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We investigate conformal scalar, electromagnetic, and massless Dirac quasinormal modes of a brane-

localized black hole. The background solution is the four-dimensional black hole on a 2-brane that has

been constructed by Emparan, Horowitz, and Myers in the context of a lower-dimensional version of the

Randall-Sundrum model. The conformally transformed metric admits a Killing tensor, allowing us to

obtain separable field equations. We find that the radial equations take the same form as in the four-

dimensional braneless Schwarzschild black hole. The angular equations are, however, different from the

standard ones, leading to a different prediction for quasinormal frequencies.
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I. INTRODUCTION

Braneworld models [1,2] have attracted much attention
in recent years, creating a new arena of higher-dimensional
black holes as well as of particle phenomenology and
cosmology. One of the most intriguing possibilities is the
potential production of mini black holes at future colliders
in TeV-scale gravity scenarios [3]. Great efforts have been
put in studying collider black holes (see, e.g., [4] and
references cited therein). In most of the related papers,
black holes are approximated by ‘‘isolated’’ ones, because
the effect of brane tension is expected to be negligible for
such black holes that the horizon radii are much smaller
than the typical bulk curvature scale. In codimension-2
braneworlds, however, the effect of finite brane tension
can be taken into account rather easily [5,6]. The gravita-
tional interaction between branes and black holes has been
discussed, e.g., in [7].

Not only small black holes at colliders but also large
(e.g., astrophysical) black holes can offer us a possibility to
test the models with extra dimensions against experiments
and observations. For black holes whose horizon radii are
larger than the bulk scale, we expect that the effect of the
brane will be significant and hence cannot be treated as
braneless higher-dimensional black holes. However, prop-
erties of large black holes on the brane are still quite
unclear due to the lack of our knowledge of exact solutions
describing brane-localized black holes. The main difficulty
in finding the desired solutions lies in the fact that the brane
tension curves the brane as well as the bulk. In the context
of the Randall-Sundrum braneworld [2], which is perhaps
the most explored example [8], there has been an attempt to
construct numerical black holes, being successful only in
working out small localized black holes [9]. Tanaka [10]
and Emparan et al. [11] made some remarks in terms of the
anti–de Sitter/conformal-field-theory (AdS/CFT) corre-
spondence as to why it is so difficult to find black hole

solutions localized on the Randall-Sundrum brane and
conjectured that large black holes will not be static. See
Refs. [12–15] for recent developments in this direction.
Although no exact solutions describing localized black

holes have been known so far in the original five-
dimensional Randall-Sundrum setup, exact four-
dimensional (4D) black holes localized on 2-branes in
AdS have been constructed by Emparan, Horowitz, and
Myers [16,17] (see also [18]). Their black hole solution
serves as an interesting toy model of the lower-dimensional
Randall-Sundrum braneworld and helps us to understand
aspects of small and large localized black holes. Besides
this, the model provides us insights into yet unknown black
hole configurations in the ‘‘realistic’’ higher (i.e., five-)
dimensional braneworld. Reference [19] has addressed this
issue by the perturbative approach, using the localized
black hole solution of Emparan et al. as a starting point.
In this paper we discuss the quasinormal modes (QNMs)

of various bulk fields around the brane-localized black hole
of [16]. Quasinormal modes are the characteristic ‘‘sound’’
that contains information on the parameters of the under-
lying black hole and hence have significance in identifying
black holes both in four [20,21] and higher dimensions
[22–25]. Moreover, QNMs of AdS black holes are inter-
esting from the viewpoint of the AdS/CFT correspondence
as well, because they can be related to the relaxation time
scale of the associated thermal states in the dual CFT
[26,27]. Implications of the solution of Emparan et al.
for the AdS/CFT correspondence are discussed in
Refs. [11,28]. For the above reasons, the exact solution
of [16] is a remarkable playground from various perspec-
tives, even though it does not have a direct relation to the
astrophysical context.
Specifically, we will be considering conformally

coupled scalar, electromagnetic, and massless Dirac field
perturbations around the brane-localized black hole. The
background solution [16] is given by the AdS C-metric
intersected by a 2-brane, which would be seemingly too
involved to allow for separable field equations. However,
the conformal nature of the C-metric in fact admits sepa-
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ration of variables at least for the above mentioned fields.
This fact was noticed in Refs. [29,30] and was used in a
recent study [31].

The organization of the present article is as follows. In
the next section we give a brief review on the localized
black holes in the lower-dimensional version of the
Randall-Sundrum braneworld. The QNMs of various field
perturbations around the localized black hole are discussed
in Sec. III. We draw our conclusions in Sec. IV.

II. LOCALIZED BLACK HOLES IN THE LOWER-
DIMENSIONAL RANDALL-SUNDRUM

BRANEWORLD

We shall briefly review the black hole solutions local-
ized on the Randall-Sundrum 2-brane [16,17]. We start
with the so-called AdS C-metric describing a uniformly
accelerating black hole in AdS [32]. The metric which we
shall use is given by

d s2 ¼ ‘2

ðx� yÞ2
�
FðyÞdt2 � dy2

FðyÞ þ
dx2

GðxÞ þGðxÞd’2

�
;

(1)

where

FðyÞ :¼ �y2 � 2�y3; GðxÞ :¼ 1� x2 � 2�x3; (2)

and �ð� 0Þ is the parameter which controls the size of the
black hole. This metric solves the vacuum Einstein equa-
tions with a negative cosmological constant: Rab ¼
�ð3=‘2Þgab. Naı̈vely speaking, y corresponds to (the in-
verse of) the usual radial coordinate r and x is the angular
coordinate which is analogous to the directional cosine. In
the above metric the proper acceleration of the black hole A
is tuned to be ‘�1, which is necessary for obtaining the
desired braneworld black hole solutions from (1).

The factor ðx� yÞ�2 implies that x ¼ y corresponds to
asymptotic infinity, and hence we will consider the range
�1< y< x. The solution has a curvature singularity at
y ¼ �1. This singularity is inside the black hole horizon
yh ¼ �1=2�, at which FðyhÞ ¼ 0. Another root of FðyÞ,
y ¼ 0, corresponds to the acceleration horizon of the C-
metric which also gives the AdS horizon.

If 0<�< 1=3
ffiffiffi
3

p
, the function GðxÞ has three real

distinct roots x0 < x1 < 0< x2. To ensure the Lorentzian
signature, one needsGðxÞ � 0 and so restricts x to be in the
range x1 < x< x2. Since GðxÞ vanishes at x1 and x2, they
correspond to the direction of the rotation axis. To avoid a
conical singularity at x ¼ x2, the period of ’ must be
chosen so that

�’ ¼ 2��; (3)

where

� :¼ 2

jG0ðx2Þj : (4)

There still remains a conical singularity at x ¼ x1, associ-
ated with a cosmic string extending from the black hole out
to infinity, which cannot be cured. (However, one does not
need to worry about this conical singularity because the
region x1 < x< 0 will be cut off eventually with the

introduction of the brane.) If �> 1=3
ffiffiffi
3

p
, the allowed

range of x is y < x < x2 and x has only one axis at x ¼
x2. In this case, the constant y surfaces are topologicallyR

2

and the black hole horizon is stretched out to infinity like a
semi-infinite black string. If � ¼ 0, the metric (1) reduces
to pure AdS4.
Now we are in a position to introduce a 2-brane in the

spacetime described above. Noticing that the extrinsic
curvature of the x ¼ 0 surface is proportional to its induced
metric and is given by Kab ¼ ð1=‘Þgab, one can insert a 2-
brane with tension T2 ¼ 1=ð2�‘Þ at x ¼ 0. (In this paper
we use the unit in which the 4D gravitational constant is
given by G4 ¼ 1.) To construct a Randall-Sundrum-type
Z2-symmetric braneworld, we take two identical copies of
the region 0 � x � x2 and glue them together along the
surface x ¼ 0. The resulting spacetime describes a black
hole localized on a 2-brane. The induced metric on the 2-
brane is

d s2b ¼ �
�
1� 2�‘

r

�
d~t2 þ

�
1� 2�‘

r

��1
dr2 þ r2d’2;

(5)

where we defined ~t :¼ ‘t and r :¼ �‘=y. One can see
from Eq. (5) that the ‘‘Schwarzschild radius’’ on the brane
is given by 2�‘.
Taking the �! 0 limit while keeping �‘ fixed in

Eq. (1), we obtain

ds2 ¼ �
�
1� 2�‘

r

�
d~t2 þ

�
1� 2�‘

r

��1
dr2

þ r2ðd�2 þ sin2�d’2Þ; (6)

where cos� :¼ �x. The limiting behavior of (6) shows that
if the horizon radius is much smaller than the AdS scale,
the brane-localized black hole looks like an isolated
Schwarzschild one. The event horizon of the small black
hole extends �2�‘ off the brane. In the opposite limit,

�� 1, the horizon area A is evaluated as A ’
ð8�‘2=3Þð2�Þ2=3, while the horizon has the proper circum-

ference C ’ ð4�‘=3Þð2�Þ2=3 on the brane. This estimate
implies that the large localized black hole looks like a
flattened pancake, extending a distance A=C� ‘ ( �
2�‘) off the brane. Thus, a large black hole can no longer
be approximated by an isolated one.
It is difficult to define the black hole mass from the

standard asymptotic formulas, but one can still define a
4D thermodynamic mass using the first law. The mass is
given by
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M4 ¼ ‘

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x̂

p
1þ 3x̂=2

�
; (7)

where x̂ :¼ 2�x2. This is a monotonically increasing func-
tion of �. For �� 1, one recovers the naı̈ve expectation
M4 ’ �‘. For �� 1; however, one finds

M4 ’ ‘2
�
1� 2

3ð2�Þ1=3
�
: (8)

Although there is an upper limit on the thermodynamic
mass, the black hole can have an arbitrarily large horizon
area for�� 1. Therefore, we may use the parameter� to
measure the size of the black hole.

III. SEPARATION OF VARIABLES

In this section, we examine the QNMs of various test
fields in the background of (1) with a brane. As in the case
of the Kerr black hole [33], a Killing tensor plays an
important role in obtaining tractable perturbation equa-
tions. The crucial point here is that although the metric
(1) itself does not admit a Killing tensor, the conformal
transformed metric does.

To see this, let us consider the conformal transformation

gab ! ĝab ¼ �2gab; (9)

where we take

� ¼ x� y

‘
: (10)

Specifically, ĝab is the metric in parentheses of Eq. (1). A
straightforward calculation shows that

Q̂ ab ¼ ðr̂axÞðr̂bxÞ
GðxÞ þGðxÞðr̂a’Þðr̂b’Þ (11)

is a Killing tensor for the metric ĝab: r̂ðaQ̂bcÞ ¼ 0, where

r̂a is the covariant derivative associated with ĝab.
Accordingly, one may expect that equations of motion
for conformally invariant fields are separable in this back-
ground. This expectation is indeed true, as shown below. In
what follows we will be considering a conformally coupled
scalar, Maxwell, and massless Dirac field perturbations.
The equations for Weyl curvature perturbations are also
separable, the analysis of which will be reported elsewhere.

A. Conformal scalar perturbations

We start with the analysis of a conformally coupled
scalar field perturbation in the background of (1). The
equation of motion is given by

�
rara � 1

6
R
�
� ¼ 0; (12)

where R is the Ricci scalar of gab. Under a conformal
transformation (9) and

� ! �̂ ¼ ��1�; (13)

with (10), the field Eq. (12) is invariant. Noting that the

Ricci scalar of the conformally related metric ĝab is R̂ ¼
12�ðx� yÞ, we obtain

1

F
@2t �̂� @y½F@y�̂� þ @x½G@x�̂�

þ 1

G
@2’�̂� 2�ðx� yÞ�̂ ¼ 0: (14)

To solve this equation we assume the following sepa-
rable ansatz:

�̂ ¼ e�i!tþim’=�RsðyÞSsðxÞ: (15)

Note here that the period of ’ is 2��, so that we havem ¼
0;�1;�2; . . . . The ‘‘angular’’ and ‘‘radial’’ equations are
given, respectively, by

d

dx

�
GðxÞ d

dx
Ss

�
þ

�
�� 2�x�m2=�2

GðxÞ
�
Ss ¼ 0; (16)

d

dy

�
FðyÞ d

dy
Rs

�
þ

�
�� 2�yþ !2

FðyÞ
�
Rs ¼ 0; (17)

where � is the separation constant.
Let us first investigate the angular Eq. (16). This must be

supplemented with suitable boundary conditions.

Changing the function Ss to ~Ss :¼ ðx2 � xÞ�jmj=2Ss and

requiring the regularity condition for ~Ss, one ends up
with the boundary condition at x ¼ x2. Taking into account
the Z2-symmetry across the brane, we impose the
Neumann boundary condition at the position of the brane
(x ¼ 0),

dSs
dx

��������x¼0
¼ 0: (18)

In the limit of�! 0, the angular Eq. (16) reduces to the
Legendre equation,

d

dx

�
ð1� x2Þ d

dx
Ss

�
þ

�
�� m2

1� x2

�
Ss ¼ 0: (19)

This coincides with the angular equation for a (conformal)
scalar field perturbation in the 4D Schwarzschild back-
ground.1 Thus, we see that in the limit of �! 0 the
eigenvalues are given by � ¼ �ð�þ 1Þ, where � ¼ jmj þ
2j and j ¼ 0; 1; 2; . . . . (The modes with � ¼ jmj þ
1; jmj þ 3; . . . are removed from the spectrum due to the
brane boundary condition, or, in other words,
Z2-symmetry.) Unfortunately, we could not find an ana-
lytic expression of the eigenvalues for general �ð>0Þ. We

1As mentioned, the metric (1) reduces to pure AdS4 if taking
�! 0 with ‘ fixed. To recover the 4D Schwarzschild metric one
should take �! 0 while keeping �‘ fixed. However, Eqs. (16)
and (17) do not depend explicitly on ‘ and hence are insensitive
to how one takes the limit.
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instead solve Eq. (16) numerically to determine �. Writing
the eigenvalue as

� ¼ �ð�þ 1Þ
also for general�, we compute the value of � as a function
of � (Fig. 1). Our numerical calculation confirms that
small black holes ð�� 1Þ have the eigenvalues � ’
0; 1; 2; . . . , and thus can be approximated by isolated
ones. It can be seen that � becomes larger with increasing
�. While in the Schwarzschild case � takes integer values
and does not depend on the magnetic quantum number m,
in the present case � generally depends on m. We plot
examples of the profile of the eigenfunction SsðxÞ in Fig. 2.

Having thus determined the angular eigenvalues, we
now move on to the analysis of the radial equation.
Equation (17) can be written in a familiar form using a
‘‘tortoise’’ coordinate

r	 :¼ rþ 2�‘ ln

�
r

2�‘
� 1

�
; r :¼ � ‘

y
: (20)

The black hole horizon is located at yh ¼ �1=2� and
hence is mapped to r	 ¼ �1 (r ¼ 2�‘), while the accel-
eration horizon y ¼ 0 corresponds to r	 ¼ þ1 (r ¼ þ1).
In terms of r	, we have the Schrödinger-type equation

d2

dr2	
Rs þ ½ ~!2 � VsðrÞ�Rs ¼ 0; (21)

where ~! :¼ !=‘ and the potential is given by

VsðrÞ ¼
�
1� 2�‘

r

��
�

r2
þ 2�‘

r3

�
: (22)

It is important to note that Eq. (21) with the potential (22) is
apparently identical to the radial equation for the (confor-
mally coupled) scalar field perturbation in the 4D
Schwarzschild background with the horizon radius rh ¼

2�‘. The only change arises from the different angular
eigenvalues.
In the asymptotically AdS spacetime, there is an ambi-

guity of the boundary conditions at infinity [34]. In the
present case, however, the chart of (1) covers only a part of
the spacetime between the black hole and acceleration
horizons. We thus impose the following quasinormal
boundary conditions for the radial equation R ¼ Rs:

R!
�
eþi ~!r	 as r	 ! 1
e�i ~!r	 as r	 ! �1; (23)

having only an incoming wave at the black hole horizon
and an outgoing wave at the acceleration horizon.
The QNMs of small localized black holes are approxi-

mately the same as those of 4D Schwarzschild ones since
we have the eigenvalues � ’ 0; 1; 2; . . . for �� 1 and the
same radial equation. This result accords with our intuition
that if the horizon size of a localized black hole is much
smaller than the bulk curvature radius, it behaves like a
higher-dimensional Schwarzschild black hole.2 Since �
becomes larger as � increases, each mode of a large
localized black hole behaves as if it were the mode having
a larger angular mode number in the Schwarzschild
background.
To evaluate the low-lying QNMs explicitly, we employ

the WKB method developed by Iyer and Will [35]. The
third-order WKB formula for the complex QNMs ~!2 is
given by [35] (see also [25])

~!2 ¼ ½V0 þ ð�2V 00
0 Þ1=2 ~��

� iðnþ 1=2Þð�2V00
0 Þ1=2ð1þ ~�Þ; (24)

where V0 is the maximum of the potential V ¼ Vs and
FIG. 1 (color online). Angular eigenvalues for a conformal
scalar field perturbations as a function of �. Different colors
belong to different magnetic quantum numbers:m ¼ 0 (red solid
lines), m ¼ 1 (blue long-dashed lines), m ¼ 2 (green dashed
lines), m ¼ 3 (purple dotted lines).

FIG. 2 (color online). First several angular eigenmodes SsðxÞ
for m ¼ 2. The mass parameter is given by � ¼ 3.

2The term ‘‘higher-dimensional’’ here refers to ‘‘four-
dimensional.’’
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~� ¼ 1

ð�2V 00
0 Þ1=2

�
1

8

�
Vð4Þ
0

V00
0

��
1

4
þ �

�

� 1

288

�
V000
0

V00
0

�
2ð7þ 60�2Þ

�
; (25)

~� ¼ 1

ð�2V00
0 Þ1=2

�
5

6912

�
V 000
0

V 00
0

�
4ð77þ 188�2Þ

� 1

384

�
V 0002
0 Vð4Þ

0

V 003
0

�
ð51þ 100�2Þ

þ 1

2304

�
Vð4Þ
0

V 00
0

�
2ð67þ 68�2Þ

þ 1

288

�
V 000
0 V

ð5Þ
0

V 002
0

�
ð19þ 28�2Þ

� 1

288

�
Vð6Þ
0

V 00
0

�
ð5þ 4�2Þ

�
: (26)

Here � :¼ nþ 1=2, n ¼ 0; 1; 2; . . . , ðRe½!�> 0Þ,
�1;�2;�3; . . . , ðRe½!�< 0Þ, and VðnÞ

0
:¼ dnV=drn	j0.

The QNMs calculated using this formula are shown in
Fig. 3. We have normalized the frequencies by (half of)
the horizon radius: �‘ 
 ~! ¼ �!.

The WKB approximation will fail for higher overtones
with n > �. The asymptotic QNMs (n� 1) are obtained
using the monodromy method [36–40] (see [41–43] for
numerical calculations and [44] for the other method). For
a (conformal) scalar field in the Schwarzschild back-
ground, we have

�!n � ln3

8�
� i

4

�
nþ 1

2

�
; (27)

where one takes n! 1. This is independent of the angular
eigenvalue and therefore the leading order behavior will be
the same for the brane-localized and braneless black holes.

B. Massless Dirac field perturbations

Now we turn to the analysis of a massless, test Dirac
field around the brane-localized black hole. The equation
of motion for a massless Dirac field is given by

��ea�ð@a þ �aÞ ¼ 0: (28)

Here ea� is the tetrad defined by gab ¼ 	��e
�
a e

�
b , �

� are

the Dirac matrices

�0 ¼ �i 0
0 i

� �
; �i ¼ 0 �i
i

i
i 0

� �
; (29)

and �a is the spin connection given by

�a ¼ 1
8½��; ���eb�rae�b; (30)

with rae�b ¼ @ae�b � �cabe�c. Under a conformal trans-

formation (9) and

 !  ̂ ¼ ��3=2 ; (31)

the Dirac equation (28) is invariant. Working in the con-
formally related metric ĝab and taking the conformally
related tetrad to be

ê 0
t ¼

ffiffiffiffiffiffiffiffi�Fp
; ê1x ¼ 1ffiffiffiffi

G
p ; ê2’ ¼ ffiffiffiffi

G
p

; ê3y ¼ 1ffiffiffiffiffiffiffiffi�Fp ;

the field equation reduces to

ffiffiffiffiffiffiffiffi�Fp �
� 1

F
�0@t ̂þ ð�FÞ�1=4�3@yðð�FÞ1=4 ̂Þ

�

þG1=4�1@xðG1=4 ̂Þ þ 1ffiffiffiffi
G

p �2@’ ̂ ¼ 0: (32)

Following the argument of Ref. [45], we assume the
ansatz:

 ̂ ¼ iBðyÞ�1ðxÞ
AðyÞ�2ðxÞ

� �
ð�FGÞ�1=4e�i!tþim’=�; (33)

where

�1 ¼ u
v

� �
; �2 ¼ u

�v
� �

: (34)

Note that for spinors the magnetic quantum eigenvalues
must be half integers: m ¼ �1=2;�3=2;�5=2; . . . . Just
for simplicity we assume in the following that m> 0, but
the case with negative m can be treated analogously. After
a straightforward calculation we arrive at

ffiffiffiffi
G

p d

dx
u�m=�ffiffiffiffi

G
p u ¼ �v; (35)

ffiffiffiffi
G

p d

dx
vþm=�ffiffiffiffi

G
p v ¼ ��u; (36)

and
FIG. 3 (color online). Conformal scalar QNMs for m ¼ 2. The
plots are for the second lowest � modes.
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d

dy
A�!

F
B ¼ � �ffiffiffiffiffiffiffiffi�Fp A; (37)

d

dy
Bþ!

F
A ¼ �ffiffiffiffiffiffiffiffi�Fp B; (38)

where � is a separation constant.
Equations (35) and (36) are combined to give a second-

order differential equation

G
d2

dx2
uþG0

2

d

dx
uþ

�
�2 þ G0

2G

m

�
� 1

G

m2

�2

�
u ¼ 0; (39)

where G0 :¼ dG=dx. The boundary condition at x ¼ x2 is
derived in a similar way to the scalar field case by requiring

the regularity of the function ~u :¼ ðx2 � xÞ�ðmþ1Þ=2u. To
specify the boundary condition at the brane, let us change
the variable x! x0 :¼ �x in Eqs. (35) and (36). Noting
that the background has Z2-symmetry and so
Gðx0Þ ¼ GðxÞ,3 we find


1 uðx0Þ
vðx0Þ

� �
¼ � uðxÞ

vðxÞ
� �

: (40)

Thus, we impose either

uð0Þ ¼ þvð0Þ (41)

or

uð0Þ ¼ �vð0Þ: (42)

Let us first focus on the case of (41). We then integrate
Eq. (39) to determine �. Our numerical result is shown in
Fig. 4. For �� 1 one finds that

�’ . . . ;�m0 �4;�m0 �2;�m0;m0 þ1;m0 þ3;m0 þ5; . . . ;

(43)

where m0 :¼ mþ 1=2. Thus, in this limit the result for the
4D Schwarzschild black hole is reproduced (with half of
the eigenmodes eliminated due to the brane boundary
condition). We can see from Fig. 4 that j�j becomes larger
as � increases. If one instead imposes the condition (42),
the spectrum will be such that

�’ . . . ;�m0 �5;�m0 �3;�m0 �1;m0;m0 þ2;m0 þ4; . . . ;

for �� 1 and j�j increases with increasing �. Note that
the � ¼ 0 mode is absent because it is not normalizable.

In terms of r	 and r defined in Eq. (20), the radial
Eqs. (37) and (38) can be written as

�
d

dr	
�W

�
A
B

� �
¼ � ~!B

þ ~!A

� �
; (44)

where

W ¼ �

r

�
1� 2�‘

r

�
1=2
: (45)

These equations can be decoupled, giving the Schrödinger-
type equations

d2

dr2	
A
B

� �
þ ½ ~!2 � Vð�Þ� A

B

� �
¼ 0; (46)

where

Vð�Þ ¼ W2 � d

dr	
W: (47)

The above equations are again the same as those for the
massless Dirac field perturbations in 4D Schwarzschild
spacetime. In particular, Eq. (47) implies that the potentials

VðþÞ and Vð�Þ are supersymmetric partners derived from
the same superpotential W. Therefore, for these two po-
tentials the QNMs and reflection/transmission amplitudes
are the same [46].
The WKB result for the low-lying QNMs is shown in

Fig. 5. With increasing � one finds typically the same

FIG. 4 (color online). Angular eigenvalues � for a massless
Dirac field perturbation as a function of �. The brane boundary
condition is given by (41). Different colors belong to different
magnetic quantum eigenvalues: m ¼ 1=2 (red solid lines), m ¼
3=2 (blue long-dashed lines), m ¼ 5=2 (green dashed lines).

FIG. 5 (color online). Massless Dirac QNMs form ¼ 1=2. The
plots are for the second lowest positive � modes. The brane
boundary condition is given by (41).

3Because of Z2-symmetry, now the function GðxÞ should be
understood as GðxÞ ¼ 1� x2 � 2�jxj3 rather than the one de-
fined in Eq. (2).
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behavior of the low-lying modes as in the conformal scalar
case. The asymptotic QNMs of Dirac field perturbations
are the same as in the four-dimensional Schwarzschild case
[45]:

�!n � �i n
4
; (48)

because the brane-localized and ordinary Schwarzschild
black holes share the same potential and the asymptotic
QNMs are independent of the angular eigenvalues.

C. Electromagnetic perturbations

Let us finally consider a test Maxwell field in the back-
ground of (1). It turns out that the situation is quite similar
to the above two examples. The equations of motion are

raF
ab ¼ 0; r½aFbc� ¼ 0; (49)

where Fab :¼ @aAb � @bAa. It follows from (49) that

1

F
@2t�p � @y½F@y�p� þ @x½G@x�p� þ 1

G
@2’�p ¼ 0

ðp ¼ N;DÞ; (50)

where �N :¼ Fty and �D :¼ Fx’. (We defer the details to

the appendix.) Assuming the separable ansatz �p ¼
e�i!tþim’=�RpðyÞSpðxÞ for each �p, we obtain

d

dx

�
GðxÞ d

dx
Sp

�
þ

�
�ð�þ 1Þ �m2=�2

GðxÞ
�
Sp ¼ 0; (51)

d

dy

�
FðyÞ d

dy
Rp

�
þ

�
�ð�þ 1Þ þ !2

FðyÞ
�
Rp ¼ 0: (52)

To specify the boundary conditions at x ¼ x2, we make

the transformation Sp ¼ ðx2 � xÞjmj=2 ~Sp and impose the

regularity condition for each ~Sp. The brane boundary con-

ditions are derived from

Axjx¼0 ¼ @xAijx¼0 ¼ 0 ði ¼ t; y; ’Þ;
leading to the Neumann condition for �N,

dSN
dx

��������x¼0
¼ 0; (53)

and the Dirichlet condition for �D,

SDjx¼0 ¼ 0: (54)

Now we can integrate the angular Eq. (51) numerically
and determine the eigenvalues in much the sameway as the
earlier two examples. One sees from Figs. 6 and 7 that the
qualitative behavior is the same as that of the conformal
scalar field case: the angular eigenvalues increase with
increasing �. It can be checked that for �� 1 we indeed
have � ’ 1; 2; 3; . . . , reproducing the 4D Schwarzschild
result. Note the absence of the � ¼ m ¼ 0 mode in the
spectrum of spin-1 fields.
In terms of the tortoise coordinate r	 defined by Eq. (20),

the radial equation can be written in the same form as (21)
but now with the potential given by

VemðrÞ ¼
�
1� 2�‘

r

�
�ð�þ 1Þ

r2
: (55)

Also in this case the potential is identical to that for
electromagnetic perturbations in the 4D Schwarzschild
black hole background. Again, the difference comes only
from the different angular eigenvalues which have been
determined in the above.
Wewill not dwell on the behavior of the electromagnetic

QNMs because one can easily guess from the results of
conformal scalar and Dirac field perturbations. The asymp-
totic QNMs are the same as that of the spin 1=2 field (48)
[40].

IV. CONCLUSIONS

In this paper we have studied the QNMs of black holes
localized on the Randall-Sundrum 2-brane. The back-
ground is the exact black hole solution found in
Ref. [16]. The conformal properties of the solution allow
us to obtain separable equations of motion for conformally
invariant test fields. Taking advantage of this fact, we have

FIG. 6 (color online). Angular eigenvalues for �N (which
satisfies the Neumann boundary condition at the brane).

FIG. 7 (color online). Angular eigenvalues for �D (which
satisfies the Dirichlet boundary condition at the brane).
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investigated the behavior of conformal scalar, electromag-
netic, and massless Dirac field perturbations around the
brane-localized black hole.

For all types of fields we considered, we found that each
radial equation is identical to the corresponding field equa-
tion in the 4D Schwarzschild background. However, the
angular equations differ from their 4D Schwarzschild
counterparts. We have determined the angular eigenfunc-
tions and eigenvalues numerically. In the case of the con-
formal scalar field, the angular eigenvalues � are given by
� ’ l ¼ 0; 1; 2; . . . for a small black hole (�� 1), recov-
ering the 4D Schwarzschild result. However, the large
localized black hole cannot be approximated by an isolated
4D Schwarzschild black hole. Indeed, as the size of the
black hole increases, � becomes larger (� > l) and no
longer independent of the angular eigenvalue m.
Accordingly, each QNM of the large localized black hole
(with the horizon radius 2�‘ on the brane) behaves like the
mode having a larger angular mode number in the 4D
Schwarzschild background with the same horizon radius
rh ¼ 2�‘. The situation is basically the same for electro-
magnetic and massless Dirac field perturbations. In par-
ticular, we have found no unstable modes for any types of
fields we investigated.

Unfortunately, higher-dimensional generalizations of
the localized black holes of [16,17] have not been known
so far. There might even be no large, static black hole
solutions localized on the Randall-Sundrum 3-brane
[10,11], as mentioned in introduction. Nevertheless, we
believe it intriguing and important to show the stability
of the configuration of a black hole intersected by a
codimension-1 brane in AdS.

It has been widely known that the Randall-Sundrum
braneworlds have a rich structure concerning the AdS/
CFT correspondence. It would be also interesting to dis-
cuss the implications of our result from the viewpoint of
the AdS/CFT correspondence. We hope to revisit this issue
in the near future.
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APPENDIX: MORE ON ELECTROMAGNETIC
PERTURBATIONS

In this appendix we derive a set of governing equations
for a test Maxwell field. We define convenient quantities

�0 :¼ Fty þ iFx’ (A1)

and

�� :¼ 1

F

� ffiffiffiffi
G

p
Ftx � iffiffiffiffi

G
p Ft’

�
�

� ffiffiffiffi
G

p
Fyx � iffiffiffiffi

G
p Fy’

�
:

(A2)

The electromagnetic tensor Fab contains six independent
real functions, and hence three complex scalars�0 and��
are completely equivalent to Fab.
It follows from the Maxwell equations (49) that

L��0 ¼ D�
ffiffiffiffi
G

p
��; (A3)

L�F�� ¼ ffiffiffiffi
G

p
D��0; (A4)

where we defined the differential operators

L� :¼ � 1

F
@t þ @y; (A5)

D� :¼ @x � i

G
@’: (A6)

Note that LþFL� ¼ L�FLþ ¼ �F�1@2t þ @yF@y and

DþGD� ¼ D�GDþ ¼ @xG@x þG�1@2’.

Equations (A3) and (A4) combine to give decoupled
second-order differential equations for �0 and ��:

�L�FLþ�0 þD�GDþ�0 ¼ 0; (A7)

�L�L�F�� þ ffiffiffiffi
G

p
D�D�

ffiffiffiffi
G

p
�� ¼ 0: (A8)

The first equation corresponds to Eq. (50) in the main text.
To solve Eq. (A7) it is convenient to expand�0 in terms of
the eigenfunctions 0Y�mðx; ’Þ satisfying

D�GDþ0Y�m ¼ ���m0Y�m; (A9)

where ��m is the eigenvalue. For �� we may use the
eigenfunctions �Y�m defined by

�Y�m :¼ ffiffiffiffi
G

p
D�0Y�m; (A10)

which satisfy the equation

ffiffiffiffi
G

p
D�D�

ffiffiffiffi
G

p
�Y�m ¼ ���m�Y�m: (A11)

If Eq. (A7) is solved, then the remaining fields �� are
obtained from Eq. (A4).
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