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We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with

the Gödel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no

closed timelike curve outside the black hole horizons. At infinity, the space-time is effectively four-

dimensional. Each horizon admits various lens space topologies Lðn; 1Þ ¼ S3=Zn in addition to a round

S3. The space-time can have outer ergoregions disjointed from the black hole horizons, as well as inner

ergoregions attached to each horizon. We discuss the rich structures of ergoregions.
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I. INTRODUCTION

In recent years, Kaluza-Klein black hole solutions have
been studied by many authors in the context of string
theory. Since Kaluza-Klein black hole solutions have com-
pactified extra dimensions, the space-time effectively be-
haves as four dimensions at infinity. The first Kaluza-Klein
black hole solutions with an extra twisted S1 were found by
Dobiasch and Maison [1] as vacuum solutions to the five-
dimensional Einstein equation, and the features of the
black hole were investigated by Gibbons and Wiltshire
[2]. The static charged Kaluza-Klein black holes were
also found in the five-dimensional Einstein-Maxwell the-
ory [3] and were generalized to the rotating case as the
solutions in the five-dimensional Einstein-Maxwell theory
with a Chern-Simons term [4]. Supersymmetric rotating
Kaluza-Klein black hole solutions were found by Gaiotto,
Strominger, and Yin [5] and Elvang et al. [6]. Supersym-
metric static multi-Kaluza-Klein black hole solutions were
also constructed [7]. These solutions were constructed on
the self-dual Euclidean Taub-NUT space in the framework
of Gauntlett et al.’s classification of the five-dimensional
supersymmetric solutions [8]. In these solutions, at infinity,
the space-times asymptote to a twisted S1 bundle over the
four-dimensional Minkowski space-time. Exact Kaluza-
Klein black hole solutions which asymptote to the direct
product of the four-dimensional Minkowski space-time
and an S1 were also constructed [9–11].

The squashing transformation [3,4,12] is a useful tool to
generate Kaluza-Klein black hole solutions from the class
of cohomogeneity-one black hole solutions with the as-
ymptotically flatness. Actually, Wang [12] regenerated the
five-dimensional Kaluza-Klein black hole solution found
by Dobiasch and Maison [1] from the five-dimensional
Myers-Perry black hole solution with two equal angular

momenta [13]. Applying the squashing transformation to
the charged rotating black hole solutions with two equal
angular momenta [14] in the five-dimensional Einstein-
Maxwell theory with a Chern-Simons term, the present au-
thors obtained the new Kaluza-Klein black hole solution
[4] in the same theory. This is the generalization of the
Kaluza-Klein black hole solutions in Refs. [1–3], and it
describes a nonsupersymmetric black hole boosted in the
direction of the extra dimension. One of the interesting
features of the solution is that the horizon admits a prolate
shape in addition to a round S3 by the effect of the rotation
of black hole.
In the previous work [15], applying this squashing trans-

formation to nonasymptotically flat Kerr-Gödel black hole
solutions [16], we also constructed a new type of rotating
Kaluza-Klein black hole solutions to the five-dimensional
Einstein-Maxwell theory with a Chern-Simons term.
Though the Kerr-Gödel black hole solutions have closed
timelike curves in the region away from the black hole, the
squashed Kerr-Gödel black hole solutions have no closed
timelike curve outside the black hole horizons. In addition,
the solution has two kinds of rotation parameters in the
same direction of the extra dimension. These two indepen-
dent parameters are associated with the rotations of the
black hole and the Universe. In the absence of a black hole,
the solution describes the Gross-Perry-Sorkin monopole
which is boosted in the direction of an extra dimension and
has an ergoregion by the effect of the rotation of the
Universe.
In this paper, taking a limit of parameters in the charged

version of squashed Kerr-Gödel black hole solutions intro-
duced in the appendix of Ref. [15], we construct new
supersymmetric rotating Kaluza-Klein black hole solutions
to the five-dimensional Einstein-Maxwell theory with a
Chern-Simons term. These can be regarded as solutions
generated by the squashing transformation of the super-
symmetric Kerr-Newman-Gödel black hole solutions [17].
Like the squashed Kerr-Gödel black holes in [15], these
Kaluza-Klein black hole solutions have no closed timelike
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curve outside the black hole horizons. The space-time is
asymptotically locally flat; i.e., at infinity, the space-
time approaches a twisted S1 fiber bundle over a four-
dimensional Minkowski space-time. The horizons are the
round S3, unlike known supersymmetric rotating Kaluza-
Klein black hole solutions, where they are the squashed S3.
We also generalize these solutions to multi-black hole
solutions. In particular, we study two-black hole solutions.
As will be shown later, each horizon admits various lens
space topologies Lðn; 1Þ ¼ S3=Zn (n: natural numbers) in
addition to an S3 and ergoregions have rich structures.

The rest of this paper is organized as follows. First,
following the results of classification of solutions of the
five-dimensional minimal supergravity [8], in Sec. II,
we construct general solutions on the Gibbons-Hawing
space, which is the Taub-NUT space in the special case.
In Sec. III, we present a new supersymmetric single-black
hole solution on the Taub-NUT space. In Sec. IV, we study
the multi-black hole solutions, in particular, the two-black
hole case. We conclude our article with a discussion in
Sec. V.

II. SOLUTIONS

We consider the five-dimensional Einstein-Maxwell sys-
tem with a Chern-Simons term. The action is given by

S ¼ 1

16�G5

Z
d5x

ffiffiffiffiffiffiffi�gp �
R� F��F

��

� 2

3
ffiffiffi
3

p ð ffiffiffiffiffiffiffi�gp Þ�1������A�F��F��

�
; (1)

where R is the five-dimensional scalar curvature, F ¼ dA
is the 2-form of the five-dimensional gauge field associated
with the gauge potential 1-form A, and G5 is the five-
dimensional Newton constant. Varying the action (1), we
can derive the Einstein equation

R�� � 1
2Rg�� ¼ 2ðF��F�� � 1

4g��F��F
��Þ (2)

and the Maxwell equation

F��;� þ 1

2
ffiffiffi
3

p ffiffiffiffiffiffiffi�gp ������F��F�� ¼ 0: (3)

We construct rotating multi-black hole solutions satisfy-
ing Eqs. (2) and (3). The forms of the metric and the gauge
potential 1-form are

ds2 ¼ �H�2½dtþ �V	ðd
 þ!Þ�2 þHds2GH; (4)

A ¼
ffiffiffi
3

p
2
H�1½dtþ �V	ðd
 þ!Þ�; (5)

where the function H and the metric ds2GH are given by

H ¼ 1þX
i

Mi

jR�Rij ; (6)

ds2GH ¼ V�1ds2
E3
þ Vðd
 þ!Þ2; (7)

V�1 ¼ �þX
i

Ni
jR�Rij ; (8)

respectively, where ds2
E3

¼ dx2 þ dy2 þ dz2 is a metric on

the three-dimensional Euclid space E3 and R ¼ ðx; y; zÞ
denotes a position vector on E3. The function V�1 is a
harmonic function on E3 with point sources located at R ¼
Ri :¼ ðxi; yi; ziÞ, where the Killing vector field @
 has fixed
points in the base space. The 1-form !, which is deter-
mined by

r �! ¼ rV�1; (9)

has the explicit form

! ¼ X
i

Ni
z� zi

jR�Rij
ðx� xiÞdy� ðy� yiÞdx
ðx� xiÞ2 þ ðy� yiÞ2

; (10)

whereMi, Ni, and � are constants, 	 ¼ �1, and � ¼ 0; 1.
The base space (7) with Eqs. (8) and (10) is often called
the Gibbons-Hawking space. In particular, the Gibbons-
Hawking space with � ¼ 1, N1 � 0, and Ni ¼ 0 (i � 2) is
the self-dual Euclidean Taub-NUT space, and the space
with � ¼ 0, N1 � 0, and Ni ¼ 0 (i � 2) is the four-
dimensional Euclid space.
The solutions (4)–(10) coincide with several known

black hole solutions. For example, multi-black hole solu-
tions on the multicentered-Taub-NUT space [7] are ob-
tained by 	 ¼ �1, � ¼ 1, and � ¼ 0. Multiblack hole
solutions on the multicentered Eguchi-Hanson spaces
[18] are obtained by setting 	 ¼ �1, � ¼ 0, and � ¼ 0.
Restricting the solutions (4) to the case with 	 ¼ 1 and

� ¼ 1, we can obtain new black hole solutions. To avoid
the existence of singularities and closed timelike curves
outside the black hole horizons, we choose the parameters
such that

Mi > 0; Ni > 0; 0 � �2 < 1: (11)

See Appendix A about the detail discussion.

III. SINGLE BLACK HOLE WITH
GÖDEL ROTATION

First, we study the case of a single black hole, i.e., the
case of M1 ¼ M, N1 ¼ N, and Mi ¼ Ni ¼ 0 (i � 2).

A. Metric and gauge potential

In the single-black hole case, the metric (4) and the
gauge potential 1-form (5) are expressed in the form

ds2 ¼ �H�2½dtþ �Vðd
 þ N cos�d�Þ�2
þH½V�1ðdR2 þ R2d�2

S2
Þ þ Vðd
 þ N cos�d�Þ2�;

(12)

A ¼
ffiffiffi
3

p
2
H�1½dtþ �Vðd
 þ N cos�d�Þ�; (13)
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where the functions H and V�1 can be written as

H ¼ 1þM

R
; V�1 ¼ 1þ N

R
; (14)

respectively. d�2
S2

¼ d�2 þ sin2�d�2 denotes the metric

of the unit two-sphere. The coordinates run the ranges of
�1< t <1, �M<R<1, 0 � � � �, 0 � � � 2�,
and 0 � 
 � 2�L. From the requirements for the absence
of naked singularities and closed timelike curves outside
the black hole horizon, the parameters are restricted to
the region

M> 0; N > 0; 0 � �2 < 1: (15)

The constant N is related to the size of the compactified
radius L at infinity by

N ¼ L

2
n; (16)

where n is a natural number.
When the parameter � vanishes, the metric (12) and the

gauge potential 1-form (13) coincide with the extreme case
of the static charged Kaluza-Klein black hole solution [3].

It should be noted that this solution (12) with n ¼ 1
coincides with a limiting solution of the squashed Kerr-
Newman-Gödel black hole solution [15] by putting the
parameters as

m ¼ �q; a ¼ �2jq (17)

and by identifying the coordinates and parameters as

t ¼ r21 �m

r21
T; R ¼ r1

2

r2 �m

r21 � r2
; M ¼ m

2r1
;

N ¼ r1
2
; � ¼ 2jðr21 �mÞ2

r31
: (18)

About the explicit form of the squashed Kerr-Newman-
Gödel black hole solution, readers should see Appendix B
in this article.

B. Asymptotic structure and asymptotic charge

Introduce a new coordinate  :¼ 2
=L with the period-
icity of � ¼ 4�. In the neighborhood of infinity, R ¼ 1,
the metric (12) behaves as

ds2 ’ �d~t2 þ dR2 þ R2d�2
S2

þ L2

4
ð1� �2Þ

�
d ~ 

n
þ cos�d�

�
2
; (19)

where we introduced the following coordinates ð~t; ~ Þ:
~t ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p ; ~ ¼  � �t

Nð1� �2Þ ; (20)

which are chosen so that they are in the rest frame at the
infinity. The asymptotic structure of the solution (12) is an

asymptotically locally flat; i.e., the metric asymptotes to a
twisted constant S1 fiber bundle over the four-dimensional
Minkowski space-time, and the spatial infinity has the
structure of an S1 bundle over an S2 such that it is the
lens space Lðn; 1Þ ¼ S3=Zn.
The Komar mass associated with the timelike Killing

vector field @~t at infinityM, the charge at infinityQ, and the
angular momenta associated with the spacelike Killing
vector fields @� and @ ~ at infinity J� and J ~ can be ob-

tained as

M ¼ 3L½ð�2 þ 2ÞMþ �2N�
8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
G5

AS3

n
; (21)

Q ¼
ffiffiffi
3

p
LM

2�G5

AS3

n
; (22)

J� ¼ 0; (23)

J ~ ¼ ��L2ð3Mþ �2NÞ
8�G5

AS3

n
; (24)

where AS3 denotes the area of a unit S
3.

C. Horizon

A black hole horizon exists at the position of the source
for the harmonic functions H and V�1, i.e., R ¼ 0. In the
coordinate system ðt; R; �;�; 
Þ, the metric (12) diverges
apparently at R ¼ 0. In order to remove this apparent
divergence, we introduce a new coordinate v such that

dv ¼ dt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þM

R

�
3
�
1þ N

R

�s
dR: (25)

Then, near R ¼ 0, the metric (12) behaves as

ds2 ’ �2

ffiffiffiffiffi
N

M

s
dvdRþMN

�
d�2

S2
þ

�
d


N
þ cos�d�

�
2
�

þOðRÞ: (26)

This metric well behaves at the null surface R ¼ 0. The
Killing vector field V ¼ @v becomes null at R ¼ 0, and V
is hypersurface orthogonal from V�dx

� ¼ gvRdR at the

place. Therefore the hypersurface R ¼ 0 is a Killing hori-
zon. In the coordinate system ðv; R; �;�; 
Þ, each compo-
nent of the metric is analytic in the region of R � 0. Hence
the space-time has no curvature singularity on and outside
the black hole horizon.
The induced metric on the three-dimensional spatial

cross section of the black hole horizon located at R ¼ 0
with the time slice is obtained as

ds2jR¼0;v¼const ¼ LMn

2

�
d�2

S2
þ

�
d 

n
þ cos�d�

�
2
�

¼ 2LMnd�2
S3=Zn

; (27)
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where d�2
S3=Zn

denotes the metric on the lens space

Lðn; 1Þ ¼ S3=Zn with a unit radius. In particular, in the
case of n ¼ 1, the shape of the horizon is a round S3 in
contrast to Gaiotto et al.’s supersymmetric black holes [5].

D. Ergoregions

Here we investigate the number and the structure of the
ergoregions. As is discussed in Ref. [15], the space-time
admits a considerable rich structure by two kinds of rota-
tions of black holes and the background.

For the solution (12), the ergosurfaces are located at R
satisfying the equation fðRÞ :¼ ð1� �2ÞðRþMÞ2 �
ðRþ NÞ2gtt ¼ 0, where the explicit form of the function
fðRÞ is given by

fðRÞ ¼ �ð1� �2ÞR4 þ ½3ðMþ NÞ�2 � 2N�R3

þ ½3M�2ðMþ NÞ � N2ð1� �2Þ2�R2

þM2ðMþ 3NÞ�2RþM3N�2: (28)

Note that fð0Þ ¼ M3N�2 > 0 and fð1Þ< 0 for the
regions of parameters (15). Hence there always exists an
ergoregion around the black hole horizon. Furthermore,
within the parameter region ðM;N;�Þ satisfying the in-
equalities fðR1ÞfðR2ÞfðR3Þ< 0 and f0ðRþÞf0ðR�Þ< 0,
which is shown in Fig. 1, there are two disconnected
ergoregions, inner (0 � R � RII) and outer (RIII � R �
RIV) ergoregions, where Ri (i ¼ 1; 2; 3, R1 < R2 < R3),
R� (R� < Rþ), and R
 (
 ¼ I; . . . ; IV, RI < RII < RIII <

RIV) are three different positive roots of f0ðRÞ ¼ 0, two
different positive roots of f00ðRÞ ¼ 0, and four different
roots of fðRÞ ¼ 0, respectively. The inner ergoregion is

inside a sphere which contains the black hole horizon. The
outer ergoregion has a shape of shell ergoshell, which is
disjoint from the inner ergoregion. There exists a normal
region between the inner and the outer ergoregions.
The angular velocities of the locally nonrotating observ-

ers are obtained as

�� ¼ 0;

�~ ¼ �2
�2NR3 þMðRþ NÞðM2 þ 3MRþ 3R2Þ
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
½ðRþMÞ3ðRþ NÞ � �2R4� �:

(29)

From these equations, two disconnected ergoregions of the
solution (12) always rotate in the same direction in contrast
to the squashed Kerr-Gödel black hole solutions [15],
which two ergoregions can also rotate in opposite direc-
tions. The angular velocities of the horizon R ¼ 0 are

�H� ¼ 0; �H~ ¼ � 2�

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : (30)

IV. TWO ROTATING BLACK HOLES

For simplicity, we restrict ourselves to the two-black
hole case, i.e., Mi ¼ Ni ¼ 0 (i � 3). Without loss of gen-
erality, we can put the locations of two point sources as
R1 ¼ ð0; 0; dÞ and R2 ¼ ð0; 0;�dÞ, where the constant 2d
denotes the separation between two black holes.

A. Metric

In this case, the metric is given by

ds2 ¼ �H�2½dtþ �Vðd
 þ!Þ�2
þH½V�1ðdR2 þ R2d�2

S2
Þ þ Vðd
 þ!Þ2�; (31)

where the functions H and V�1 and the 1-form ! are

H ¼ 1þ M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2dR cos�þ d2

p

þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2dR cos�þ d2

p ; (32)

V�1 ¼ 1þ N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2dR cos�þ d2

p

þ N2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2dR cos�þ d2

p ; (33)

! ¼
�
N1

R cos�� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2dR cos�þ d2

p

þ N2

R cos�þ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2dR cos�þ d2

p
�
d�: (34)

The constants Ni (i ¼ 1; 2) are related to the size of the
compactified radius L at infinity by

FIG. 1. This figure shows a region of parameters for the solu-
tion (12) with two disconnected ergoregions.
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Ni ¼ L

2
ni; (35)

where ni (i ¼ 1; 2) are the natural numbers.

B. Near horizon

The metric diverges at the locations of two point
sources, i.e., R ¼ R1 and R ¼ R2. We make the coordi-
nate transformation so that R1 ¼ 0 and R2 ¼ ð0; 0;�2dÞ.
Then the functions H and V�1 and the 1-form ! in the
metric and the gauge potential take the following forms:

H ¼ 1þM1

R
þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 4dR cos�þ 4d2
p ; (36)

V�1 ¼ 1þ N1

R
þ N2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 4dR cos�þ 4d2
p ; (37)

! ¼
�
N1 cos�þ N2

R cos�þ 2dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 4dR cos�þ 4d2

p
�
d�; (38)

respectively.
In order to remove this apparent divergence at R ¼

R1 ¼ 0, we introduce new coordinates ðv; 
 0Þ such that

dv ¼ dt�
�½3ð2dþM2ÞN1 þM1ð2dþ N2Þ�

ffiffiffiffiffiffiffi
M1

p
4d

ffiffiffiffiffiffi
N1

p
R

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M3

1N1

q
R2

�
dR; (39)

d
 0 ¼ d
 þ N2d�: (40)

Then, near R ¼ 0, the metric (31) behaves as

ds2 ’ �2

ffiffiffiffiffiffiffi
N1

M1

s
dvdRþM1N1

��
d
 0

N1

þ cos�d�

�
2 þ d�2

S2

�

þ
�
3N1ð2dþM2Þ½N1ð2dþM2Þ þ 2M1ð2dþ N2Þ� �M2

1ð2dþ N2Þ2
16d2M1N1

� 3M2N1 þM1N2

4d2
cos�

�
dR2: (41)

This metric well behaves at the null surface R ¼ 0. In this
case, gvv ¼ 0 and ð@vÞ�dx� ¼ gvRdR also hold at R ¼ 0.
Therefore, the Killing vector field @v becomes null and is
hypersurface orthogonal at this place. So the hypersurface
R ¼ 0 is a Killing horizon. From the same discussion, the
other point source R ¼ R2 also corresponds to a Killing
horizon.

Note that @
 ¼ @
 0 . So the periodic coordinate 

0 has the

same periodicity as 
 . Then the induced metric on the ith
horizon (i ¼ 1; 2) is

ds2jith horizon ¼ LMini
2

��
d 0

ni
þ cos�d�

�
2 þ d�2

S2

�
;

(42)

where 0 �  0 ¼ 2
 0=L � 4�. Hence the horizon is topo-
logically the lens space Lðni; 1Þ ¼ S2=Zni .

C. Asymptotic structure

In the neighborhood of infinity, R ¼ 1, the harmonic
functions H and V�1 behave as ones with a single point
source, i.e.,

H ’ 1þ
P
i Mi

R
þO

�
1

R2

�
; (43)

V�1 ’ 1þ
P
i Ni
R

þO
�
1

R2

�
: (44)

Then the 1-form ! is asymptotically

! ’
�X

i

Ni

�
cos�d�þO

�
1

R

�
: (45)

Hence the metric asymptotically behaves as

ds2 ’ �d~t2 þ dR2 þ R2d�2
S2

þ L2

4
ð1� �2Þ

�
d � P
i ni

þ cos�d�

�
2
; (46)

where we introduced the following coordinates ð~t; � Þ:

~t ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; � ¼  � �tP
i Nið1� �2Þ ; (47)

which are chosen so that they are in the rest frame at
infinity. The asymptotic structure of the solution (31) is
asymptotically locally flat; i.e., the metric asymptotes to a
twisted constant S1 fiber bundle over the four-dimensional
Minkowski space-time, and the spatial infinity has the
structure of an S1 bundle over an S2 such that it is the
lens space Lðn; 1Þ ¼ S3=Zn, where n ¼ P

ini is the natural
number.
From the asymptotic behavior of the metric, we can

obtain the Komar mass, the charge, and the Komar angular
momenta at spatial infinity as

M ¼ 3L½ð�2 þ 2ÞPi Mi þ �2
P
i Ni�

8�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
G5

AS3

n
; (48)
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FIG. 2. Ergoregions (shaded regions) in varying �2. d ¼ 0:2 and �2 ¼ 0:717 184� 0:73.
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Q ¼
ffiffiffi
3

p
L
P
i Mi

2�G5

AS3

n
; (49)

J� ¼ 0; (50)

J ~ ¼ ��L2ð3Pi Mi þ �2
P
i NiÞ

8�G5

AS3

n
: (51)

D. Ergoregions

For simplicity, assume that two black holes have
equal mass and the horizon topology of S3, which
correspond to the choice of the parameters M1 ¼ M2 and
N1 ¼ N2 ¼ L=2. The ergosurfaces are located at R satis-
fying the equation

�H�2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
þ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p V

�
2 þ �2

1� �2
HV ¼ 0:

(52)

Introduce the coordinates ðx; yÞ defined by x ¼ R cos�
and y ¼ R sin�. Figures 2 and 3 show how the ergoregions
change the shapes in a ðx; yÞ plane as the rotation parameter
� varies with the other parameters fixed in the cases of the
separation parameter d ¼ 0:2 and d ¼ 1, respectively.
Here the horizontal axis and the vertical axis denote the x
axis and the y axis, respectively. In these figures, the
shaded regions denote the ergoregions, i.e., the regions
such that the left-hand side of Eq. (52) is positive. Two
black holes are located at ð�d; 0Þ in this plane.
First, see Fig. 2—the case of d ¼ 0:2. There exists an

ergoregion around each rotating black hole when � is
small. When �2 ’ 0:717 188, a new ergoregion in the

FIG. 3. Ergoregions in varying �2. d ¼ 1 and �2 ¼ 0:717� 0:73.
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shape of a shell enclosing two black holes appears far away
from them. There is an inner normal region between the
ergoshell and the two inner ergoregions. As the value of �
gets larger, the outer ergoshell becomes thick. When �2 ’
0:728, the inner normal region becomes disconnected.
When �2 ’ 0:7293, the outer ergoshell and the two inner
ergoregions merge, and the inner normal region disappears.

See also Fig. 3—the case of d ¼ 1. In this case, when
�2 ’ 0:717 188, in contrast to the previous case, two dis-
connected outer ergoshells appear around each black hole.
When �2 ’ 0:720 405 they merge together.

Next, Fig. 4 shows how the shapes of ergoregions
change with varying the separation parameter d, where
the other parameters are kept unchanged. When the sepa-

ration is large enough, there exist two disconnected outer
ergoshells and two inner ergoregions around each black
hole. When two black holes become closer, two outer
ergoshells are connected with each other into a single large
outer ergoshell. There are two inner normal regions around
each black hole. When the separation becomes smaller, the
inner normal regions join together. Finally, two inner ergo-
regions around two black holes also join together.

V. SUMMARYAND DISCUSSION

We have considered the limiting case given by (17) in
the Kaluza-Klein-Kerr-Newman-Gödel black hole solu-
tions [15] and have presented supersymmetric Kaluza-

FIG. 4. Ergoregions in varying d. d ¼ 1� 0 and �2 ¼ 0:72.
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Klein-Kerr-Newman-Gödel multi-black hole solutions,
in the five-dimensional Einstein-Maxwell theory with a
Chern-Simons term. The new solutions have no closed
timelike curve everywhere outside the black hole hori-
zons. At infinity, the metric asymptotically approaches a
twisted S1 bundle over the four-dimensional Minkowski
space-time.

Though the Kerr parameter and the Gödel parameter are
related, each black hole can have an inner ergoregion and
an outer ergoshell depending on the parameter. We have
explicitly presented the various shapes of ergoregions in
the case of two black holes.

The solutions (4)–(10) can be easily generalized to
solutions with a positive cosmological constant �> 0. In
this solution, the harmonic function (6) is replaced by

H ¼ �tþX
i

Mi

jR� Rij ; (53)

where the constant � is related to the cosmological con-

stant by � ¼ �2
ffiffiffiffiffiffiffiffiffi
�=3

p
. In particular, in the case with

	 ¼ �1 and � ¼ 0, the solutions coincide with five-
dimensional Kastor-Traschen solutions (� ¼ 0) [19] or
Klemm-Sabra solutions (� � 0) [20], which describes
the coalescences of black holes with the horizon topologies
of S3 into a single black hole with the horizon topology of
S3. In the case of two black holes with Mi � 0, Ni � 0
(i ¼ 1; 2),Mj ¼ Nj ¼ 0 (j � 3), 	 ¼ �1, and � ¼ 0, the

solution describes the coalescence of two rotating black
holes with the horizon topologies of S3 into a single rotat-
ing black hole with the horizon topology of the lens space
Lð2; 1Þ ¼ S3=Z2 [21]. Cosmological nonrotating multi-
black hole solutions on the multicentered-Taub-NUT space
are obtained by setting � ¼ 0, 	 ¼ �1, and � ¼ 1 [22].
This solution is not static even in a single-black hole case.
In the case of 	 ¼ 1, the solution with the harmonic
function (53) would also describe the coalescence of black
holes. We leave the analysis for the future.
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APPENDIX A: PARAMETER REGION

Here we show that the inequality 0 � �2 < 1 under
Mi > 0 and Ni > 0 is the necessary and sufficient condi-
tion for the absence of closed timelike curves outside the
horizons.

Assume that all point sources are located at the z axis,
i.e., � ¼ 0; � on the three-dimensional Euclid space in the
Gibbons-Hawking space. In this case, the 1-form ! is

proportional to d�. The condition of the absence of closed
timelike curves outside the horizons is equivalent to the
condition that the two-dimensional ð�; 
Þ part of the metric

ds2jð�;
Þ ¼ Aðd
 þ!Þ2 þ Bd�2 (A1)

is positive-definite, where

A ¼ HV � �2H�2V2; (A2)

B ¼ HV�1R2sin2�: (A3)

This metric is positive-definite if and only if the follow-
ing two-dimensional matrix is positive-definite:

M ¼ A 0
0 B

� �
: (A4)

Therefore, noting that B> 0, we obtain the condition

M> 0 , A > 0: (A5)

As a result, it is enough to prove that A > 0. At infinity
R! 1, the function behaves as

A ’ 1� �2 þO
�
1

R

�
: (A6)

Hence 0 � �2 < 1 is necessary. Next we show that if 0 �
�2 < 1 is satisfied with Mi > 0 and Ni > 0, there is no
closed timelike curve outside the horizons. Noting that 1<
H <1 and 1< V�1 <1 under the conditionsMi > 0 and
Ni > 0, the inequality

A ¼ HVð1� �2H�3VÞ>HVð1� �2Þ> 0 (A7)

holds everywhere outside the horizons.

APPENDIX B: SQUASHED
KERR-NEWMAN-GÖDEL

BLACK HOLES

The metric and the gauge potential of the squashed Kerr-
Newman-Gödel black hole solution [15] is given by

ds2 ¼ �fðrÞdT2 � 2gðrÞdTðd þ cos�d�Þ

þ hðrÞðd þ cos�d�Þ2 þ k2ðrÞ
VðrÞ dr

2

þ r2

4
½kðrÞd�2

S2
þ ðd þ cos�d�Þ2�; (B1)

and
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A ¼
ffiffiffi
3

p
2

�
q

r2
dT þ

�
jr2 þ 2jq� qa

2r2

�
ðd þ cos�d�Þ

�
;

(B2)

respectively, where the metric functions are

fðrÞ ¼ 1� 2m

r2
þ q2

r4
; (B3)

gðrÞ ¼ jr2 þ 3jqþ ð2m� qÞa
2r2

� q2a

2r4
; (B4)

hðrÞ ¼�j2r2ðr2þ 2mþ 6qÞþ 3jqaþðm�qÞa2
2r2

�q2a2

4r4
;

(B5)

VðrÞ ¼ 1� 2m

r2
þ 8jðmþ qÞ½aþ 2jðmþ 2qÞ�

r2

þ 2ðm� qÞa2 þ q2½1� 16ja� 8j2ðmþ 3qÞ�
r4

;

(B6)

kðrÞ ¼ Vðr1Þr41
ðr2 � r21Þ2

: (B7)

In the limit of r1 ! 1, i.e., kðrÞ ! 1, the solution coin-
cides with the Kerr-Newman-Gödel black hole solution in
Ref. [23].
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