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In this paper we study the quantum dynamics of a neutral particle in the presence of a topological

defect. We investigate the appearance of a geometric phase in the relativistic quantum dynamics of a

neutral particle which possesses permanent magnetic and electric dipole moments in the presence of an

electromagnetic field in this curved space-time. The nonrelativistic quantum dynamics are investigated

using the Foldy-Wouthuysen expansion. The gravitational Aharonov-Casher and He-McKellar-Wilkens

effects are investigated for a series of electric and magnetic field configurations.
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I. INTRODUCTION

Topological defects are predicted in some unified theo-
ries of fundamental interactions. They may have been
formed at phase transitions in the earliest history of the
Universe [1]. Examples of such topological defects are the
domain wall [2], the cosmic string [2,3], and the global
monopole [4]. In particular, cosmic strings provide a
bridge between the physical descriptions of microscopic
and macroscopic scales.

The appearance of topological phases in the quantum
dynamics of a single particle moving freely in multiply
connected space-times has been studied in a variety of
physical systems. The prototype of this phase is the elec-
tromagnetic Aharonov-Bohm one [5], which appears as a
phase factor in the wave function of an electron that moves
around a magnetic flux line. The gravitational analog of
this effect has also been studied in [6–10]. Aharonov and
Casher [11] demonstrated that a magnetic dipole acquires a
quantum phase when encircling a linear distribution of
electric charges. A classical gravitational analog of the
Aharonov-Casher effect was investigated by Resnik [12].
Also, He and McKellar [13] and, independently, Wilkens
[14] have demonstrated that the quantum dynamics of an
electric dipole in the presence of a line of magnetic mono-
poles also exhibits a geometric quantum phase.

The gravitational Aharonov-Bohm phase was also in-
vestigated by Mazur [15] for the relativistic quantum dy-
namics of particles in the presence of rotating cosmic
strings. In recent years, a series of authors investigated
the geometric phase in the presence of gravitational fields.
Cai and Papini [16,17] obtained a covariantly generalized
form of the Berry phase and applied it to a situation
involving a weak gravitational field. Corichi and Pierri
[18] studied a scalar quantum particle in the presence of
rotating cosmic strings and investigated the appearance of
the Berry geometric phase in this dynamics. Mostafazadeh

[19] also considered the relativistic Berry quantum phase
in a series of problems involving scalar particles. In [20]
the gravitational Berry phase was applied to the quantum
dynamics of scalar quantum particles in the presence of a
chiral cosmic string. Shen has carried out a series of studies
concerning the Berry geometric phase in a curved space
[21–23]. Recently, in [24] the nonrelativistic quantum
dynamics of electric and magnetic dipoles in the presence
of a cosmic string was studied. This research was moti-
vated by the intention to investigate the quantum scattering
and bound state of this dipole in the presence of an external
electromagnetic field.
In this paper we analyze the relativistic quantum dy-

namics of electric and magnetic dipoles in the presence of a
topological defect. Our intention is to investigate the in-
fluence of the gravitational field in the geometric phase of
electric and magnetic dipoles in the presence of electric
and magnetic fields. The relativistic geometric phase is
obtained for a neutral particle. The Foldy-Wouthuysen
approximation is used to investigate the gravitational
Aharonov-Casher and the He-McKellar-Wilkens geomet-
ric phases.
The structure of the paper is as follows. In Sec. II the

geometric aspects of conical space are presented. In
Sec. III we investigate the relativistic quantum dynamics
of electric and magnetic dipoles. In Sec. IV the Dirac
equation in cosmic string space-time is analyzed. In
Sec. V the Foldy-Wouthuysen approximation in the conical
background is studied. In Sec. VI the geometric quantum
phase is investigated in the nonrelativistic quantum dynam-
ics of a neutral particle in conical background. Finally, in
Sec. VII the results are discussed.

II. THE COSMIC STRING BACKGROUND

In this section we develop the structure of the curved
space-time that we work out in this paper. We consider a
cosmic string space-time, where the line element is given
by

ds2 ¼ �dt2 þ d�2 þ �2�2d’2 þ dz2; (1)
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where � is called the deficit angle and is defined as � ¼
1� 4� where � is the linear mass density of the cosmic
string. The azimuthal angle varies in the interval 0 � ’<
2�. The deficit angle can assume only values in which �<
1 (to the contrary, in [25,26], it can assume values greater
than 1, which corresponds to an anticonical space-time
with negative curvature). This geometry possesses a coni-
cal singularity represented by the following curvature ten-
sor:

R
�;’
�;’ ¼ 1� �

4�
�2ð~rÞ; (2)

where �2ð ~rÞ is the two-dimensional delta function. This
behavior of the curvature tensor is called conical singular-
ity [27]. The conical singularity gives rise to the curvature
concentrated on the cosmic string axis; in all other places
the curvature is null.

It is convenient to construct a frame which allows us to
define the spinors in the curved space-time. We can intro-

duce the frame using a noncoordinate basis �̂a ¼ ea�dx
�,

whose components ea�ðxÞ satisfy the following relation

[28,29]:

g��ðxÞ ¼ ea�ðxÞeb�ðxÞ�ab: (3)

The components of the noncoordinate basis ea�ðxÞ form a

tetrad or a vierbein. The tetrad has an inverse defined as

dx� ¼ e�a�̂
a, where

ea�e
�
b ¼ �ab; e�ae

a
� ¼ ���: (4)

For the metric corresponding to a cosmic string, we choose
the tetrad to be

ea� ¼
1 0 0 0
0 cos’ ��� sin’ 0
0 sin’ �� cos’ 0
0 0 0 1

0
BBB@

1
CCCA: (5)

The tetrad inverse to (5) has the following form:

e�a ¼
1 0 0 0
0 cos’ sin’ 0
0 � sin’

��
cos’
�� 0

0 0 0 1

0
BBB@

1
CCCA; (6)

which yields the correct flat space-time limit for � ¼ 1.
With the information about the choice of frame, we can
obtain the one-form connection!a

b ¼ !�
a
bdx

� using the

Maurer-Cartan structure equation [29]

d�̂a þ!a
b ^ �̂b ¼ 0: (7)

Hence, we obtain the following nonzero one-form connec-
tions:

!’
1
2 ¼ �!’

2
1 ¼ 1� �; (8)

Witten [30] demonstrated that the field of the cosmic string
is coupled to the complex scalar field and behaves like a

superconducting wire. This string can develop a large
current and may generate a number of interesting astro-
physical effects [2]. These defects have been suggested as
possible sources of ultrahigh energy cosmic rays [31].
Recently, the possibility of a superconducting cosmic
string which carries both current and charge has been
investigated in the literature [32–34]; these defects have
been denominated vortons [35]. In this type of supercon-
ducting cosmic string, a portion can develop a charge per
unit length �e, and the field near the topological defect is
given by

~E ¼ �e
��

�̂: (9)

If we admit the possibility of a magnetic charge, we can
consider a phenomenological model with the possibility
that a portion of the cosmic string can develop a magnetic
charge per unit length �m, and this configuration produces
a magnetic field given by

~B ¼ �m
��

�̂: (10)

Notice that, in the limit where �! 1, we obtain well-
known results for electric (magnetic) fields produced by
a linear density of electric (magnetic) charge in Minkowski
space-time.

III. RELATIVISTIC QUANTUM DYNAMICS

In this section we consider the quantum dynamics of a
neutral spin-1=2 particle with nonzero magnetic and elec-
tric dipole moments. We analyze the Dirac equation in a
curved space-time in the presence of electric and magnetic
fields. The Dirac equation with a nonminimal coupling of
the spinor to the electromagnetic field embedded in a
classical gravitational field is given by

i	�r� þ�

2
���F�� � i

d

2
���	5F�� �m ¼ 0;

(11)

where � is the magnetic dipole moment, d is the electric
dipole moment, and

r� ¼ @� þ �� (12)

are the components of the covariant derivative and �� is

the spinor connection [28], which is given by

�� ¼ 1
8!�abðxÞ½	a; 	b� (13)

¼ 1
8ea�r�e

�
b½	a; 	b� (14)

and

F�� ¼ r�A� �r�A� ¼ f ~E; ~Bg (15)

with F0
 ¼ �F
0 ¼ E
, F
� ¼ �F�
 ¼ ��
�	B	,
where ð
;�; 	 ¼ �;’; zÞ are the spatial indices of the
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space-time. The matrices 	� are generalized Dirac matri-
ces given in terms of the flat space-time ones 	a by the
relation 	� ¼ e�a	

a. We rewrite the Dirac equation (11)
in terms of vierbeins in the following form:

i	ae�ar� þ 1

2
�F��e

�
ae

�
b�

ab 

� i

2
d�abe�ae

�
b	

5F�� �m ¼ 0; (16)

with �ab ¼ i
2 ½	a; 	b�, where ða; b; c ¼ 0; 1; 2; 3Þ are the

indices which indicate the local reference frame. The 	a

matrices are the Dirac matrices in flat space-time, i.e.,

	0 ¼ �̂ ¼ 1 0
0 �1

� �
; 	i ¼ �̂
i ¼ 0 i

�i 0

� �
;

(17)

where i are the Pauli matrices satisfying the relation
ðij þ jiÞ ¼ �2�ij, �ab ¼ diagð�1; 1; 1; 1Þ is the
Minkowski tensor, and ði; j; k ¼ 1; 2; 3Þ are the spatial
indices of the local reference frame. The 	5 matrix is
defined as

	5 ¼ � i

24
�����	

�	�	�	� ¼ i	0	1	2	3 ¼ �	5

¼ 0 1
1 0

� �
; (18)

and, finally, we write ~� as

~� ¼ ~ 0
0 ~

� �
; (19)

whose components are defined in the local reference frame.

IV. DIRAC EQUATION IN COSMIC STRING
BACKGROUND

The Dirac equation that describes a spin-1=2 neutral
particle with nonzero magnetic and electric dipole mo-
ments moving in an external electromagnetic field is given
by the expression (11) or (16). Using the expression (8), the
spinorial connection has only the following nonzero com-
ponent:

�’ ¼ 1

4
ð1� �Þ½	1; 	2� ¼ � i

2
ð1� �Þ�3: (20)

Thus, the Dirac equation in curved space-time (16) has
the form

i	t
@ 

@t
þ i	�

�
@� þ 1

2

ð1� �Þ
��

þ�E� � dB�

�
 

þ i
	’

��

@ 

@’
þ i	z

@ 

@z
�� ~� � ~B � d ~� � ~E 

�m ¼ 0: (21)

In this background the matrices 	� ¼ e�a	
a are given by

	t ¼ eta	
a ¼ 	0; 	z ¼ eza	

a ¼ 	3; (22)

	r ¼ era	
a ¼ cos’	1 þ sin’	2; (23)

	’ ¼ e’a	
a ¼ � sin’	1 þ cos’	2: (24)

Notice that in the limit of d! 0 Eq. (21) is the same as the
one obtained in [24] for the study of a nonrelativistic
scattering/bound state of a charged particle that possesses
an anomalous magnetic moment. In the present article we
are interested in the study of geometrical phases for neutral
particles that possess electric and/or magnetic dipole mo-
ments. In this way, we investigate a generalization of a
relativistic and nonrelativistic Aharonov-Casher and He-
McKellar-Wilkens geometric phase in the presence of a
topological defect. Now, let us discuss the relativistic
geometric phase in this dynamics. We consider that the
spinor  can be written in the following form:

 ¼ ei� 0 (25)

where  0 is the solution of the Dirac equation in the
absence of fields, and � is a phase. Substituting Eq. (25)
in Eq. (21), we obtain the following phase:

� ¼
I �

1

2
ð1� �Þ�3 ���̂ð ~�� ~EÞ’ þ d�̂ð ~�� ~BÞ’

�
d’:

(26)

Note that this phase has three contributions: the first con-
tribution is generated by the conical geometry of cosmic
string background. The other two contributions are gener-
ated by the dipole interaction and depend of the field
configuration. Note that the first term in Eq. (26) can be
written in the following form:

�p ¼ 1

4

I
R����J

��d��� (27)

where J�� ¼ L�� þ��� is the total angular momentum of
the particle. Substituting here the curvature tensor given by
Eq. (2), we find that the expression (27) takes the following
form:

�p ¼
I 1

2
ð1� �Þ�3d’: (28)

This phase is the relativistic Berry geometric phase pro-
posed by Cai and Papini [16,17] for a spin-1=2 particle in a
curved background using a weak field approximation. In
our study, we do not use this approximation, and we find
that the phase found in [16,17] is generic.
The other two terms in (26) are the contributions, due to

the magnetic and electric dipole moments, to the relativis-
tic Anandan geometric phase [36,37] in the presence of a
cosmic string which is given by

� ¼
I
ð���̂ð ~�� ~EÞ’ þ d�̂ð ~�� ~BÞ’Þd’: (29)
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In the limit �! 1 we obtain flat space-time results for the
Anandan geometric phase.

V. NONRELATIVISTIC LIMIT

In this section we investigate the nonrelativistic limit for
a spinor particle nonminimally coupled to electromagnetic
fields embedded in a classical gravitational field. We will
use the Foldy-Wouthuysen method [38,39]. First, let us
rewrite the Dirac equation (11) in the following form:

i
@ 

@t
¼ H : (30)

After some manipulation, we arrive at the following equa-
tion:

i
@ 

@t
¼¼ m�̂ þ ~
 � ~p� i ~
 � ~� 

þ��̂ði ~
 � ~Eþ ~B � ~�Þ � d�̂ði ~
 � ~B� ~E � ~�Þ ;
(31)

where we have defined the following terms: pj ¼
�ie
j@
, Ej ¼ e
jE
, Bj ¼ e
jB
, and �j ¼ e’j�’,

which in a cosmic string background are given by

�j ¼ � i

2
ð1� �Þ�3e’j: (32)

Thus, we can write the Dirac equation (31) in the form

i
@ 

@t
¼ m�̂ þ ~
 � ~� þ d ~E � ~� þ��̂ ~B � ~� ; (33)

where the operator ~�, in the local reference frame, is
defined as

~� ¼ ~p� i��̂ ~Eþid�̂ ~B�i ~�; (34)

and the first three terms have the same form as defined by
[40] in flat space-time. The last term of (34) arises due to
the topology of the space-time.

We investigate the nonrelativistic limit of the Dirac
equation using the Foldy-Wouthuysen approximation
[38]. In this approximation, the Hamiltonian of the system
is written as the following linear combination:

H ¼ �̂mþ Ôþ �̂; (35)

where the operators Ô and �̂ should be Hermitian ones and
must satisfy the relations

Ô �̂þ�̂ Ô ¼ 0; �̂ �̂��̂ �̂ ¼ 0: (36)

The final result obtained in this approximation permits
us to expand the Hamiltonian H and consider the terms up
to the order of m�1. So, we have

H000 ¼ �̂mþ �̂

2m
Ô2 þ �̂: (37)

Using the expression (33) we have that

Ô ¼ ~
 � ~�; (38)

�̂ ¼ ��̂ ~B � ~�þ d�̂ ~E � ~�; (39)

and the expression for the Hamiltonian (37) becomes

H000 ¼ �̂mþ �̂

2m
ð ~pþ ~�Þ2 ��2E2

2m
� d2B2

2m
þ �

2m
~r � ~E

� d

2m
~r � ~Bþ d�̂ ~� � ~Eþ��̂ ~� � ~B; (40)

where ~r refers to the gradient in the space-time indices and
we introduce the vector, whose components are

�j ¼ ��̂ð ~�� ~EÞj � d�̂ð ~�� ~BÞj þ 1
2ð1� �Þ�3e’j;

(41)

which is well defined in the local reference frame.
The Hamiltonian given in (40) describes the behavior of

the electric and magnetic dipoles in the external electric
and magnetic fields with the presence of a topological
defect. The influence of the topological defect (12) be-
comes clear due to the third term in Eq. (41). We can see
that if we consider the limit �! 1, i.e., the absence of a
topological defect, we arrive at the configuration obtained
in [40] for flat space-time. In the limit of d! 0 we obtain
the same nonrelativistic Hamiltonian discussed in [24].
The effects that arise due to the configuration of the dipoles
in the presence of a topological defect with the influence of
external electric and magnetic fields will be discussed in
the next section.

VI. NONRELATIVISTIC GEOMETRIC QUANTUM
PHASES

Now let us study the effects of the interference of the
neutral particles in the presence of a topological defect, and
the influence of the external electric and magnetic fields.
We consider the terms which contribute to the appearance
of the geometric phase in the wave function. The non-
relativistic Hamiltonian describing a neutral particle that
possesses constant electric and magnetic dipole moments,
in the presence of an electric field embedded in a classical
gravitational field, can be written in the following way:

H ¼ � 1

2m
ð ~r� i ~�Þ2 þ�0 (42)

where �i ¼ ��̂ð ~�� ~EÞi � d�̂ð ~�� ~BÞi þ 1
2 ð1�

�Þ�3e’i, and �0 is given by

�0 ¼ ��2E2

2m
� d2B2

2m
þ �

2m
~r � ~E� d

2m
~r � ~B

þ d�̂ ~� � ~Eþ��̂ ~� � ~B: (43)

Notice that the expression (42) is similar to a Hamiltonian
of a quantum particle minimally coupled to a non-Abelian
gauge field ��. We can investigate the geometric phase of
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this system in the field configuration given by (10) and
consider the dipoles oriented along the z direction. The last
four terms in (43) give zero contribution to the geometrical
phase for the field-dipole configuration adopted here. The
terms proportional to E2 and B2 are local terms and do not
contribute to the geometric phase [36,37,40]. So, the only
terms that contribute to the geometric phase are given by

the term ~� in (42). We have the following equation:

� 1

2m

�
~r� i��̂ ~�� ~Eþ id�̂ ~�� ~B

� i
1

2
ð1� �Þ�3e’

�
2
���2E2

2m
�� d2B2

2m
� ¼ E�:

(44)

The quantum phase can be obtained if we consider the
ansatz

� ¼ ei� ; (45)

where  is the solution of the equation

� 1

2m
r2 ��2E2

2m
 � d2B2

2m
 ¼ E : (46)

Now, we analyze the quantum geometric phase considering
the charge densities concentrated on the symmetry axis. In
this way, the fields are cylindrically symmetric and are
given by Eq. (10). Hence, taking into account the local
reference frame and that the charges are concentrated on
the symmetry axis of the topological defect, the quantum
geometric phase of this system is given by

� ¼
I

��dx
� ¼

I
�ie

i
�dx

� ¼
Z 2�

0
�ie

i
’d’

¼ ð1� �Þ�3 þ ð��e � d�mÞ2�3: (47)

Here we have considered only two-component spinor
fields. The geometric phase (47) is a generalization of the
Anandan quantum phase in the presence of a cosmic string.
The contribution due to the defect can be seen from the first
term in Eq. (47). If we take �! 1, we recuperate the
results obtained in [41] in the absence of a topological
defect. If we consider that the particle does not possess an
electric dipole moment, that is, if we apply the limit d ¼ 0
in (47), we obtain the analog of the Aharonov-Casher
effect in the presence of a topological defect. The quantum
phase in this case becomes

�AC ¼ i
I
ej’�jd’þ��̂

I
ð ~�� ~EÞ’d’

¼ ð1� �Þ�3 þ 2���e
3: (48)

Note that we have a topological contribution to the
Aharonov-Casher effect due to the defect, and this term
gives a topological nonvanishing contribution to the geo-
metric phase [42]. Note that in the limit �! 1 we obtain
the well-known Aharonov-Casher geometric phase.

Our next step is to consider the limit where the magnetic
moment of the particle is zero, � ¼ 0 in Eq. (47), and we
obtain the analog of the He-McKellar-Wilkens effect in the
presence of a topological defect. The quantum phase in this
case becomes

�HMW ¼ i
I
ej’�jd’� d�̂

I
ð ~�� ~BÞ’d’

¼ ð1� �Þ�3 � 2�d�m
3: (49)

Both of the results obtained above demonstrate the influ-
ence of a topological defect in the geometric phase ac-
quired by the wave function in the dynamics of a neutral
particle in the presence of a cosmic string. If we consider
the absence of the external field and only the presence of
the defect, we will obtain a quantum phase that depends
only on the topological defect (12).

� ¼ ð1� �Þ�3: (50)

The same contribution was obtained in [43], when the
holonomy matrix was found for a spinor in a continuum
model for a graphene layer with a topological defect. In
that way, the general result given in the expression (47)
shows us the geometric phase acquired in the dynamics of a
neutral particle with permanent electric and magnetic di-
pole moments influenced by the presence of a topological
defect.

VII. CONCLUSION

We have studied the influence of a topological defect in
the geometric phases of dipoles in relativistic dynamics.
We found a new contribution to the geometric phases due
to the presence of a topological defect. This contribution is
a nondispersive topological [44] contribution to the total
geometrical phase acquired by the neutral particle. This
contribution is of gravitational origin [16,17] due to curva-
ture introduced by the defect in space-time. We have
investigated the nonrelativistic quantum phase in the
present paper using the Foldy-Wouthuysen approximation
to obtain the nonrelativistic Hamiltonian. We saw that a
topological defect introduces a new gravitational contribu-
tion to Anandan’s geometric phase. We can see that when
�! 1, we recuperate the same phase obtained in [36,37]
for a flat space case in the absence of a topological defect,
and also the phase given in expressions (47)–(49) becomes
the same as the one given in [41]. Note that the presence of
a topological defect introduces a new term in the
Aharonov-Casher and He-McKellar-Wilkens geometric
phases. Notice that the geometric phase studied here may
be investigated using neutron/atomic interferometry in a
space with topological defects [45,46]. We claim that it can
be interesting to investigate geometric phases in the con-
text of a topological defect in condensed matter [47,48],
where a class of linear topological defects appear, which
are of the same nature as cosmic strings [25,26].
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