in such gravity models.
The underlying mechanism that hinders strong gravita-

tional fields around matter is explained essentially as fol-
lows [26]. Consider a static matter distribution. The
Newtonian potential obeys the Poisson equation r2��
G�, while the equation of motion for the scalar field
implies r2��G�. From this, one can evaluate the exci-
tation of the scalar degree of freedom around the matter
distribution as ���Oð�Þ. If the de Sitter minimum is
located very close to the point � ¼ 1, which corresponds to
R ¼ 1 in the effective potential, a slightly strong gravita-

FIG. 7 (color online). A rolling-down solution for a would-be
relativistic star. Parameters are given by n ¼ 1, x1 ¼ 3:6,
4�G�0 ¼ 106�eff , and pc ¼ 0:1� �0. The central value of
the Ricci scalar is Rc ¼ 0:7000� 8�G�0. The solution clearly
overshoots the de Sitter extremum, � ¼ �1.
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tional field will cause the problem of appearance of a
curvature singularity.

Bearing the above evaluation in mind, let us comment on
the other specific models of fðRÞ gravity. The model of Hu
and Sawicki [20] and Starobinsky’s one share the same
structure of fðRÞ in the high-curvature regime, i.e., fðRÞ �
R� 2�eff þ C=R� with �> 0. Therefore, we expect that
the same problem arises in the Hu and Sawicki’s model.
The model by Appleby and Battye is characterized by [21]

fðRÞ ¼ R

2
þ 1

2a
ln½coshðaRÞ � tanhðbÞ sinhðaRÞ�; (49)

where a and b are parameters. Since � ¼ df=dR ¼ ½1þ
tanhðaR� bÞ�=2, a positive curvature singularity corre-
sponds to � ¼ 1. Taking, for example, b ¼ 1:5, we find
that �1 � 0:93 at the de Sitter minimum, which is very
close to the dangerous curvature singularity (the result is
independent of a). Since also in this model the effective
potential is finite at R ¼ þ1, we anticipate the same
singularity problem.

Our choice of the parameters in the present paper gave
�max � 0:1, for which neutron stars are unlikely to exist.

However, there still remains a possibility that more real-
istic stellar environments and matter profiles weaken the
bound on the potential by a factor of 2 or 3, and at the same
time make the chameleon mechanism work [35]. It is
technically much more difficult to construct stellar con-
figurations with a realistic equation of state, realistic en-
ergy densities, and realistic stellar environments. Such an
elaborated modeling of relativistic stars might allow for
�max as large as, say, 0.3, but the parameter space of the
theory will be very restricted. To conclude, fðRÞ theories
that reproduce the correct behavior of weak gravity in the
solar vicinity do not admit neutron star solutions without
special care.
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