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We consider the scattering of a photon by a weak gravitational field, treated as an external field, up to

second order of the perturbation expansion. The resulting cross section is energy dependent which in-

dicates a violation of Galileo’s equivalence principle (universality of free fall) and, consequently, of the

classical equivalence principle. The deflection angle � for a photon passing by the sun is evaluated

afterward and the likelihood of detecting ��
�E

� ���E
�E

(where �E is the value predicted by Einstein’s geo-

metrical theory for the light bending) in the foreseeable future, is discussed.
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I. INTRODUCTION

The classical equivalence principle (CEP)—universality
of free fall, or equality of inertial and gravitational
masses—is the cornerstone of Newtonian gravity and has
a nonlocal character. Actually, it is an amalgam of two
principles: (i) Galileo’s equivalence principle (universal-
ity of free fall), and (ii) Newton’s equivalence principle
(equality of inertial and gravitational masses), which are
equivalent in the framework of the aforementioned gravi-
tational theory. Both principles, of course, describe non-
local effects.

On the other hand, Einstein’s equivalence principle
(EEP), which locally encompasses both the principles
mentioned above, can be understood as the requirement
that spacetime is Riemannian and, as a consequence, has at
each point a local inertial frame [1]. Accordingly, the EEP
is a statement about purely local effects.

We address here the issue of a possible incompatibility
between quantum mechanics and the CEP by analyzing the
scattering of a photon by a weak gravitational field, treated
as an external field.

Nonetheless, for clarity’s sake, before embarking on our
main subject, we will digress a little to discuss, in passing,
some works which have examined the question of the
conflict between the CEP and quantum mechanics in rela-
tively weak gravitational fields.

As far as we know, Greenberger [2] was the first to
foresee the existence of mass-dependent interference ef-
fects by applying quantum mechanics to the problem of a
particle bound in an external gravitational field. In this
paper he also showed that the gravitational Bohr atom
would allow the mass of an orbiting object to be deter-
mined from its Bohr radius, in contradiction with what is
expected from Newtonian gravity and the CEP. It is worth

noticing, however, that there is no conflict between this
result and the EEP. Indeed, as we have already commented,
the EEP is a local statement while the Bohr atom is an
object extended in space. By the mid-1970s, a few years
after Greenberger’s seminal article, using a neutron inter-
ferometer, Colella, Overhauser, and Werner [3] observed
that the quantum-mechanical shift of the neutrons caused
by the interaction with Earth’s gravitational field was de-
pendent on the neutron mass. This landmark experiment
(COWexperiment for short) reflects probably a divergence
between the CEP and quantum mechanics. Note, how-
ever, that the COW phase shift between the two neutron
paths traveling at different heights in a gravitational field
depends on the (macroscopic) area of the quadrilateral
formed by the neutron paths, which is a nonlocal effect.
Again the EEP is not violated. In the last 33 years the COW
class of experiments have become more sophisticated. The
latest neutron interferometry experiments report a statisti-
cally significant discrepancy between the experiment and
theory, and it has been suspected by the experimenters that
this discrepancy may represent a difference between the
ways in which gravity acts in classical and quantum me-
chanics [4]. In reality, from an operational point of view
one cannot claim, even in principle, that there exists, for
certain quantum systems, an exact equality of gravitational
and inertial masses [5,6].
After this parenthesis, we return to our main objective in

this article, namely, to show that second order corrections
for the scattering of a photon by a weak gravitational field
is in disagreement with Galileo’s equivalence and, as a re-
sult, with the CEP.

II. ENERGY-DEPENDENT CROSS SECTION

In the weak field approximation, i.e.,

g�� ¼ ��� þ �h��;
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with ��� ¼ diagðþ1;�1;�1;�1Þ, and in the de Donder

gauge, the general solution of the linearized Einstein’s
equations, having as source a point particle of mass M
located at r ¼ 0, can be written as

g�� ¼ ��� þ 2GM

r
ð��� � 2��0��0Þ;

where �2 ¼ 32�G.
To first order, the Feynman amplitude, Mr;r0 , for the

scattering of a photon by a weak gravitational field, treated
as an external field (see Fig. 1), is given by

iMr;r0 ¼ i"�r ðpÞ"�r0 ðp0Þh��ðqÞV��;��ðp; p0Þ
¼ i"�r ðpÞ"�r0 ðp0ÞMð0Þ

��ðp; p0Þ;
where "�r ðpÞ ["�r0 ðp0Þ] is the polarization vector for the

initial (final) photon,

h��ðqÞ �
Z

d3re�iq:rh��ðrÞ ¼ �M

4q2
ð��� � 2��0��0Þ

is the momentum space external gravitational field,
and V��;��ðp; p0Þ—the graviton-photon-photon vertex—

is given by

� i�

2
½ð������ � ������ � ������Þp0 � p

� ���p
0
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0
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0
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0
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0
�p��:

For the sake of simplicity we have multiplied the Feynman
amplitude by i.

Now, taking into account that

X2
r¼1

"�r ðpÞ"�r ðpÞ ¼ ���� � 1

ðp � nÞ2
� ½p�p� � p � nðp�n� þ p�n�Þ�;

with n2 ¼ 1, we promptly obtain the unpolarized cross
section�

d	

d�

�
0
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ð4�Þ2
1
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X
r;r0

jiMr;r0 j2 ¼
�
GM

sin2 �
2

�
2
cos4

�

2
; (1)

which for small angles reduces to

�
d	

d�

�
0
¼

�
4GM

�2

�
2
:

Accordingly, to first order the differential cross section for
small gravitational deflection angles coincides with that
computed using Einstein’s geometrical theory—a predict-
able result since first order calculations are generally ex-
pected to reproduce the classical ones.
Let us then push our calculations to the next order. [We

remark that these computations are rather involved and, to
our knowledge, it is the first time that second order cor-
rections for the scattering of quantum particles (with spin)
by an external gravitational field are obtained. Calculations
similar to the aforementioned ones, but in external elec-
tromagnetic fields, were pioneered by Dalitz [7,8].] In this
case we have three graphs that contribute to the scattering
process (see Fig. 2). It is noteworthy that bremsstrahlung
and radiative corrections need not be taken into account
because, of course, M � E, where M, as already men-
tioned, is the mass of the gravitational source—a macro-
scopic body—and E is the energy of the scattered particle,
which implies that these effects are on the ratio E

M in re-

lation to the second order diagrams. For instance, for the
solar gravitational deflection of radio waves with a fre-
quency, say, of order 1 GHz, E

M � 10�71.

We present in the following a condensed version of the
calculations concerning the Feynman amplitudes related to
the graphs displayed in Fig. 2.

A. The MðaÞ
�� amplitude

From Fig. 2(a), we get

iMðaÞ

� ¼ i

2

Z d3k

ð2�Þ3 h
��ðk� qÞh��ðkÞV��;��;
�ðp; p0Þ;

where V��;��;
�ðp; p0Þ, the graviton-graviton-photon-

photon vertex, has the form

� i

4
�2½ð������ � 2������Þð�
�p � p0 � p�p

0

Þ

� ���ðT
��� þ T
���Þ � ���ðT
��� þ T
���Þ
þ 2���ðT
��� þ T
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��� þ T
���Þ
þ 2ð��
���p�p

0
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����p�p

0
� � �
����p�p

0
�

þ �
����p�p
0
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����p�p

0
� � �
����p�p

0
�
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����p�p
0
� þ �
����p�p

0
�Þ�

with T���� � ���p�p
0
� � ���p�p

0
� � ���p�p

0
� þ

������p � p0.
Performing the computations, we obtain

iMðaÞ

� ¼ 4�2G2M2

jqj ð�
�p � p0 � p0

p�Þ:FIG. 1. Feynman graph for photon scattering by an external

gravitational field; jpj ¼ jp0j.
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B. The MðbÞ
�� amplitude

A cursory glance at Fig. 2(b) allows us to conclude that

iMðbÞ
� ¼

i

2

Z d3k

ð2�Þ3h

�ðk�qÞh��ðkÞV��;��;
�ðk;q;k�qÞ

� iP��;	�

q2
V	�;� ðp;p0Þ;

where P��;	� � 1
2 ð��	��� þ �����	 � ����	�Þ, and

V��;��;
�ðk; q; k� qÞ, the graviton-graviton-graviton ver-

tex, has the form

i�f�1
2ðk2 þ q2 þ ðk� qÞ2Þ½I	

�;��I
�;	� þ I	
�;��I
�;	� þ 1

4�������
� � 1
2ð���I��;
� þ ���I��;
� þ �
�I��;��Þ�

þ q	ðk� qÞ�½I��;
�I��;	� � 1
2ðI��;�	I��;
� þ I��;
	I��;�� þ I
�;�	I��;�� þ I
�;�	I��;��Þ� � k	ðk� qÞ�

�½I��;
�I��;	� � 1
2ðI��;�	I��;
� þ I��;
	I��;�� þ I
�;�	I��;�� þ I
�;�	I��;��Þ� � k	q�½I��;��I
�;	�

� 1
2ðI
�;��I��;�	 þ I
�;��I��;�	 þ I
�;�	I��;�� þ I
�;�	I��;��Þ�g:

with I��;�� � 1
2 ð������ þ ������Þ.

Consequently,

iMðbÞ
� ¼ �2G2M2

2jqj ½9p0
p� þ ð�� � 2��0�0Þp � p0

� p0
�p þ 2Eðp0

��0 þ p��0 � E�� Þ�;

where E is the energy of the incident photon.

C. The MðcÞ
�� amplitude

Figure 2(c) tells us that

iMðcÞ

� ¼ i

Z d3k

ð2�Þ3 h
��ðp0 � kÞV��;	�ðp0; kÞ

� �i�	�

k2 þ i�
V��;
�ðk; pÞh��ðk� pÞ:

Regularizing the infrared divergence of this graph by
regarding the Newtonian potential GM

r as the limit � ! 0

FIG. 2. Second order Feynman graphs for photon scattering by an external gravitational field; jpj ¼ jp0j.

QUANTUM MECHANICS VERSUS EQUIVALENCE PRINCIPLE PHYSICAL REVIEW D 78, 064002 (2008)

064002-3



of the Yukawa potential GMe��r=r, yields

iMðcÞ

� ¼

GM2

4�2

Z
d3k

ð��� � 2��0��0ÞV��;	�ðp0; kÞ�	�

½ðp0 � kÞ2 þ�2�½ðp� kÞ2 þ�2�

� ð��� � 2��0��0ÞV��;
�ðk; pÞ
ðp2 � k2 þ i�Þ : (2)

Note, however, that the numerator of the above integral is
equal to

��2f4E2ðE2�
��Ep0

��0�Ep��
0þp0 �p�
0��0Þ

þ k�ð2E2p0

�2E�
0p

0 �pÞþ k
ð2E2p��2E��0p
0 �pÞ

þ k�½�2E2�
�ðp0
�þp�Þþ2Eðp0

��
0p�þp���0p
0

Þ�

þ k�k�ðp0
�p��
����
p

0
�p�����p�p

0



þ��
���p
0 �pÞg

implying that the evaluation of the integral appearing in
Eq. (2) requires the knowledge of a series of integrals of
the form

ðI; I�; I��Þ ¼
Z ð1; k�; k�k�Þd3k

½ðp0 � kÞ2 þ�2�½ðp� kÞ2 þ�2�
� 1

ðp2 � k2 þ i�Þ : (3)

Instead of displaying the final expression for MðcÞ

� which,

incidentally, is quite long besides being not so illuminat-
ing, we exhibit the real part of the results given by the
integration of the Eq. (3): the imaginary part of the alluded
results gives no contribution to the evaluation of the cross
section. We remark that k0 ¼ E.

I ¼ 0; I� ¼
�
0;

��3ðp0 þ pÞi
8jpj3 sin�2 ð1þ sin�2Þ

�
; I00 ¼ 0;

I0i ¼ Ii0 ¼ EIi;

Iij ¼ Iji

¼ ��3

4jpjð1þ sin�2Þ
�
��ij þ qiqj

4p2 sin�2

þ ð2þ sin�2Þðp0 þ pÞiðp0 þ pÞj
4p2 sin�2 ð1þ sin�2Þ

�
:

D. The unpolarized cross section

We are now ready to determine the unpolarized cross
section. Noting that

iMð0Þ
��iMðcÞ�� ¼ 64G3M3

q2
½p0 � pðp0 � p� 2E2ÞI�����

� 2p0 � pI��p0
�p� � 2E2ðI��p�p�

þ I��p0
�p

0
�Þ þ 8E4ðI�p� þ I�p0

�Þ�

¼ 16�3G3M3E

sin3 �
2

�
2þ sin

�

2

�
2
�
1� sin

�

2

�
2
;

iMð0Þ
��iMð0Þ�� ¼ 32�2G2M2

sin4 �
2

cos4
�

2
;

iMð0Þ
��iMðaÞ�� ¼ 0;

iMð0Þ
��iMðbÞ�� ¼ � 4�3G3M3E

sin3 �
2

cos4
�

2
;

we find that the unpolarized cross section has the form

d	

d�
¼

�
d	

d�

�
0

�
1þ �GME sin�2

ð1þ sin�2Þ2

�
�
15þ 14 sin�2 þ 3sin2 �

2

4

��
; (4)

where ðd	d�Þ0 is given by Eq. (1).

III. DISCUSSION

It was shown recently that the semiclassical and effec-
tive approaches to gravity are equivalent in the limit in
which one of the masses involved in the scattering process
is huge [9]. In the semiclassical theory, which is utilized in
this work, the particles are treated as quantum fields while
the gravitation is considered as a classical source. The ef-
fective theory of gravity developed by Donoghue [10,11],
on the other hand, treats gravity as a quantized field, but the
nonanalytical ð 1

q2
; 1q ; lnqÞ parts of the Feynman amplitude

are separated from the analytical terms ð1; q; q2; . . .Þ, where
q is the exchanged momentum. This approach is only valid
for large distances (or low exchanged momentum).
Therefore, for a photon of energy E scattered by a particle
of mass M (M � E), the effective theory of gravity leads
to the same result as that obtained here [Eq. (4)]. Now, tak-
ing into account that these two powerful approaches based
on quite different but correct assumptions confirm Eq. (4),
we may say that this result is reliable. The computations
that rely on the effective method, however, are much harder
than those which appeal to the semiclassical approach,
besides being exceedingly time consuming. It is also worth
mentioning that to second order, the differential cross sec-
tion for the scattering of a massive scalar boson by a weak
gravitational field, treated as an external field, i.e.,
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d	

d�
¼

�
d	

d�

�
0

�
1þ �GMjpj sin�2

1þ �
2

�
3�þ 15� sin2 �

2

4

��
;

(5)

where

�
d	

d�

�
0
¼

�
GM

sin2 �
2

�
2
�
1þ �

2

�
2
; (6)

and � ¼ 1�v2

v2
, with v being the boson incident velocity, is

mass dependent [12,13].
Is there any hope of measuring the energy-dependent

effect predicted by Eq. (4) in the foreseeable future? It is
obvious that in order to detect this possible effect we would
have to know beforehand the gravitational deflection angle.
Let us then determine the expression for this angle. A
straightforward calculation shows that for small angles
Eq. (4) reduces to

�
d	

d�

�
�

�
4GM

�2

�
2
�
1þ 15�GME�

8

�
: (7)

On the other hand, as is well known,

�
d	

d�

�
� � b

�

db

d�
; (8)

where b is the impact parameter. From Eqs. (7) and (8) we
arrive at the expression for the scattering angle, i.e.,

� ¼ 4GM

b
þ 60�2G3M3


b2
; (9)

where we have assumed 
 � GM, with 
 being the photon
wavelength. Therefore,

��

�E
� �� �E

�E
¼ 15�2G2M2


b
; �E � 4GM

b
:

Currently, the only measurements of the gravitational de-
flection we have at our disposal are those related to the so-
lar deflection of photons. Now, for the sun GM� 1:5 km,
which would require photons of very low energy for the
measurement of the corresponding bending. Unfortunately,
no measurement of gravitational deflection in this energy
range is available nowadays. Consequently, the detection
of the energy-dependent effect predicted by Eq. (4) seems
unlikely in the immediate future.

We call attention to the fact that the second order con-
tribution we have obtained [see Eq. (9)] requires 
 � GM,
and for this reason it does not agree with the classical
calculations found in the literature [14–16]. Accordingly,
if we want to recover the classical results, we need a new
approach for calculating the scattering angle � that could
be applied to the scattering of particles with small wave-
length. Luckily, the so-called JWKB method [17] is fitting

for analyzing this type of scattering ( 2�b
 � 1). Using this

method, it can be shown that for GM
b 	 1, the semiclassical

deflection is given by [18]

�JWKB ¼ 4GM

b

�
1� 
2

4�2b2

�
þ 15�G2M2

4b2

�
�
1� 3
2

10�2b2
þ 
4

16�4b4

�
þ 128G3M3

3b3

�
�
1� 3
2

8�2b2
þ 3
4

32�4b4
� 
6

64�6b6

�

þ � � � ; (10)

which in the geometrical optics limit (
 ! 0) coincides
with the result computed classically [14–16]. Note that
�JWKB is also energy dependent, as it should be.
Computing

��

�E
� j�JWKB � �Ej

�E
;

to first order in GM
b , yields

��

�E
¼ 
2

4�2b2
: (11)

For the sun, for instance, and for a typical frequency

� ¼ 1 GHz, ��
�E

� 10�20. Unluckily, the detection of a so

tiny effect is beyond the current technology. Fortunately,
all indications are that around the year of 2010 it will be
possible to achieve angular resolution as fine as 300 nano-
arcseconds via X-ray interferometry [19], implying con-
sequently in the likelihood of detecting this extremely
small deviation from the value predicted to first order in
GM
b by Einstein geometrical theory.

Last but not least, we remark that the second order cor-
rection for the scattering angle of a photon by a weak gravi-
tational field, treated as an external field (which for large
wavelength was computed using the semiclassical theory
of gravity, whereas for small wavelength was obtained via
the JWKBmethod), depends upon the energy (or the wave-
length). Now, since any experiment carried out to test this
dependence on the energy utilizes the knowledge of the
gravitational deflection angle, which, of course, is an ex-
tended object, the aforementioned correction can be cor-
rectly interpreted as a violation of the CEP but not of the
EEP. To conclude, we point out that the examples of vio-
lation of the CEP discussed in the Introduction, together
with those we have just considered, seem to indicate that
quantum mechanics and the CEP are irreconcilable.
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