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We revisit singularities of two distinct kinds in the Cauchy problem of general scalar-tensor theories of

gravity (previously discussed in the literature), and of metric and Palatini fðRÞ gravity, in both their Jordan
and Einstein frame representations. Examples and toy models are used to shed light onto the problem and

it is shown that, contrary to common lore, the two conformal frames are equivalent with respect to the

initial value problem.
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I. INTRODUCTION

The 1998 discovery of the acceleration of the cosmic
expansion, obtained by studying type Ia supernovae [1],
spurred an enormous amount of activity on dark energy
models, mostly based on cosmological scalar fields.
Certain models are set in the context of scalar-tensor
gravity instead of Einstein’s theory, and are dubbed ‘‘ex-
tended quintessence’’ [2]. Moreover, as an alternative to
postulating a mysterious form of dark energy, various
authors ([3,4], see [5] for a review) have considered the
possibility that the acceleration of the universe is caused
instead by a modification of gravity at large scales: the
Einstein-Hilbert action

SEH ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�gp
Rþ SðmÞ½gab;  � (1)

is generalized to

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�gp
fðRÞ þ SðmÞ½gab;  �; (2)

where fðRÞ is an arbitrary, twice differentiable, function of
R. Here � � 8�G, G is Newton’s constant (that will be
unity, together with the speed of light, in the geometrized

units employed), R is the Ricci curvature, SðmÞ ¼R
d4x

ffiffiffiffiffiffiffi�gp
LðmÞ½gab;  � is the matter part of the action,  

collectively denotes the matter fields, and we follow the
notations of [6].

If the action (2) is varied with respect to the metric gab,
one obtains the metric formalism with fourth order field
equations [3,4]; if the metric and the connection �abc are

considered as independent variables (i.e., the connection is
not the metric connection of gab), but the matter part of the

action SðmÞ does not depend explicitly on �, one obtains the
Palatini formalismwith second order field equations [7]. If,

instead, SðmÞ depends on �, one obtains metric-affine grav-
ity [8].

It has been shown [9] that metric fðRÞ gravity is dy-
namically equivalent to a Brans-Dicke (BD) theory with

BD parameter !0 ¼ 0, while Palatini fðRÞ gravity is
equivalent to an !0 ¼ �3=2 BD theory. The general
form of the scalar-tensor action, of which BD theory
[10,11] is the prototype, is [12]

SST ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
fð�ÞR

2
�!ð�Þ

2
rc�rc�� Vð�Þ

�
þ SðmÞ½gab;  �; (3)

where � is the BD-like scalar field and fð�Þ> 0 is re-
quired in order for the effective gravitational coupling to be
positive and the graviton to carry positive kinetic energy
and not be a ghost. Vð�Þ is the scalar field potential, while
fð�Þ and !ð�Þ are two (a priori arbitrary) coupling func-
tions. BD theory is recovered as the special case fð�Þ ¼ �
and !ð�Þ ¼ !0=�, with !0 ¼ const. The field equations
derived from the action (3) are

fð�Þ
�
Rab � 1

2
gabR

�
¼ !ð�Þ

�
ra�rb�

� 1

2
gabrc�rc�

�
� Vgab

þrarbf� gabhfþ TðmÞ
ab ; (4)

�
!þ 3ðf0Þ2

2f

�
h�þ

�
!0

2
þ 3f0f00

2f
þ!f0

2f

�
rc�rc�

¼ f0

2f
T þ 2V 0 � 2Vf0

f
; (5)

where a prime denotes differentiation with respect to �,

h � gabrarb, and Tab ¼ �2ffiffiffiffiffi�gp �SðmÞ
�gab

.

The original motivation for BD theory was the imple-
mentation in relativistic gravity of the Mach principle,
which is not fully embodied in general relativity, by pro-
moting Newton’s constant to the role of a dynamical field
determined by the environment [10,11]. Later on, it was
discovered that string theories and supergravity contain
BD-like scalars: in fact, the low energy limit of the bosonic
string theory (which, although unphysical because it does
not contain fermions and is not supersymmetric, was one of
the early string theories) is indeed an !0 ¼ �1 BD theory
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[13]. Moreover, BD theory can be derived from higher-
dimensional Kaluza-Klein theory, higher dimensionality
being an essential feature of all modern high energy theo-
ries. A p-brane model in D dimensions leads, after com-
pactification, to a BD theory with parameter [14]

!0 ¼ �ðD� 1Þðp� 1Þ � ðpþ 1Þ2
ðD� 2Þðp� 1Þ � ðpþ 1Þ2 : (6)

These properties have renewed the interest in BD and
scalar-tensor gravity since the 1980s, following the rise
of string theory. However, the more recent surge of interest
in scalar-tensor gravity that we are witnessing is motivated
by cosmology and is linked to attempts to explain the
present cosmic acceleration (see [15,16] for reviews of
scalar-tensor gravity in the cosmology of the early and
present universe).

Motivated by the past and recent interest and also by
developments in numerical relativity, the initial value prob-
lem of scalar-tensor gravity was studied by Salgado [17]
who, using a first-order hyperbolicity analysis, showed that
the Cauchy problem is well-formulated for theories of the
form

S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
fð�ÞR

2
� 1

2
rc�rc�� Vð�Þ

�
þ SðmÞ½gab;  � (7)

when SðmÞ is reasonable [18] and is well-posed in vacuo. It
was then straightforward to generalize this work to BD
theories with constant BD parameter !0 � 1 which, in
turn, was used to show that the Cauchy problem of metric
fðRÞ gravity (equivalent to an !0 ¼ 0 BD theory) is well-
formulated and well-posed in vacuo, while the Cauchy
problem for Palatini fðRÞ gravity (equivalent to an !0 ¼
�3=2 BD theory) is not well-formulated, nor well-posed
[19]. A second paper by Salgado and coworkers using a
second order hyperbolicity analysis [20] showed the well-
posedness of ! ¼ 1 theories, and the extension to ! ¼
const theories (with the exception of ! ¼ �3=2) is
straightforward because the principal part of the field
equations does not depend on !.

In retrospect, it is easy to see why the !0 ¼ �3=2 BD
theory does not admit a well-posed initial value formula-
tion: the field equation for the BD scalar is�

!0 þ 3

2

�
h�þ !0

2�
rc�rc� ¼ T

2�
þ V0 � 2V

�
; (8)

and reduces to a first-order constraint when !0 ! �3=2.
Technically, this fact prevents the substitution of h� back
into the equations for the other dynamical variables in
order to eliminate second derivatives of � and spoils the
reduction to a first-order system (see [19] for details). In
practice, the second order dynamical equation for the
variable � is lost when !0 ¼ �3=2, � then plays the
role of a nondynamical auxiliary field and can be assigned

arbitrarily a priori. Uniqueness of the solutions is then lost,
as infinitely many prescriptions for � correspond to the
same set of initial data.
The present paper serves various purposes. First

(Sec. II), we revisit the Cauchy problem for BD theories
and, in particular, for the equivalent of Palatini fðRÞ grav-
ity by using a completely independent approach based on
the transformation to the Einstein conformal frame. This
approach was deliberately avoided in previous papers
[17,19,20]. While interesting in itself as an independent
check of previous results, this approach has the additional
merit of fully establishing the physical equivalence be-
tween Jordan and Einstein frames at the classical level.
These conformal frames have been shown to be equivalent
in various other respects, and it would only make sense that
their equivalence extend to the Cauchy problem. However,
there are explicit statements in the literature, and much
unwritten folklore, pointing to the contrary. We show here
that the two frames are indeed equivalent, which removes
previous doubts and fully establishes equivalence at the
classical level; however, this does not guarantee physical
equivalence at the quantum level [21,22].
The main purpose of this paper, however, consists of the

study of the Cauchy problem for scalar-tensor theories of
the general form (3) and of two distinct types of singular-
ities that may appear in their field equations. These theories
were not covered explicitly in previous literature, although
the extension of the results of [17,20] to include them is
relatively straightforward. In addition, it is handy to con-
sider the general form (3) of the theory in order to special-
ize the results to any scalar-tensor theory simply by
prescribing specific forms of the coupling functions fð�Þ
and !ð�Þ and of the potential Vð�Þ. We approach the
problem in both the Jordan frame (Sec. III) and the
Einstein frame (Sec. IV) obtaining, of course, the same
results.
In general scalar-tensor theories, there are two kinds of

singularities to deal with: those at which fð�Þ ¼ 0, and a

second kind identified by f1ð�Þ � !ð�Þ þ 3ðf0ð�ÞÞ2
2fð�Þ ¼ 0,

which generalizes the !0 ¼ �3=2 pathology encountered
in BD theory and in Palatini fðRÞ gravity. Singularities of
the first kind should normally be excluded by requiring that
fð�Þ> 0 for all values of�, and this requirement is some-
times made explicit in the general formalism (e.g., [23]);
nevertheless, works incorporating these singularities recur
often in the literature, especially in cosmology.
At the singularities of the second kind f1 ¼ 0 (which

have been known for a long time, in particular, incarnations
of scalar-tensor gravity [24–26]), a phenomenology similar
to that of Palatini fðRÞ gravity spoils the Cauchy problem
for special forms of the coupling function !ð�Þ, or for
critical field values. While the scalar field is allowed to
pass through these ‘‘singularities’’ in an isotropic
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe
[24–26], the points where f1ð�Þ ¼ 0 are known to give rise
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to curvature and shear singularities in the anisotropic case.
These singularities were discovered in the special case of
nonminimally coupled scalar field cosmology (correspond-
ing to fð�Þ ¼ 1

�� ��2 and ! ¼ 1) in the early universe

[24,25,27,28] and also in black hole perturbations [29].
They also appear in the search for exact wormhole solu-
tions with nonminimally coupled scalar fields [30].
Singularities of both kinds were discussed in a more gen-
eral context in [31,32]. After clarifying and further general-
izing this situation from the point of view of the initial
value formulation in Sec. III, in Sec. IV we revisit this
subject in the Einstein frame, exposing a situation analo-
gous to !0 ¼ �3=2 BD theory (this is not merely an
analogy, since the latter is a special case of the former).
Finally, in Sec. V, we study a nonminimally coupled scalar
field theory as an example, recovering certain known prop-
erties and placing them in a general context. Sec. VI and
VII contain illustrative toy models and the conclusions,
respectively.

II. EINSTEIN FRAME DESCRIPTION OF BRANS-
DICKE AND PALATINI fðRÞ GRAVITY

In this section we recall the definition of Einstein con-
formal frame and show explicitly the nondynamical role of
the scalar field in the Einstein frame representation of the
scalar-tensor version of Palatini fðRÞ gravity. This is nec-
essary as a first step to understand the more involved
situation that we will be facing in later sections with
general scalar-tensor theories of the form (3).

The conformal transformation

gab ! ~gab ¼ �2gab; � ¼ ffiffiffiffi
�

p
(9)

and the scalar field redefinition �! ~� with

d ~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2!0 þ 3j

2�

s
d�

�
(10)

map the Jordan frame action of BD theory

SBD ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
�R

2
� !0

2�
rc�rc�� Vð�Þ þLðmÞ

�
(11)

into its Einstein frame representation

SBD ¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

2�
� 1

2
~gab ~ra

~�~rb
~��Uð ~�Þ

þLðmÞ½��1~gab;  �
�2

�
; (12)

where

Uð ~�Þ ¼ Vð�ð ~�ÞÞ
�2ð ~�Þ (13)

and a tilde denotes rescaled (Einstein frame) quantities.

The scalar field redefinition (10) breaks down when !0 ¼
�3=2 and the scalar field ~� then remains undefined.
However, Eq. (9) still holds and one can write the
Einstein frame version of the BD equivalent of Palatini
fðRÞ gravity as [5]

SPalatini ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�~g
p �

~R� Vð�Þ
�2

�
þ SðmÞ½��1~gab;  �

(14)

using the variables ð~gab;�Þ. In this action, the scalar field
� does not play any dynamical role: it only acts as a factor

rescaling the metric in SðmÞ but it has no dynamics, does not
couple to ~R, and no kinetic energy of � appears in (14). �
can be assigned arbitrarily in infinitely many ways not
governed by the usual second order differential equation
and, therefore, uniqueness of the solutions is lost. On the
contrary, for any value of the BD parameter !0 � �3=2
(in particular for the !0 ¼ 0 equivalent of metric fðRÞ
gravity), the action is reduced to (12), which describes a

scalar field ~� coupling minimally to the curvature and

nonminimally to matter. In vacuo (LðmÞ ¼ 0), this coupling
to matter disappears and we are left with the action of
Einstein gravity plus a minimally coupled scalar field with
canonical kinetic energy: it is well-known that this system
has a well-posed initial value formulation [6,33]. The non-
vacuum case is considered later in Sec. V as a special case
of more general scalar-tensor theories.

III. THE CAUCHY PROBLEM FOR GENERAL
SCALAR-TENSOR THEORIES IN THE JORDAN

FRAME

Let us now restrict ourselves to the Jordan frame and
consider general scalar-tensor theories described by the
action (3). These can be reduced to the action

S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
�R

2
�!�ð�Þ

2
rc�rc��Uð�Þ

�
þ SðmÞ (15)

containing a single coupling function !�ð�Þ by setting
� � fð�Þ, !�ð�Þ ¼ !ð�ð�ÞÞ, and Uð�Þ ¼ Vð�ð�ÞÞ.
The actions (3) and (15) are equivalent if fð�Þ is invertible
with regular inverse f�1, but this does not happen if f0ð�Þ
vanishes somewhere.
It is also possible to recast BD theory as one in which the

kinetic term of the scalar field is canonical, i.e., with ! ¼
1. Beginning with the action (15) and setting

� ¼ Fð’Þ; (16)

where the function Fð’Þ is defined by the equation

!�ð�Þ ¼ Fð’Þ
2ðdFd’Þ2

; (17)

(15) can be rewritten as
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S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
Fð’ÞR

2
� 1

2
rc’rc’�Wð’Þ

�
þ SðmÞ½gab;  �; (18)

where Wð’Þ ¼ V½Fð’Þ�. This alternative form of the BD
action cannot be obtained when Fð’Þ does not admit a
regular inverse F�1 (e.g., when dF=d’ ¼ 0). This is the
case, for example, when Fð’Þ is represented by a series of
even powers of ’ [34,35]. Note that (18) is the form of the
action considered in the studies of the Cauchy problem
[17,20]. In what follows, to achieve full generality, we
discuss the action (3) with two coupling functions.
Moreover, there are two types of singularities to consider:
we introduce them here and we will refer to them for the
rest of this paper. In addition, one must distinguish betwen
two very different situations: that in which these singular-
ities occur in an entire four-dimensional domain of space-
time, and that in which they occur only on hypersurfaces.
moreover, we will approach all of the above from the two
viewpoints of Jordan frame and Einstein frame.

A. Singularities of the first kind

The first type of singularities is identified by fð��Þ ¼ 0
and occurs for critical values �� of the scalar field (if
solutions of this equation exist). This equation may be
satisfied in an entire four-dimensional spacetime region,
or on a hypersurface. At a first glance, the former case
seems rather trivial: in fact, naively, the effective gravita-
tional coupling read off the action (26) is Geff ¼ 1=fð�Þ.
However, a more careful analysis of the effective gravita-
tional coupling in a Cavendish experiment, which is the
only one directly accessible to local experiments, yields
[36]

Geffð�Þ ¼ 2!fþ ð2df=d�Þ2
8�f½2!fþ 3ðdf=d�Þ2� : (19)

This expression can also be obtained from the study of
cosmological perturbations [37]. The first type of singular-
ities fð��Þ ¼ 0 corresponds to diverging effective cou-
pling Geffð�Þ and separates regions in which Geff has
opposite signs describing attractive or repulsive gravity,
respectively. Stated this way, it may seem nonsensical to
consider such values�� of the scalar. For example, it looks
plain silly to consider, in BD theory, a spacetime region in
which� ¼ 0, which makes the term�R=2 disappear from
the BD action and corresponds to infinite strength of
gravity. Nevertheless, there are examples in which exact
(and nonunique) solutions of the field equations have been
found with � constant and precisely equal to �� in a
region, or in the entire spacetime manifold (see
[26,38,39] for examples in cosmology and [30] for worm-
hole solutions). Are these to be discarded a priori? Perhaps
not, because what is clearly unphysical are regions in
whichGeff < 0 and the graviton is a ghost. Although rather
pathological, regions in whichGeff is divergent may still be

interesting in exotic situations when the birth of the uni-
verse or the interior of a wormhole are considered.
Furthermore, these regions may still be relevant from the
mathematical point of view if one is interested in finding
exact solutions that, as simplified toy models, exhibit
particular properties of scalar-tensor gravity.
Let us come now to the more interesting situation in

which fð�Þ ¼ 0 on an hypersurface. This situation seems
more reasonable, however such hypersurfaces separate
regions of attractive from regions of repulsive gravity; in
the latter, the graviton carries negative kinetic energy, a
physically unacceptable property [23,40]. This fact seems
to be forgotten in scalar-tensor theories more general than
BD theory and with more freedom in the form of the
functions fð�Þ and !ð�Þ. Papers in which Geff is negative
or infinite have appeared surprisingly often over the past 30
years [26–28,41–44]; sometimes, such critical hypersurfa-
ces �� are approached asymptotically [45].
Let us proceed, for the moment, by adopting a purely

mathematical point of view in the consideration of the
Cauchy problem. When fð�Þ ¼ 0, Eq. (4) for the metric
tensor degenerates. At these spacetime points the trace of
Eq. (4) becomes

3h�þ ð!þ 3f00Þrc�rc�þ 4V � T ¼ 0: (20)

Substitution of the value of h� obtained from this equa-
tion into the second field Eq. (5) yields

R ¼ 2

f0

��
!0

2
� !

3f0
ð!þ 3f00Þ

�
rc�rc�

þ !

3f0
ðT � 4VÞ � 2V0

�
: (21)

Knowledge of the values of � and of its gradient rc� on
the hypersurface f ¼ 0 determines the Ricci curvature.
However, the equation for Rab disappears there, which
means that all metrics with the same value of R satisfy
the (degenerate) field equations on this hypersurface:
uniqueness of the solutions is lost and this surface is a
Cauchy horizon. The initial value problem breaks down at
these critical points. Therefore, even if we decide to allow
the unphysical region Geff < 0 by attempting to propagate
initial data given in a Geff > 0 region, we encounter a
hypersurface on which Geff ! 1 which acts as a barrier
and the initial value formulation ceases to be well-posed.

B. Singularities of the second kind

Let us introduce now a second type of critical values of
the scalar field that have previously been associated to
physical (curvature) singularities and that also correspond
to a breakdown of the initial value problem. Following the
lesson of ! ¼ �3=2 theory [19], one notices that h�
disappears from the field Eq. (5) when

f1ð�Þ � !ð�Þ þ 3ðf0ð�ÞÞ2
2fð�Þ ¼ 0: (22)
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Again, one has to distinguish two cases: a) Eq. (22) is
satisfied in a four-dimensional spacetime region, and b) it
is satisfied on a hypersurface. The former corresponds to
regarding Eq. (22) as specifying a particular form of the
coupling function !ð�Þ (given fð�Þ), while the latter
corresponds to seeing Eq. (22) as a transcendental (or
algebraic, depending on the forms of the functions ! and
f) equation that may admit as roots special critical values
�c of the scalar � [46].

Let us consider case a) first: this is completely analogous
to the case of ! ¼ �3=2 BD theory which Eq. (22) gen-
eralizes. When f1ð�Þ vanishes identically for all values of
� in a four-dimensional spacetime domain, the dynamics
of the scalar � are lost together with h� and with the
second order of the partial differential equation for �. The
exception consists of situations in which the scalar satisfies
h� ¼ 0, in which case there may be nontrivial dynamics
for �, but this quantity disappears spontaneously from the
field equations for the other variables. This situation in-
cludes general relativity with � ¼ const (for which the
initial value problem is well-posed [6] and the previous
discussion obviously does not apply), and harmonic
�-waves.

Situation a) is, of course, the only possibility when !
represents a constant parameter instead of a function, as in
BD theory. The general scalar-tensor theory is richer and
allows one to contemplate the possibility b) that Eq. (22) is
satisfied on a hypersurface. It is interesting that, in the
absence of matter, invariants of the Riemann tensor diverge
at this hypersurface for anisotropic metrics, while no such
divergence occurs in isotropic FLRW spaces [25,31].
Mathematically speaking, if fð�Þ � 0 and f1ð�Þ is a
continuous function, a hypersurface where f1ð�Þ ¼ 0 sep-
arates two regions corresponding to opposite signs of f1
(unless the form of f1 is pathologically fine-tuned): in each
of these, the Cauchy problem may be well-posed but when
one tries to propagate initial data through such a hypersur-
face, h� given by

h� ¼
�
�
�
!0

2
þ 3f0f00

2f
þ!f0

2f

�
rc�rc�þ f0T

2f
þ 2V 0

� 2Vf0

f

��
!þ 3ðf0Þ2

2f

��1
(23)

diverges. We have, therefore, a Cauchy horizon that is not
hidden inside an apparent horizon, as in black holes, and
where the theory crashes. The two regions separated by the
hypersurface f1ð�Þ ¼ 0 are, again, disconnected by a sin-
gularity in the gravitational coupling Geffð�Þ.

To summarize this section: when the coupling functions
fð�Þ and !ð�Þ are such that fð�Þ ¼ 0 or f1ð�Þ ¼ 0, the
initial value formulation breaks down and either the theory
is unphysical because � becomes a nondynamical auxil-
iary field, or the hypersurface f1ð�Þ ¼ 0 is a Cauchy
horizon. In the first case, the problems found for Palatini
fðRÞ gravity in [47] resurface. The situation in which

Eq. (22) is identically satisfied is the generalization to
arbitrary scalar-tensor theories of the situation already
seen in ! ¼ �3=2 BD theory and in Palatini fðRÞ gravity.
The trace Eq. (20) allows one to replace the trace T with an
expression containing second derivatives of �. Then, the
metric depends on derivatives of the scalar field of order
higher than second and discontinuities, or irregularities, are
not smoothed out by an integral of matter fields giving the
metric gab (for example, as in the usual Green function
integral in the weak-field limit), but they cause step-
function discontinuities in the metric derivatives and cur-
vature singularities where the same matter distribution in
Einstein’s theory would generate a perfectly regular
geometry.

IV. GENERAL SCALAR-TENSOR THEORIES AND
THE CAUCHY PROBLEM IN THE EINSTEIN

FRAME

We now examine the initial value problem of general
scalar-tensor gravity in the Einstein frame. The conformal
transformation

gab ! ~gab ¼ �2gab; � ¼
ffiffiffiffiffiffiffiffiffiffiffi
fð�Þ

q
(24)

and the scalar field redefinition

~� ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2!fþ 3ðf0Þ2j
q d�

fð�Þ (25)

bring the Jordan frame action

S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp �
fð�ÞR

2
�!ð�Þ

2
rc�rc�� Vð�Þ

þLðmÞ
�

(26)

into its Einstein frame representation

S ¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

2�
� 1

2
~gab ~ra

~�~rb
~��Uð ~�Þ þLðmÞ

f2

�
;

(27)

where Uð ~�Þ ¼ Vð�ð ~�ÞÞ=f2 and f ¼ fð�ð ~�ÞÞ. Again,
apart from the now familiar coupling of the ‘‘new’’ scalar
~� to matter described by LðmÞ=f2 (with the exception of
conformally invariant matter), this action describes general
relativity with a canonical scalar field which couples mini-
mally to the curvature but nonminimally to matter. As
before, it is clear that the system has a well-posed initial
value formulation in vacuo. This conclusion applies where

the Einstein frame variables ð~gab; ~�Þ are well-defined, i.e.,
for fð�Þ � 0 and f1ð�Þ � 0. It can be shown that the
Cauchy problem is well-posed in the presence of matter
as well: this was already pointed out in ref. [23], but is
checked at the end of this section by extending the first-
order hyperbolicity analysis of [17].
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The exception is when f1ð�Þ ¼ 0, in which case the

scalar ~� cannot be defined using Eq. (25). In this case, one

can use the variables ð~gab; �Þ instead of ð~gab; ~�Þ, obtaining
the Einstein frame action

SST ¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

2�
� Vð�Þ
f2ð�Þ �

LðmÞ

f2ð�Þ
�
: (28)

Again, there are no dynamics for � and the Cauchy prob-
lem is not well-formulated, nor well-posed, in this case due
to the loss of uniqueness of the solutions. Moreover, this
result holds in both the Jordan and the Einstein frames,
which then become physically equivalent in this respect.

The breakdown of the scalar field redefinition (25) is
accompanied by other signals that something is going
wrong with the physics when f1ð�Þ ¼ 0. The effective
gravitational coupling (19) diverges when f1 ¼ 0 (as a

special case, Geff ¼ 2ð2!0þ2Þ
ð2!0þ3Þ� diverges as !0 ! �3=2 in

BD theory). Moreover, it changes sign when � crosses a
critical value �� or �c. These critical values are attained
by the scalar field in certain early universe inflationary
scenarios with nonminimally coupled scalar fields, corre-
sponding to fð�Þ ¼ 1

�� ��2 and ! ¼ 1 (� being a di-

mensionless coupling constant) when 0< �< 1=6 [24–
26,28]. The same phenomenon in more general scalar-
tensor theories is considered in [31,32].

The authors of [31] find that, in Bianchi cosmologies,
the regions of the phase space at which f1ð�Þ ¼ 0 corre-
spond to geometric singularities with divergent
Kretschmann scalar RabcdR

abcd. The f1 ¼ 0 singularity is
dynamically forbidden in a closed or critically open FLRW
universe under the assumptions � � 0, Vð�Þ � 0, and
! � 1 [32].

The lesson of [25,28,31] is that, if there is even a small
anisotropy, the change from attractive to repulsive gravity
at f1 ¼ 0 can only occur through a shear or curvature
singularity which stops the evolution of the geometry:
nature’s message seems to be that gravity cannot sponta-
neously become repulsive in the absence of exotic matter
violating the energy conditions (it is the purely gravita-
tional sector of the theory that we are studying here).

Note that in the theories considered by [31,32], which
have ! � 1, the singularity f1 ¼ 0 is automatically re-
moved by requiring that fð�Þ> 0 (i.e., that the graviton is
not a ghost); however, this is no longer true when theories
with ! not identically equal to unity are considered and
critical values �c of the second kind can still occur even
when fð�Þ> 0 8�—but this necessarily requires !< 0.

Let us now extend the first-order hyperbolicity analysis
of [17] to Einstein frame scalar-tensor gravity. We follow
closely, and adopt the notations of, [17,19] in order to
facilitate comparison, setting � ¼ 1. The Einstein frame
field equations are

~Gab ¼ ~ra
~�~rb

~�� 1

2
~gab

~rc ~�~rc
~��Uð ~�Þ~gab

þ TðmÞ
ab

f2ð�ð ~�ÞÞ
� ~Tab½ ~�� þ ~TðmÞ

ab � ~Tab; (29)

~h ~�� dUð ~�Þ
d ~�

¼ 0: (30)

Because Tab½ ~�� does not contain second derivatives of ~�,
it is possible to give a first-order formulation as in general

relativity. The nonminimal coupling factor 1=f2ð�ð ~�ÞÞ
multiplying TðmÞ

ab on the right hand side of Eq. (29) does

not generate derivatives of ~� and therefore is immaterial.
The 3þ 1 ADM formulation of the theory defines the

usual lapse, shift, extrinsic curvature, and gradients of �
[6,17]. Assuming the existence of a time function t such
that the spacetime ðM; ~gabÞ is foliated by a family of
hypersurfaces �t of constant t with unit timelike normal

~na, the 3-metric is defined by ~hab ¼ ~gab þ ~na~nb and ~hac is
the projection operator on �t. The relations ~na~na ¼ �1,
~hab~n

b ¼ ~hab~n
a ¼ 0, and ~hba ~hbc ¼ ~hac are satisfied. Further

introducing the lapse ~N, shift vector ~Na, and spatial metric
~hij, the metric is written as

d~s2 ¼ �ð ~N2 � ~Ni ~NiÞdt2 � 2 ~Nidtdx
i þ ~hijdx

idxj (31)

(i, j ¼ 1, 2, 3), with ~N > 0, ~na ¼ � ~N ~rat and

~N a ¼ �~habt
b; (32)

where the time flow vector ~ta satisfies ~ta ~rat ¼ 1 and

~t a ¼ � ~Na þ ~N~na (33)

so that ~N ¼ �~na~t
a and ~Na~na ¼ 0. The extrinsic curvature

of �t is

~K ab ¼ �~hca ~h
d
b
~rc~nd: (34)

The 3D covariant derivative of ~hab on �t is defined as

~D ð3Þ
i T

a1...
b1...

¼ ~ha1c1 . . .
~hd1b1 . . .

~hfi
~rð3Þ
f T

c1...
d1...

(35)

for any 3-tensor ð3ÞTa1...b1..., with
~Di
~hab ¼ 0. The spatial

gradient of the scalar field and its momentum are

~Qa � ~Da
~�; (36)

and

~� ¼ L~n
~� ¼ ~nc ~rc

~�; (37)

respectively, and

~K ij ¼ �~ri~nj ¼ � 1

2 ~N

�
@~hij
@t

þ ~Di
~Nj þ ~Dj

~Ni

�
; (38)
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~� ¼ 1
~N
ð@t ~�þ ~Nc ~QcÞ; (39)

@t ~Qi þ ~Nl@l ~Qi þ ~Ql@i ~N
l ¼ ~Dið ~N ~�Þ: (40)

The stress-energy tensor is 3þ 1-decomposed as

~T ab ¼ ~Sab þ ~Ja~nb þ ~Jb~na þ ~E~na~nb; (41)

where

~S ab � ~hca ~h
d
b
~Tcd ¼ ~Sab½ ~�� þ ~SðmÞab ; (42)

~J a � �~hca ~Tcd~n
d ¼ ~Ja½ ~�� þ ~JðmÞa ; (43)

~E � ~na~nb ~Tab ¼ ~E½ ~�� þ ~EðmÞ; (44)

and ~T ¼ ~S� ~E, where ~T is the trace of ~Tab and ~S is the

trace of ~Sab. The Gauss-Codacci equations provide the
Einstein equations projected tangentially and orthogonally
to �t as the Hamiltonian constraint [6,17]

ð3Þ ~Rþ ~K2 � ~Kij
~Kij ¼ 2 ~E; (45)

the vector (or momentum) constraint

~D l
~Kl
i � ~Di

~K ¼ ~Ji; (46)

and the dynamical equations

@t ~K
i
j þ ~Nl@l ~K

i
j þ ~Ki

l@j ~N
l � ~Kl

j@l ~N
i þ ~Di ~Dj

~N

� ð3Þ ~Rij ~N � ~N ~K ~Ki
j ¼

~N

2
½ð~S� ~EÞ�ij � 2~Sij�; (47)

where ~K � ~Ki
i. The trace of this equation yields

@t ~K þ ~Nl@l ~K þ ð3Þ ~� ~N � ~N ~Kij
~Kij ¼ ~N

2
ð~Sþ ~EÞ; (48)

where ð3Þ ~� � ~Di ~Di.

Further introducing ~Q2 � ~Qc ~Qc, one computes

~E½ ~�� ¼ 1

2
ð ~�2 þ ~Q2Þ þUð ~�Þ; (49)

~J½ ~�� ¼ � ~� ~Qa; (50)

~S ab½ ~�� ¼ ~Qa
~Qb � ~hab

�
1

2
ð ~Q2 � ~�2Þ þUð ~�Þ

�
; (51)

while

~S½ ~�� ¼ a

2
ð3 ~�2 � ~Q2Þ � 3Uð ~�Þ (52)

and

~S½ ~�� � ~E½ ~�� ¼ ð ~�2 � ~Q2Þ � 4Uð ~�Þ: (53)

The ‘‘total’’ quantities entering the right-hand side of the
3þ 1 field equations are then

~E ¼ 1

2
~Q2 þ 1

2
~�2 þUð ~�Þ þ ~EðmÞ; (54)

~J a ¼ � ~� ~Qa þ ~JðmÞa ; (55)

~S ab ¼ �~hab

�
1

2
ð ~Q2 � ~�2Þ þUð ~�Þ

�
þ ~Qa

~Qb þ ~SðmÞab ;

(56)

while

~S ¼ �3Uð ~�Þ �
~Q2

2
� 3 ~�2

2
þ ~SðmÞ; (57)

~S� ~E ¼ ~�2 � ~Q2 � 4Uð ~�Þ þ ~SðmÞ � ~EðmÞ; (58)

~Sþ ~E ¼ 2 ~�2 � 2Uð ~�Þ þ ~SðmÞ þ ~EðmÞ: (59)

The Hamiltonian constraint becomes

ð3Þ ~Rþ ~K2 � ~Kij
~Kij þ

~�2

2
þ

~Q2

2
¼ ~EðmÞ þUð ~�Þ; (60)

while the momentum constraint (46) is

~D l
~Kl
i � ~Di

~K þ ~� ~Qi ¼ ~JðmÞi ; (61)

the dynamical Eq. (47) is written as

@t ~K
i
j þ ~Nl@l ~K

i
j þ ~Ki

l@j ~N
l � ~Kl

j@l ~N
i þ ~Di ~Dj

~N � ð3Þ ~Rij ~N

� ~N ~K ~Ki
j þ

~N

2
2Uð ~�Þ�ij þ ~N ~Qi ~Qj

¼ ~N

2
½ð~SðmÞ � ~EðmÞÞ�ij � 2~SðmÞij � (62)

with trace

@t ~K þ ~Nl@l ~K þ ð3Þ ~� ~N � ~N ~Kij
~Kij � ~N ~�2

¼ ~N

2
ð�2Uð ~�Þ þ ~SðmÞ þ ~EðmÞÞ (63)

where [17]

L ~n
~�� ~� ~K� ~Qc ~Dcðln ~NÞ � ~Dc

~Qc ¼ � ~h ~� ¼ �dU

d ~�
:

(64)

In vacuo, the initial data ð~hij; ~Kij; ~�; ~Qi; ~�Þ on an initial

hypersurface �0 obey the constraints (60) and (61) plus

~Q i � ~Di
~� ¼ 0; ~Di

~Qj ¼ ~Dj
~Qi: (65)

In the presence of matter, the variables ~EðmÞ, ~JðmÞa , and ~SðmÞab

are also assigned on the initial hypersurface. Fixing a
gauge corresponds to prescribing lapse and shift. The
system (60)–(63) contains only first-order derivatives in

both space and time once the d’Alembertian ~h ~� is written

in terms of ~�, ~rc ~�~rc
~�, and their derivatives by using

Eq. (64). From this point on, everything proceeds as in

Ref. [17] and the nonminimal coupling factor fð�ð ~�ÞÞ in
~TðmÞ
ab ¼ TðmÞ

ab =f
2 does not have consequences because it

contains no derivatives of ~SðmÞab ,
~JðmÞa , or ~EðmÞ. The reduction
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to a first-order system indicates that the Cauchy problem is
well-posed in vacuo and well-formulated in the presence of
those forms of matter for which it is well-formulated in
general relativity. We do not duplicate Salgado’s analysis
here, and we refer the reader to [17,20] for details.

A. Equivalence between conformal frames

At this point, it is clear that the initial value formulation
is well-posed in the Einstein frame if it is well-posed in the
Jordan frame, and vice-versa. The two frames are equiva-
lent also from the point of view of the Cauchy problem,
contrary to folklore and recurring statements in the litera-
ture. To this regard, it is often remarked that the mixing of
the spin two and spin zero degrees of freedom gab and� in
the Jordan frame makes these variables an inconvenient set
for formulating the initial value problem, which is conse-
quently not well-posed in the Jordan frame, while the

Einstein frame variables ð~gab; ~�Þ admit a well-posed
Cauchy problem completely similar to that of general
relativity. (A rather casual remark in the well-known paper
[40] (see also the more recent Ref. [23]) seems to have
been quite influential in this respect, without further ques-
tioning of it in later literature until the recent work of
Salgado [17]). In the light of this work, which is carried
out completely in the Jordan frame, the standard lore is
obviously false. Old works also hinted to the fact that the
Cauchy problem is well-posed in the Jordan frame for two
special scalar-tensor theories: Brans-Dicke theory with a
free scalar � [48], and the theory of a scalar field con-
formally coupled to the Ricci curvature [49]. The imple-
mentation, in the Jordan frame, of a full 3þ 1 formulation
à la York [50] for use in numerical applications further
dispels the myth that the Cauchy problem is not well-posed
in the Jordan frame [20].

Were this folklore true, the Jordan and Einstein frames
would be physically inequivalent with regard to the
Cauchy problem, but we have shown that this is not the
case. In fact, the equivalence between the two conformal
frames does not break down even when the scalar field

redefinition �! ~� fails. The Jordan and Einstein frame
are still equivalent, with respect to the initial value for-
mulation, for general scalar-tensor theories and, therefore,
they are equivalent at the classical level, thus dissipating
residual doubts left in this regard in [22]. However, the two
conformal frames seem to be inequivalent at the quantum
level ([21,22] and references therein).

V. EXAMPLE: THE NON-MINIMALLY COUPLED
SCALAR FIELD

We are finally ready to consider, as an example, the
theory of a scalar field coupled nonminimally to the
Ricci curvature. In fact this example, many features of
which are well-known, has sometimes already guided us
through this paper. The action is

SNMC ¼
Z
d4x

ffiffiffiffiffiffiffi�gp ��
1

2�
� ��2

2

�
R� 1

2
rc�rc�

� Vð�Þ þ �mLðmÞ
�
; (66)

where � is a dimensionless coupling constant (in our
notations, conformal coupling corresponds to � ¼ 1=6),
and �m is a suitable coupling constant. The field equations
are

ð1� ���2ÞGab ¼ �

�
ra�rb�� 1

2
gabrc�rc�

� Vð�Þgab þ �ðgabh�rarbÞð�2Þ
þ TðmÞ

ab

�
; (67)

h�� dV

d�
� �R� ¼ 0 (68)

(see [15,51] for a discussion of alternative ways of writing
the field equations). By neglecting the matter part of the
action, the Ricci curvature can be eliminated from the
Klein-Gordon equation obtaining

1þ ð6�� 1Þ���2

1� ���2
h�� ���

1� ���2
½ð1� 6�Þrc�rc�

þ 4V� � dV

d�
¼ 0: (69)

Singularities of the first kind correspond to fð�Þ ¼ 1
��

��2 ¼ 0, or to the critical scalar field values

� ¼ ��� � �1ffiffiffiffiffiffi
��

p (70)

and can only occur if � > 0. They correspond to diverging
effective gravitational coupling

Geff ¼ G

1� ���2
; (71)

which changes sign if the scalar � crosses ���. The
requirement fð�Þ> 0 8� avoids these critical values.
However, one could decide to momentarily ignore the
physical interpretation of the theory and to allow these
critical values from a purely mathematical point of view;
then, the latter return to haunt the Cauchy problem and
predictability.
The quantity f1 is, in this theory,

f1ð�Þ ¼ 1þ ��ð6�� 1Þ�2

1� ���2
: (72)

The roots of the equation f1 ¼ 0, which exist if 0< �<
1=6, are the critical values of the second kind

��c � �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1� 6�Þp : (73)
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The nonuniqueness of the solutions and the breakdown of
the Cauchy problem marked by the critical values ���,
��c are seen as follows. When � ¼ �0 ¼ const and
matter is absent, the theory reduces to vacuum general
relativity with a cosmological constant, and the field equa-
tions reduce to

Gab þ�gab ¼ 0; � ¼ �Vð�0Þ
1þ ���2

0

; (74)

V 0
0 þ �R�0 ¼ 0: (75)

The trace of Eq. (74) gives R ¼ 4� which, compared with
Eq. (75) in turn implies that

R ¼ �V 0
0

��0

: (76)

If � ¼ ��� (the critical values of the first kind), then it
must be V0 ¼ 0 and, therefore Rab ¼ 0. The Klein-Gordon
equation yields the extra necessary condition V 0

0 ¼ 0. All
vacuum solutions of general relativity (Rab ¼ 0) are also
solutions of the field Eqs. (67) and (68) with � ¼ ���.

If instead � ¼ ��c (the second kind of critical values),
Eqs. (74) and (75) yield

� ¼ �ð1� 6�ÞVð��cÞ
2ð1� 3�Þ ; (77)

and

V 0ð��cÞ ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1� 6�Þp

Vð��cÞ
1� 3�

: (78)

At these critical scalar field values of the second kind, the
dynamical Eq. (69) for� loses all the second derivatives of
� (contained in h�) and, consequently, the dynamics for
this field (except for special solutions satisfyingh� ¼ 0).
In isotropic FLRW spaces, solutions are known which
cross the critical values ��c, or � is identically equal to
one of these values. However, the situation can be worse:
there are physical curvature and shear singularities in
anisotropic Bianchi models [25,28,31,52]. Moreover,
Barcelo and Visser [30] find diverging Ricci scalar R for
spherically symmetric wormhole solutions. These ex-
amples correspond to solutions which cannot cross the
barrier � ¼ ��c.

The conformal transformation to the Einstein frame is
gab ! ~gab ¼ �2gab with

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ���2

q
(79)

and the redefinition bringing the scalar field into canonical
form is

d ~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��ð1� 6�Þp
1� ���2

d�: (80)

By integrating the last equation, the Einstein frame scalar

~� can be explicitly expressed in terms of � as

~� ¼
ffiffiffiffiffiffi
3

2�

s
ln

�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
6��2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð1� 6�Þ��2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
6��2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð1� 6�Þ��2

p �
þ fð�Þ;

(81)

where

fð�Þ ¼
�
1� 6�

��

�
1=2

arcsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� 6�Þ��2

q
Þ (82)

for 0< �< 1=6 and

fð�Þ ¼
�
6�� 1

��

�
1=2

arcsinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð6�� 1Þ��2

q
Þ (83)

for � > 1=6, while

~� ¼
ffiffiffiffiffiffi
3

2�

s
ln

� ffiffiffiffiffiffiffiffiffi
6=�

p þ�ffiffiffiffiffiffiffiffiffi
6=�

p ��

�
if j�j<

ffiffiffiffi
6

�

s
; (84)

or

~� ¼
ffiffiffiffiffiffi
3

2�

s
ln

�
�� ffiffiffiffiffiffiffiffiffi

6=�
p

�þ ffiffiffiffiffiffiffiffiffi
6=�

p �
if j�j>

ffiffiffiffi
6

�

s
(85)

for � ¼ 1=6.
The Einstein frame action is

S ¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

2�
� 1

2
~gab ~ra

~�~rb
~��Uð ~�Þ

þ ~�mð�ÞLðmÞ
�

(86)

where

Uð ~�Þ ¼ V½�ð ~�Þ�
½1� ���2ð ~�Þ�2 (87)

and

~�mð ~�Þ ¼ �m

½1� ���2ð ~�Þ�2 : (88)

When � ¼ ���, the conformal transformation of the
metric breaks down, while the redefinition of the scalar
field becomes invalid when � ¼ ��c. In this last situ-
ation, one can still use the variables ð~gab; �Þ to define an
Einstein frame in which the action is simply

S ¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p � ~R

2�
� Vð�Þ

ð1� ���2Þ2

þ �m
ð1� ���2Þ2 L

ðmÞ
�

(89)

with no dynamics for �, which becomes an auxiliary field
and can be assigned arbitrarily.
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VI. TOY MODELS

In this section we consider toy models in the context of
point particle dynamics, which help obtaining some insight
into the singularities of the first and second kind of scalar-
tensor theories.

Let us first consider the point particle action

S ¼
Z
dtLðxðtÞ; _xðtÞ; yðtÞ; _yðtÞÞ

¼
Z
dt

�
_x2fðyÞ
2

� wðyÞ _y2
2

� JðxÞ
�
; (90)

where an overdot denote differentiation with respect to the
time t, the generalized coordinates x and y mimic the
metric gab and the scalar �, respectively, the functions
fðyÞ and wðyÞ represent fð�Þ and!ð�Þ, while J represents
the matter sources. Since we are interested in the purely
gravitational sector, we will set J to zero in most of the
following.

The coordinate x is cyclic and the Euler-Lagrange equa-
tions d

dt ð@L@ _xi
Þ � @L

@xi
¼ 0 (i ¼ 1, 2) yield

_xfðyÞ ¼ C; (91)

wðyÞ €yþ w0ðyÞ _y2
2

þ f0ðyÞ _x2
2

¼ 0; (92)

where a prime now denotes differentiation with respect to y
and C is an arbitrary integration constant.

(i) The analogue of a singularity of the first kind
fð�Þ ¼ 0 in a domain is fðyÞ � 0 on an interval,
which implies C ¼ 0 and

wðyÞ €yþ w0ðyÞ _y2
2

¼ 0: (93)

This equation admits the first integralZ y

y0

dy0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jwðy0Þj

q
¼ C1ðt� t0Þ; (94)

where C1 and t0 are integration constants. Let us
consider now, for the sake of illustration, the choice
wðyÞ ¼ y yielding the solution

yðtÞ ¼ C2ðt� t�Þ2=3; (95)

with C2 and t� integration constants. Note that, be-
cause f � 0, there is no equation for xðtÞ and the
dynamics of this variable are lost: the initial value
problem is not well-posed because xðtÞ can be as-
signed arbitrarily and is not determined uniquely by
initial data ðx0; _x0Þ at an initial time t0.

(ii) Let us consider now the situation in which fðyÞ
vanishes at isolated points y� mimicking the critical
scalar field values ��. Then, in the system (91) and
(92), either C ¼ 0 or else _x! 1 as y! y�. If C �
0, then _x ¼ C=fðyÞ ! �1 as fðyÞ ! 0� and, there-
fore, also xðtÞ ! �1 or the solution is not of class

C1 and its derivative does not exist. In the first case, a
barrier separates the regions fðyÞ> 0 and fðyÞ< 0,
however special solutions which traverse the barrier
y ¼ y� can in principle exist.
If C ¼ 0, an exceptional solution xðtÞ ¼ const,

yðtÞ ¼ C2ðt� t�Þ2=3 passes through this barrier,
however this corresponds to the special value C ¼
0 and it disappears when C � 0.

(iii) Let us consider now the case wðyÞ � 0 on an inter-
val, corresponding to a singularity of the second kind
f1ðyÞ ¼ 0 on a domain. Then, we are left with

_xfðyÞ ¼ C; (96)

_xf0ðyÞ ¼ 0: (97)

From Eq. (97), either xðtÞ ¼ const and then it must
be C ¼ 0 with no equation left to determine yðtÞ, or
the equation f0ðyÞ ¼ 0 is an algebraic (or transcen-
dental, but not a differential) equation that deter-
mines constant values y� of y (if it admits roots).
Assuming that fðy�Þ � 0, then x�ðtÞ ¼ C

fðy�Þ tþ x0.

The solutions ðx�ðtÞ; y�ðtÞÞ, if they exist, are the
only ones and correspond to exceptional initial con-
ditions and, in this sense, there are no dynamics for
y.

(iv) We can now consider the situation in which wðyÞ
vanishes at isolated points yc, mimicking isolated
singularities of the second kind f1ð�cÞ ¼ 0.
Consider, for example, the choice wðyÞ ¼ y, fðyÞ ¼
y� 1, for which the system (91) and (92) reduces to

_xðy� 1Þ ¼ C; (98)

y €yþ _y2

2
þ ðy� 1Þ _x

2

2
¼ 0: (99)

Assuming that y is not identically unity, it is y €yþ
_y2

2 þ C2

2ðy�1Þ ¼ 0; at y ¼ 0 one has _yc ¼ �C and one

cannot assign arbitrary initial conditions on the ‘‘hy-
persurface’’ analogue y ¼ 0, but only the initial data
ðx0; _x0; y0; _y0Þ ¼ ðx0;�C; 0;�CÞ are allowed there,
where C and x0 are arbitrary constants. The region
allowed to the dynamics in the four-dimensional
space ðx0; _x0; y0; _y0Þ is only two-dimensional, due
to the presence of the first integral (91) and of the
additional first integral [53]

wðyÞ _y2
2

� C2

2fðyÞ ¼ H ¼ const (100)

If a solution attains the critical value y ¼ 0, it must
assume the values ðx0; _x0; y0; _y0Þ ¼ ðx0;�C; 0;�CÞ
there, for which the ‘‘energy’’ H can only take the
values
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H ¼ C2

2
½wð0Þ þ 1� (101)

(where Eq. (91) has been used) everywhere along the
orbits of the solutions.

A. The analogue of the Einstein frame

Let us consider again the toy model action (90); the
transformation to the Einstein frame for scalar-tensor grav-
ity is a change of variables modeled by the transformation
ðx; yÞ ! ð�; �Þ defined by

d� ¼
ffiffiffiffiffiffiffiffiffi
fðyÞ

q
dx; (102)

d� ¼
ffiffiffiffiffiffiffiffiffiffi
wðyÞ

q
dy: (103)

In terms of these new variables, the action (90) is rewritten
in the canonical form

S ¼
Z
dt

� _�2

2
� _�2

2
� Jðxð�; yÞÞ

�
; (104)

which mimics the Einstein frame representation of the
scalar-tensor action with the matter sources J now depend-
ing on both the ‘‘new metric’’ � and the ‘‘scalar field’’ (y,
or � through yð�Þ). Zeros of either fðyÞ or wðyÞ make the
analog of the conformal transformation plus scalar field
redefinition (102) and (103) ill-defined. Moreover, if
fðyÞ � 0 and only wðyÞ vanishes, one can still consider
an ‘‘Einstein frame’’ representation with the variables �
and y, in terms of which the action is simply

S ¼
Z
dt

� _�2

2
� Jð�; yÞ

�
: (105)

It is clear that, similar to the case considered before for
scalar-tensor gravity, there are no dynamics for the variable
y, which can be assigned arbitrarily [54]. This is bad news
if this variable plays a physical role because there are no
equations to rule it and it can only be assigned from outside
the theory, which is akin to invoking a miracle to produce
any effect that one may desire and results in a complete
loss of predictive power for the theory.

B. Singular points of ODEs

To conclude this section, we comment on the fact that, in
the theory of ordinary differential equations (ODEs), it is
rather common to encounter situations in which the phase
space is divided into two disconnected regions, with only
exceptional solutions, or a restricted submanifold of solu-
tions, crossing the boundary between these two regions.
Consider, for example, the ODE

t2 €y� 2y ¼ 0; (106)

which has t ¼ 0 as a regular singular point. Two linearly
independent solutions are

y1ðtÞ ¼ t2; y2ðtÞ ¼ 1

t
: (107)

The first solution crosses undisturbed the t ¼ 0 ‘‘barrier’’,
while the second cannot (that is, t ¼ 0 is a barrier to at least
some of the solutions). Consider also the third solution in
ð�1; 0Þ [ ð0;þ1Þ

y3ðtÞ ¼
�
0 if t � 0;
t2 if t � 0:

(108)

y3 is continuous with its first derivative at t ¼ 0 (but the
second derivative is not defined there). Now, y1ðtÞ and y3ðtÞ
are linearly independent solutions which satisfy the same
initial conditions ðyð0Þ; _yð0ÞÞ ¼ ð0; 0Þ at t ¼ 0. These two
otherwise distinct solutions intersect at the origin of the
phase space, which signals the breakdown of the initial
value formulation at t ¼ 0. It is not surprising, therefore,
that for the more complicated systems of partial differen-
tial equations ruling scalar-tensor theories, the Cauchy
problem breaks down at the analogue of singular points
of the equations. Depending on the particular form of the
coupling functions fð�Þ and!ð�Þ, special solutions cross-
ing the barrier may or may not exist. The situation in ODE
theory in which no such special solution exists is exempli-
fied by the equation

t2 €yþ 5t _yþ 3y ¼ 0: (109)

For t > 0 and for t < 0, two linearly independent solutions
are y1ðtÞ ¼ 1=t and y2ðtÞ ¼ 1=t3. No choice of the arbitrary
constants C1;2 in the general solution

yðtÞ ¼ C1

t
þ C2

t3
(110)

in ð�1; 0Þ [ ð0;þ1Þ produces a solution crossing the
barrier t ¼ 0.

VII. CONCLUSIONS

In principle, two kinds of singularities for the Cauchy
problem are possible in general scalar-tensor theories:
those (‘‘first kind’’) at which fð�Þ ¼ 0, and those (‘‘second
kind’’) at which f1ð�Þ ¼ 0. Although statements that these
should be rejected outright have been voiced in the litera-
ture [23], solutions corresponding to critical values of the
BD-like scalar field of both first [24,27,30,38,52] and
second kind [24,25,28,31,52] have been studied in the
literature. Critical points of the second kind may appear
benign when studied in a spatially homogeneous and iso-
tropic FLRW universe, but they reveal their true nature of
geometrical singularities when analyzed in anisotropic
Bianchi models [25,28,31,52]. Here, following recent de-
velopments in the theory of the Cauchy problem of scalar-
tensor gravity, we have shown that the latter is not well-
posed at any of those critical points. The solutions are not
unique and the physics becomes unpredictable. Physically,
this is associated to a change in sign of the effective
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gravitational coupling (19), which diverges at both kinds of
critical points. It seems that nature abhors such changes
from attractive to repulsive gravity (and vice-versa) which,
formally, only take place through a singularity of Geff .
This, however, says nothing about exotic forms of matter
which can source repulsive gravity through the field equa-
tions, a completely different and seemingly perfectly le-
gitimate mechanism from the mathematical point of view
(although the violation of all the energy conditions would
certainly be questionable on physical grounds).

To conclude, we remark that a possible cure for the
problem of Palatini fðRÞ gravity (already outlined in
Refs. [25,47,52]) could be the insertion into the gravita-

tional action of terms that introduce higher order deriva-
tives into the field equations. Then, the dropping out ofh�
from the field equations will be immaterial. However,
unless such higher derivative terms appear in the Gauss-
Bonnet combination, they will introduce ghost fields. A
study of the initial value problem for these Gauss-Bonnet-
corrected theories will be presented elsewhere.
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[23] G. Esposito-Farése and D. Polarski, Phys. Rev. D 63,
063504 (2001).

[24] T. Futamase and K. Maeda, Phys. Rev. D 39, 399 (1989).
[25] T. Futamase, T. Rothman, and R. Matzner, Phys. Rev. D

39, 405 (1989).
[26] Y. Hosotani, Phys. Rev. D 32, 1949 (1985).
[27] A. Linde, JETP Lett. 30, 447 (1980).
[28] A. A. Starobinsky, Sov. Astron. Lett. 7, 36 (1981).
[29] K. A. Bronnikov and Yu.N. Kireev, Phys. Lett. A 67, 95

(1978).
[30] C. Barcelo and M. Visser, Classical Quantum Gravity 17,

3843 (2000).
[31] L. R. Abramo, L. Brenig, E. Gunzig, and A. Saa, Phys.

Rev. D 67, 027301 (2003); Int. J. Theor. Phys. 42, 1145
(2003).

[32] V. Faraoni, Phys. Rev. D 70, 047301 (2004).
[33] S.W. Hawking and G. F. R. Ellis, The Large Scale

Structure of Spacetime (CUP, Cambridge, England, 1973).
[34] A. R. Liddle and D. Wands, Phys. Rev. D 45, 2665 (1992).
[35] D. F. Torres and H. Vucetich, Phys. Rev. D 54, 7373

(1996).
[36] K. Nodvedt, Phys. Rev. D 169, 1017 (1968).
[37] B. Boisseau, G. Esposito-Farese, D. Polarski, and A.A.

Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).
[38] E. Gunzig, A. Saa, L. Brenig, V. Faraoni, T.M. Rocha

Filho, and A. Figueiredo, Phys. Rev. D 63, 067301 (2001);
A. Saa, E. Gunzig, L. Brenig, V. Faraoni, T.M. Rocha

Filho, and A. Figueiredo, Int. J. Theor. Phys. 40, 2295
(2001); E. Gunzig, V. Faraoni, A. Figueiredo, T.M. Rocha
Filho, and L. Brenig, Classical Quantum Gravity 17, 1783
(2000).

[39] V. Faraoni, Int. J. Mod. Phys. D 11, 471 (2002).
[40] T. Damour and G. Esposito-Farèse, Classical Quantum
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