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A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum

corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The

underlying constraints present a consistent deformation of the classical system, which shows that the

discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-

time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since

correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the

correct implementation of constraint operators can be gained. The procedures of this article thus provide a

clear link between fundamental quantum gravity and phenomenology.
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I. INTRODUCTION

Quantum gravity is expected to play a role in the early
Universe, in such a way that it may become subject to
observational tests in cosmology. As is well known, a
complete theory of quantum gravity is difficult to con-
struct, and even if one would have a fully convincing
candidate it would remain difficult to link such a funda-
mental formulation to clear-cut observational consequen-
ces. Daunting as this may seem, such a problem is not
specific to quantum gravity and has been circumvented
highly successfully in other areas. For instance, to date
there is no complete and fully rigorous construction of
interacting quantum field theories on flat space-time, and
yet clear and experimentally well-tested procedures to
extract predictions have been used for decades.

Quantum gravity certainly does have additional prob-
lems which do not arise in quantum field theories on flat
space-time. Paramount among these issues, related to the
general covariance of the theory and thus to consequences
of the fully constrained nature, are the problem of time, the
self-interacting nature of gravity and the notion of a physi-
cal Hilbert space. Yet, quantum field theory is a lesson that
the lack of a completely formulated underlying theory
should not prevent one from making trustworthy state-

ments valid at, e.g., low energies. Not all the mathematical
constructions, whose well-defined existence one may wish
to prove rigorously, are required for such purposes. They
are surely necessary at a fundamental level, and they have
often stimulated much further research. But they do not
directly relate to observables, and thus can, for some
purposes, be ignored.
The key tool for extracting potentially observable con-

sequences without being paralyzed by open issues in a
fundamental framework are effective formulations. They
capture quantum effects by describing relevant aspects of
an evolving wave function. They allow one to focus on the
relevant degrees of freedom, such as expectation values or
fluctuations, rather than whole wave functions and techni-
cal issues of how they may be represented. And if applied
carefully enough, they not only provide reliable self-
consistent predictions but also link back to the full theory
where they originate and thus provide fundamental
insights.
For many purposes, almost all the information contained

in a wave function is irrelevant, and a few state parameters
of finite number suffice for all potentially observable con-
sequences that can be imagined. This is what provides a
much more economical derivation of physical results. One
should note that effective equations are not merely an
amendment of classical equations by quantum correction
terms, although one can always obtain such equations in
semiclassical regimes because the classical limit must be
respected. However, effective equations apply more gen-
erally and constitute a systematic approximation scheme to
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analyze full quantum properties such as dynamical expec-
tation values of a state.

Best known among effective formulations are probably
low-energy effective actions in particle physics [1,2]. But
they are also available in canonical formulations [3–5],
where they have proven fruitful for quantum cosmology
[6,7]. They can be extended to constrained systems, where
they provide effective constraints for the state parameters
[8]. Thus, all ingredients are given which are necessary for
an application to loop quantum gravity [9–11] and a deri-
vation of its effects. Because of the complexity of the
problem, there is no complete derivation of effective equa-
tions for loop quantum gravity, but several characteristic
quantum effects are known and can be analyzed. Taken
together, all quantum corrections provide a complicated
substitute for the classical equations, but they can be
separated and studied individually. As we will see in this
article, this provides crucial insights into what should
happen in a consistent full theory of quantum gravity. We
will explicitly construct anomaly free constraints which
incorporate quantum corrections of inverse metric compo-
nents as they occur due to the discreteness of loop quantum
gravity. A companion paper [12] will use these consider-
ations of effective constraint algebras to provide quantum
corrected cosmological perturbation equations in terms of
gauge-invariant variables.

II. EFFECTIVE EQUATIONS AND EFFECTIVE
CONSTRAINTS

We start by reviewing the scheme of effective equations
for canonical formulations. For an unconstrained system,

the quantum theory is given by a Hamiltonian operator Ĥ
which is self-adjoint on a given Hilbert space. It determines
evolution of states  by the Schrödinger equation

i@ _ ¼ Ĥ (1)

and allows one to solve, e.g., for scattering amplitudes by
evolving given initial states into possible final states.

A. Effective equations of motion

Alternatively, one can view the expectation value of the

Hamiltonian, HQ :¼ hĤi, as a functional on the infinite
dimensional space of states. It generates the same
Schrödinger evolution by Hamiltonian equations of motion

d

dt
hÔi ¼ h½Ô; Ĥ�i

i@
¼: fhÔi; HQg: (2)

General expressions for the relevant Poisson brackets on
the right-hand side can be computed from commutators of
basic operators used in the given quantum theory.

A solution for hÔiðtÞ to the Hamiltonian equation of
motion has the same information as the expectation value

h jÔj i computed in a state j i satisfying the Schrödinger
equation (or as the expectation value of a Heisenberg

operator). However, in general HQ, evaluated in a given
state, depends not only on expectation values of basic
operators but also on fluctuations and all other moments
of the state. There is thus a complicated, infinite dimen-
sional coupled system of equations involving not only the

time dependence of hÔi but also independent quantum

variables such as hÔni � hÔin (or expectation values of
other operators) which appear in quantum theory.
Effective equations are obtained when one can self-

consistently determine regimes where these infinitely
many equations can be decoupled to a finite system. This
usually happens in semiclassical regimes where higher
moments of a state are subdominant compared to low
ones, but effective equations can be applied more gener-
ally. The 1-particle irreducible low-energy effective action,
for instance, can be derived in an approximation consisting
of a combination of an adiabatic expansion with one in @

[3,5]. Some rare solvable systems can be studied by exact
effective equations without truncation, which in cosmol-
ogy is realized for a flat isotropic model sourced by a free,
massless scalar [6].
In simplest cases, the effective approximation can be

truncated at the level of expectation values of the quantum
operators. Such a truncation, however, can still lead to
nontrivial quantum corrections. In particular, the inverse
of an operator containing zero eigenvalue in its discrete
spectrum cannot always be approximated merely by the
inverse of the expectation value. Such classically diverging
operators are conventionally expressed in terms of com-
mutators of well-defined (nondiverging) operators prior to
applying the effective techniques. The corresponding ex-
pectation values of the commutators can then be written as
classical expressions multiplied by correction functions as
discussed in Sec. II D.

B. Effective constraints

Gravity is governed by constraints rather than a true
Hamiltonian. Just like the Hamiltonian before, constraint

operators ĈI give rise to principal effective constraints

hĈIi, but with those an infinite tower of other constraints
for quantum variables is generated [8]. We are thus dealing
with a system of infinitely many constraints on an infinite
dimensional phase space even for a single classical canoni-
cal pair. The higher constraints can be ignored in our
treatment of characteristic loop quantum gravity effects
appearing in the principal constraints. As we will see,
this is sufficient to arrive at a consistent constraint algebra
together with the cosmological perturbation equations it
implies. Higher constraints would be required if we were
interested in the constrained evolution of higher moments.
The principal constraints are obtained from expectation

values of quantum operators and thus contain several
quantum effects. In general, they depend on quantum
variables and include the quantum back reaction of, e.g.,
fluctuations and correlations on expectation values. But
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especially in loop quantum gravity they also contain char-
acteristic effects which are a consequence of the funda-
mental quantum representation used. In loop quantum
gravity, these translate consequences of the kinematical
discreteness of the loop representation into effective equa-
tions and thus show implications for dynamical states. The
basic reason for properties of the loop representation is the
use of SU(2)-valued holonomies of the Ashtekar-Barbero
connection instead of linear functions of the connection
[13]. In particular, the basic variables become complex but
still have to obey certain reality conditions to ensure that
the correct number of classical degrees of freedom is
quantized. This is usually implemented by requiring self-
adjointness or unitarity of basic operators in the quantum
representation, but one advantage of effective equations is
that reality conditions can be represented independently at
the level of expectation values and quantum variables [6,8].
This remains true after solving the effective constraints,
thus showing crucial properties of the physical Hilbert
space even in cases where the physical inner product
may be difficult to construct.

A further advantage of effective equations, especially for
the purpose of cosmological perturbation theory, is the
issue of introducing a background geometry to define
perturbative expansions in gravitational variables such as
inhomogeneities. While the underlying theory of loop
quantum gravity is background independent in a form
which does not make it straightforward to introduce a
perturbative background via states, effective constraints
can easily be expanded by perturbing expectation values
around a background of the desired classical form. The
background then enters via a selection of a class of states to
compute effective constraints [14]. (See also [15] for a
conceptually similar proposal based on boundary states.)
Using a Friedmann-Robertson-Walker background, for in-
stance, allows one to derive cosmological perturbation
equations directly—and effectively—from a background
independent quantum theory of gravity.

For the resulting set of equations to be meaningful, they
must be consistent in that they derive from constraints
which are anomaly free also in the presence of quantum
corrections. If this fails, it will be impossible to express the
quantum corrected perturbation equations solely in terms
of gauge-invariant variables as they are determined by the
gauge flow of the corrected constraints. In particular, as we
will demonstrate in this article, off shell anomaly freedom
is required. (The importance of the off shell anomaly
problem was also emphasized in [16] based on alternative
fundamental considerations.) If one has an anomaly free
quantization with constraint operators such that the con-

straint algebra ½ĈI; ĈJ� closes to a first class system, then

the algebra of principal quantum constraints fhĈIi; hĈJig
will also close because it derives from the commutator
algebra. (If there are structure functions, higher constraints
as mentioned in the beginning of this subsection will be

involved.) Approximations to effective constraints then
have to be done self-consistently in such a way that viola-
tions of closure of the algebra do not happen up to the order
considered in an expansion.
In loop quantum gravity, however, no satisfactory form

of all constraint operators is known which would satisfy the
requirement of off shell closure. (The arguments in [17,18],
for instance, specifically refer to partially on shell state-
ments; the reformulation of anomaly freedom as a condi-
tion for the existence of observables in [19,20] is also on
shell.) Without off shell closure, on the other hand, physi-
cal applications based on the usual form of cosmological
perturbation equations are impossible. (While applications
may be possible based on a complete set of quantum
observables in a form of reduced quantization, this route
does not seem manageable.) The final advantage of effec-
tive formulations exploited in this article is then that one
can ensure off shell closure of the effective constrained
system. Thus, one can include known quantum effects as
they occur in a quantization where one has not yet taken
care of anomaly freedom, obtain candidates for effective
constraints with those corrections in a suitable parameter-
ized form (reflecting either quantization ambiguities or
incomplete knowledge of properties of a quantum opera-
tor), and compute their Poisson relations. In general, this
algebra will exhibit anomalies, but in some cases one can
adapt the correction functions used in the parametrization
of quantum effects such that anomalies vanish.
If there is no such adaptation, this specific quantum

correction would be ruled out. But if one can successfully
remove anomalies while keeping nontrivial quantum cor-
rections, one will learn how specifically the quantum effect
has to arise in quantum operators, and how completely
quantization ambiguities can be fixed by the requirement
of anomaly freedom. The advantage of effective equations
is then that one can do such an analysis order by order in
various expansions, instead of having to face a complicated
operator algebra in which all possible quantum effects are
included at once. The result of completing such a program
will not only be consistent sets of equations of motion
which can be used for applications, but also valuable feed-
back on the underlying fundamental theory which in our
case will be loop quantum gravity. Thus, we are providing
a clear link between fundamental properties of quantum
gravity and its phenomenology.

C. Cosmological perturbation equations

Linearization of Einstein’s equations around Friedmann-
Robertson-Walker (FRW) space-times provides cosmo-
logical perturbation equations for ten metric components.
These metric perturbations are subject to coordinate
(gauge) transformations parametrized by an infinitesimal
4-vector field �� (� ¼ 0; . . . ; 3), which, in presence of
matter, generically give rise to six gauge-invariant pertur-
bations, i.e. combinations of metric and matter perturba-
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tions which remain unchanged under linear changes of
coordinates. In the linear regime, the former decouple
into three independent modes: scalar, vector, and tensor,
carrying 2 degrees of freedom each. The evolution of
vector and tensor modes taking into account corrections
expected from loop quantum gravity was investigated in
[21,22], respectively. In this paper, we focus on the scalar
perturbations which, along with the background FRW-
metric, take the form

ds2 ¼ a2ð�Þð�ð1þ 2�Þd�2 þ 2@aBd�dx
a

þ ðð1� 2 Þ�ab þ 2@a@bEÞdxadxbÞ; (3)

where the scale factor a is a function of the conformal time
� and the spatial indices run from 1 to 3. The perturbations
�,  , B, and E are then combined into the two gauge-
invariant Bardeen potentials [23]

� ¼  �H ðB� _EÞ
� ¼ �þ ðB� _EÞ_ þH ðB� _EÞ; (4)

whose evolution is governed by the linearized Einstein
equations [24]

r2�� 3H ðH�þ _�Þ ¼ �4�Ga2�T0ðGIÞ
0 ; (5)

@aðH�þ _�Þ ¼ �4�Ga2�T0ðGIÞ
a ; (6)

�
€�þH ð2 _�þ _�Þ þ ð2 _H þH 2Þ�þ 1

2r2ð���Þ
�
�ba

� 1
2@
b@að���Þ ¼ 4�Ga2�TbðGIÞa : (7)

Here a dot denotes derivative with respect to conformal
time, H � _a

a is the conformal Hubble parameter, and

�TðGIÞ are gauge-invariant perturbations of the matter
stress-energy tensor. These equations are commonly de-
rived from the covariant field equations or by varying an
action expanded to second order in the linearized fields.
But Hamiltonian formulations exist for the same proce-
dure, which is more suitable for a comparison with canoni-
cal quantum gravity (in particular in Ashtekar variables as
used in [25]).

To formulate the Hamiltonian setting, the action is used
to determine Poisson brackets, and thus a decomposition
into configuration fields and their momenta, as well as
constraint functions. The constraints serve several pur-
poses: (i) they restrict initial values of the fields to those
allowed values which make the constraints vanish, (ii) they
generate gauge transformations which in the case of gen-
eral relativity agree with coordinate transformations, and
(iii) they provide equations of motion for the fields in any
coordinate time parameter. (The latter is itself subject to
the coordinate changes by transformations generated by
the constraints.) All this is necessary to reproduce a
covariant system even though distinguishing momenta,
which are related only to time but not space derivatives

of fields, invariably removes manifest covariance from the
Hamiltonian formalism.
For this to be consistent, it is crucial that the constraints

are preserved under the time evolution they generate. This
is automatically guaranteed if they form a first class set, i.e.
a set of functionals whose mutual Poisson brackets vanish
when evaluated in fields satisfying the constraints. In other
words, the gauge transformations and evolution generated
by the constraints then define vector fields on field space
which are tangent to the submanifold defined by the van-
ishing of constraints. Starting on the constraint surface,
either changing the gauge or following evolution will then
keep us on the constraint surface. This is certainly realized
classically, as a reflection of the general covariance of the
underlying theory.
However, if quantum aspects are implemented, one must

ensure that this consistency requirement remains main-
tained: the quantization must be anomaly free. Otherwise
the equations may show the wrong type and number of
degrees of freedom if formerly gauge quantities acquire
gauge-invariant meaning. Or, worse, anomalies may make
the equations inconsistent to the degree that no nontrivial
solution exists at all. Anomaly freedom is thus a key
requirement not only for the consistency of an underlying
fundamental theory but also for the possibility of applica-
tions. Quantum corrections cannot appear in arbitrary
forms, but only in restricted ways such that the constraints
form a closed algebra under Poisson brackets. In particular,
anomaly freedom will reduce some of the arbitrariness of
the form of loop quantum gravity corrections.
Moreover, as we will see explicitly, to provide quantum

corrections to Eqs. (5)–(7) the algebra must close off shell,
i.e. it is not enough that the Poisson brackets of constraints
vanish when the constraints are satisfied but even on parts
of the phase space where constraints CI do not vanish we
must produce a closed algebra of a form fCI; CJg ¼
fKIJðA; EÞCK. (Here, A and E denote the canonical fields

which may appear in the coefficients of the algebra; this
means that in general we have structure functions rather
than structure constants.) The effective algebra may differ
from the classical one, and thus be quantum corrected as
well as the constraints; but it must still close. The reason is
that the whole set of coupled equations must be consistent,
which presents a mixture of constraint Eqs. (5) and (6) and
evolution equations given by (7) together with the continu-
ity or Klein-Gordon equation. To ensure that these equa-
tions are consistent, we must consider the constraints
before they are solved. Consistency then requires an off
shell closure of the constraint algebra. Practically, the
consequence is that only in this case we can express all
the equations solely in terms of gauge-invariant variables
as they are determined by the quantum corrected con-
straints. Once this is achieved, the equations are consistent
and can be solved and analyzed. In the absence of off shell
closure, on the other hand, there would be leftover terms in
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the equations of motion which contain gauge-dependent
quantities making such an evolution unphysical.

In this context, it is important to realize that there is no
shortcut to implementing the quantum corrections of fully
perturbed field equations consistently. (Notwithstanding
the fact that this has been attempted on numerous occa-
sions such as [26–28] in the context of loop quantum
cosmology, including by some of the present authors
[29].) Consistency even for the purposes of phenomeno-
logical applications is intimately linked to the fundamental
problem of anomaly freedom once inhomogeneities enter
the game. In homogeneous models of gravity there is just
one constraint, which clearly has a vanishing Poisson
bracket with itself and thus forms an off shell closed
algebra. Thus, in homogeneous quantum cosmology there
is no anomaly problem whatsoever. Here, quantum correc-
tions can be implemented at will, only restricted by pos-
sible self-imposed conditions such as the desire to be as
close to a candidate for a ‘‘full,’’ nonsymmetric theory as
possible as it is expressed in loop quantum cosmology [31].
(Some of the structures, chiefly the kinematical quantum
representation, of loop quantum cosmology can be linked
to loop quantum gravity and are thus more restricted
[14,32–35]. But no such derivation exists yet for the con-
straints which are most important to see the precise role of
quantum corrections on the dynamics.)

It is then sometimes proposed to implement quantum
corrections only in the background evolution, for instance
by effects motivated from loop quantum gravity, and then
use some inhomogeneous degree of freedom such as a
matter field as a measure of perturbations around the
background. If just the background is quantized, one
knows corrections only in its evolution but would have to
keep the structure of classical perturbation equations oth-
erwise unchanged. This is rarely consistent, and the treat-
ment is not gauge invariant. Gauge-invariant quantities in
general relativity such as (4) combine several metric per-
turbations and possibly matter fields. Taking only a matter
field, say, as the measure of perturbations means that one is
fixing the gauge (by implicitly assuming non-gauge-
invariant metric perturbations to vanish) without even
knowing what the gauge transformations are. The classical
case of linear perturbations around Friedmann-Robertson-
Walker space-times allows gauges where only the matter
fields are inhomogeneous but not the metric like, for
instance, the uniform density gauge. However, quantum
corrections change the constraints and thus the gauge trans-
formations they generate. The form and availability of
certain gauges changes, and it is no longer possible to
reexpress the gauge-fixed results in terms of the gauge-
invariant quantities unless one considers the full gauge
problem. This can only be done when initially all
perturbations are allowed and the anomaly issue is faced
head-on.

In the context of classical cosmological perturbations,
the above arguments can be rephrased in the following

manner. The effective corrections arising in loop quantum
cosmology can formally be written as

G�� ¼ 8�GðT�� þ ���Þ (8)

where ��� contains all the corrections from loop quantum

cosmology and T�� corresponds to the stress tensor of the

classical matter field. Although the matter field might be an
ideal fluid, the stress tensor ��� arising due to the new

physics cannot necessarily be treated as a perfect fluid.
More importantly, the perturbation of the stress tensor ��ab
will in general have some anisotropic stress and the veloc-
ity perturbation �va will not vanish for a standard gauge
choice. Hence, it is important to study the perturbations in
a gauge-invariant manner.
If there is an anomaly free version of quantum corrected

constraints and the corresponding form of covariance, one
could compute complete gauge-invariant quantities to ar-
bitrary orders in an expansion by inhomogeneities; see e.g.
[36–38] or, in deparameterized form after introducing dust
as a clock matter system, [39,40]. As discussed, this re-
quires off shell anomaly freedom of the constraints which
is not easy to realize in closed form. The treatment by
effective constraints then provides a key advantage: one
can verify anomaly freedom order by order in the expan-
sion by inhomogeneities (which may be combined with a
semiclassicality expansion in @). This can be done with
much more ease than a full anomaly analysis but still, as
we will see explicitly, provides crucial feedback for the full
theory.

D. Correction functions

Any quantization, such as loop quantum gravity, implies
characteristic effects which change the classical behavior.
Almost always, there are quantum back reaction effects by
state parameters such as fluctuations and correlations on
expectation values. (The only exceptions are free or solv-
able models such as the harmonic oscillator where mo-
ments of a state evolve independently of expectation
values.) In addition, the specific quantum representation
may imply further characteristic effects, which in the case
of loop quantum gravity are all related to the spatial dis-
creteness of its kinematical representation. The classical
setup makes use of basic variables given by a densitized
triad Eai , which provides the spatial metric via Eai E

b
i ¼

detðqcdÞqab, and the Ashtekar connection Aia ¼ �ia þ 	Ki
a

with the spin connection �ia and extrinsic curvature Ki
a ¼

Ebi Kab=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðEcjÞj

q
. This canonical pair of fields is then

quantized in the form of fluxes, i.e. integrations of the triad
over surfaces, and holonomies or parallel transports of the
connection. The resulting background independent repre-
sentation has characteristic properties of spatial discrete-
ness such as a discrete spectrum of flux operators (which
contains zero). Such properties imply associated quantum
corrections which appear whenever there are inverse
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powers of densitized triad components (some of which
would classically diverge at singularities) or holonomies
of a connection rather than just connection or curvature
components.

All these corrections typically occur at the same time
and must be combined in a complete treatment. While one
type of correction might be dominant in certain regimes,
this would not be known a priori but had to be shown by a
dedicated analysis. Nevertheless, due to the complexity of
general quantum corrections, it is legitimate to separate the
different corrections at first, analyze individual effects and
then combine results. In spirit, this is similar to the calcu-
lation of corrections to an atomic spectrum, which can be
done individually for relativistic corrections, spin-orbit
interaction, etc., and eventually combined in a complete
spectrum. In this paper, we focus on loop quantum gravity
corrections as they arise from inverse components of the
triad.

These corrections are already relevant for cosmology,
where they have been analyzed in preliminary forms in
homogeneous and inhomogeneous contexts [26,41–49].
(Note that a subdominance of these corrections compared
to those due to holonomies has been claimed based on an
analysis of isotropic models [50]. However, this is based
largely on an inadvertent and artificial suppression in the
models used [51]; see also Appendix A. In any case, the
arguments put forward in the context of [50] do not apply
to inhomogeneous situations.) The precise form of such
corrections as they would result in a principal constraint
from the expectation value of a constraint operator cannot,
at present, be computed due to the complicated form of the
volume spectrum which would be required (see e.g. [52]).
However, the results of Ref. [53] indicate that the behavior
is known for the diagonal triads and that the classical
function of triad components is multiplied by a correction
function (
ðEai Þ) which approaches the classical expecta-

tion for large values of triad components. (More precisely,
the function depends on fluxes, i.e. triad components inte-
grated over elementary plaquettes of a discrete quantum
state. This makes the functional behavior independent of
the choice of coordinates.)

At smaller scales, however, the function starts to deviate
from one and implies quantum corrections. If the correc-
tion function is evaluated on an isotropic background [54],
it has a peak at a certain characteristic scale a� of height
larger than 1, and then drops off at smaller scales to reach
zero for vanishing triads. Notice that inhomogeneous con-
texts and states make it meaningful to speak about this
behavior in terms of the scale factor a. In exactly isotropic
models which are spatially flat, the absolute size of the
scale factor has no meaning. However, the argument of
correction functions is determined by a dimensionless ratio
given by q :¼ ‘20a

2=‘2P ¼: a2=a2� where ‘0 is the size in

coordinates of an elementary plaquette whose flux appears
as an argument. The product ‘0a has unambiguous mean-

ing because it does not change under rescaling coordinates
(which would change both a and ‘0 individually). The peak
of the correction functions occurs near q� 1, i.e. a� a�.
The characteristic scale a� can be written as a� ¼ ‘P=‘0 ¼
ðN =V0Þ1=3‘P where N is the number of vertices of an
underlying state contained in a region of coordinate vol-
ume V0. The ratioN =V0 appearing in a� is thus the patch
density of an underlying discrete state measured in a given
coordinate system. For nearly homogeneous configura-
tions, it does not depend on the region or on V0, but on
coordinates. (The physical vertex density which would be
independent of coordinates is N =ða3V0Þ, but it would not
be appropriate to determine a characteristic scale for a.
Note that near a� a� there is one patch per Planck cube;
upper bounds for the patch density can be obtained from
phenomenological considerations, such as from big bang
nucleosynthesis [55].) The value of a� depends on the
normalization of the scale factor. But it also depends on
the vertex density which can be large. Thus, the peak of
correction functions for a denser state is realized on larger
scales, which increases the corresponding quantum
corrections.
An additional implication of the appearance of the ver-

tex density is thatN is typically history dependent [14,56]
if the dynamical quantum evolution refines the state as the
universe grows (rather than just blowing up a fixed lattice).
Thus, also the scale a� is history dependent which contrib-
utes to the regime dependence of this type of correction.
For a given background, the history dependence can al-
ways be expressed as an a-dependence, which is some-
times seen as problematic because the scale factor is not
coordinate independent. However, given that the origin of
the refinement lies in the inhomogeneous setting, a proper
reduction introduces the correct scaling dependence via
additional parameters depending on the state; see also
Appendix A.
For an implementation of perturbative inhomogeneities,

regimes where relevant scales fall below a� pose difficul-
ties because the scale of inhomogeneity would be close to
the discreteness scale. In this paper, we thus assume that
scales of the densitized triad are above the characteristic
scale a�, where correction functions deviate from one by
terms perturbative in the Planck length:


ðaÞ ¼ 1þ c


�
‘2P
a2

�
n
 þ � � � (9)

with positive coefficients c
 and n
. Both coefficients can
be derived from a specific quantization but are subject to
quantization ambiguities. The coefficient c
, in particular,
is then related to a� (and to ‘0, providing the correct
coordinate dependence in the presence of the scale factor).
Thus, c
 may itself depend on a if the vertex number N
in a fixed volume, and thus a�, changes with the Universe
expansion. We are assuming that the dominant
a-dependence is via a power law of the given form.
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Constraints for linearized perturbations will not only
require the dependence of 
ðEai Þ on the triad when the
latter is diagonal, but also the dependence on off diagonal
components. Classically one can always gauge the triad to
be diagonal, but gauge transformations are quantum cor-
rected and a consistency analysis of the equations must be
done before a gauge is fixed. The off diagonal dependence
of 
 is not known in explicit form, and it is difficult to
derive because unlike the diagonal case it requires non-
Abelian features of the quantum theory [52,57]. As we will
see, the consistency analysis of constraints then relates the
off diagonal dependence to the diagonal dependence via
the condition of anomaly freedom. Moreover, other terms
in the constraints, including matter Hamiltonians, will also
require characteristic quantum corrections which, in
contrast to the primary correction functions, may not ob-
viously be expected from explicit quantizations in homo-
geneous models. Nevertheless, such additional corrections,
called counterterms in what follows, are required for
anomaly freedom. In this way, they are fixed in terms of
the primary correction functions depending on diagonal
triads. All this not only provides consistent equations ready
to be applied in cosmology, but also precise feedback on
what terms a full anomaly free quantum constraint must
contain. As technical control on the full setting increases,
these predictions will provide strong consistency checks of
the whole framework.

III. CANONICAL PERTURBATION THEORYAND
PRIMARY CORRECTION FUNCTIONS

In this main part of the paper we develop the ingredients
of a consistent perturbation theory in the presence of
quantum corrections to the classical constraints.

A. Constraints and primary corrections

We first introduce the constraints and primary correction
functions which are expected to arise in the effective con-
straints. Formally, the corrections are introduced as multi-
plicative factors of some terms in the constraints which
depend on the phase space variables and approach unity in
the classical limit. In this paper, we restrict ourselves to
correction functions resulting from the quantization of
inverse-triad terms of the constraints. For the primary
corrections, the functions are also assumed to depend
only on the triad and to be local, i.e. independent of spatial
derivatives of the triad. This reflects properties of these
functions as they have been introduced in homogeneous
models. The input can thus be used to formulate an initial
expectation of the form of such functions. Moreover, in this
section, we assume that the corrections can in principle be
obtained from the full (nonperturbative) theory, and hence
should depend only on the full triad Eai � �Eai þ �Eai rather
than on the background �Eai and perturbations �Eai as dis-
tinct arguments. Later on we shall analyze the consistency
of such assumptions. Anomaly freedom will generate addi-

tional counterterms of further corrections, which can be
reinterpreted as a connection dependence or nonlocality of
the primary corrections. Such a dependence is in any case
expected for covariant corrections which can, e.g., be
formulated as functionals of curvature invariants. Of
course, we could put in such a dependence from the outset,
but it would make the calculations much less tractable.
General relativity in Ashtekar variables is subject to the

Gauss, diffeomorphism, and Hamiltonian constraints. The
Gauss constraint is identically satisfied for scalar modes
and does not need to be considered here. In the full
quantum theory, the diffeomorphism constraint does not
receive quantum corrections but the Hamiltonian con-
straint does [18]. The diffeomorphism constraint is thus
taken as the classical one, D½Na� ¼ Dgrav½Na� þ
Dmatter½Na� with a gravitational part

Dgrav½Na� :¼ 1

8�G	

Z
�
d3xNa½ð@aAjb � @bA

j
aÞEbj

� Aja@bE
b
j � (10)

and a matter part

Dmatter½Na� ¼
Z
�
d3xNa�@a’ (11)

for a scalar field ’.
We express the classical gravitational Hamiltonian as

Hgrav½N� ¼ 1

16�G

Z
�
d3xNH (12)

in terms of the Hamiltonian density

H ¼ Eai E
b
jffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ðFkab�ijk � 2ð1þ 	�2ÞðA� �Þ½ia ðA� �Þj�b Þ;

(13)

where the curvature of the Ashtekar connection is given by

Fkab ¼ 2@½aAkb� þ �ij
kAiaA

j
b;

	 is the Barbero-Immirzi parameter and the spin connec-
tion �ia is considered as a functional of the densitized triad
[written explicitly in Eq. (29)]. According to the discussion
in Sec. II D, the presence of an inverse of the triad deter-
minant suggests a primary correction function of inverse-
triad-type,

HP
grav½N� ¼ 1

16�G

Z
�
d3xN
ðEai ÞH ¼ Hgrav½
N�

¼: Hgrav½ ~N�: (14)

Its origin lies in deviations between the behavior of
inverse-triad operators and the classical inverse of a triad.
Triad operators do not have direct inverses because they
have discrete spectra containing zero. Instead, they can be
quantized after a classical reformulation [18] which intro-
duces quantum corrections. These corrections enter effec-
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tive Hamiltonians via expectation values of constraint op-
erators containing the inverse-triad operators.

For the same reason, primary quantum corrections �ðEai Þ
and �ðEai Þ are introduced into the matter part of the
Hamiltonian constraint as

HP
matter½N� ¼

Z
�
d3xNð�H � þ �H r þH ’Þ; (15)

where

H � ¼ �2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ; H r ¼ Eai E

b
i @a’@b’

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ;

H ’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p
Vð’Þ

(16)

are the (classical) Hamiltonian densities corresponding to
the kinetic, gradient, and potential terms, respectively.
Note that the potential term is not expected to acquire
primary quantum corrections because there is no inverse
of the triad in this term. Thus, the correction does not
simply amount to a rescaling of the lapse function even if
� and � would equal 
.

In Appendix B we discuss the Poisson brackets
between unperturbed HP½N� � HP

grav½N� þHP
matter½N� and

D½Na� � Dgrav½Na� þDmatter½Na�, as well as between

HP½N1� and HP½N2�.

B. Perturbations

Consider first an action which depends only on one
scalar field ’. Generalizations to arbitrary tensor fields
will be considered in the following subsection and in
Appendix C. After the Legendre transform the action takes
the form

S½’� ¼
Z

d4xð� _’�H ð’;�ÞÞ; (17)

where H is the Hamiltonian density and � is the field
momentum. Given a space-time slicing by constant-time
surfaces, we split the fields ’ and � into their homoge-
neous parts

�’ :¼ 1

V0

Z
d3x’; �� :¼ 1

V0

Z
d3x� (18)

and the inhomogeneous remainder

�’ :¼ ’� �’; �� :¼ �� ��: (19)

Here, V0 is the volume of a spatial slice if it is closed, or
can be thought of as a very large (but finite) infrared cutoff
volume otherwise. The coordinate size V0 will only appear
in basic variables and their symplectic structure, but not in
final equations of motion.

We also require the inhomogeneities �’ and �� to be
small: ��������

�’

�’

��������� 1;

��������
��

��

��������� 1 (20)

for the slicing we use, so that this can be considered as
perturbations around homogeneous solutions. For a ge-
neric Hamiltonian, these conditions may at some point be
violated during the evolution. In fact, only a narrow class
of Hamiltonians admits such a splitting, for which the
inhomogeneities remain smaller than the mean fields at
all times. At the moment, as is common in cosmology of
the early Universe, we merely assume that (20) holds for
the regime under consideration. Hence, from now on we
shall refer to �’ and �� as perturbations and will also
speak of the first, second, etc. perturbative order, denoted
by superscripts ð1Þ, ð2Þ, . . . in what follows. Specifically,
we will be interested in the perturbations up to the second
order in the Hamiltonian, which implies a linear perturba-
tion theory in terms of equations of motion.
From the very definition of �’ and �� it follows that

any first order quantity averages to zero. In particular,


1 :¼
Z

d3x�1�’ ¼ 0; 
2 :¼
Z

d3x�2�� ¼ 0;

(21)

where �1 and �2 are ‘‘smearing’’ constants [58]. Therefore
the first term in the action (17) splits into two parts:

Z
d4x� _’ �

Z
d4xð ��þ ��Þð _�’þ � _’Þ

¼ V0

Z
dt �� _�’þ

Z
d4x��� _’; (22)

yielding the basic Poisson brackets

f �’; ��g ¼ 1

V0

; f�’ðxÞ; ��ðyÞg ¼ �3ðx� yÞ; (23)

and, for phase space functions, f; g :¼ f; g �’; �� þ f; g�’;��,
where

fF;Gg �’; �� ¼ 1

V0

�
@F

@ �’

@G

@ ��
� @F

@ ��

@G

@ �’

�
;

fF;Gg�’;�� ¼
Z

d3x

�
�F

�ð�’Þ
�G

�ð��Þ �
�F

�ð��Þ
�G

�ð�’Þ
�
:

(24)

As discussed in Appendix C, these brackets are not fully
general and in some cases care may be required, but they
are sufficient for calculations done here.

C. Perturbed constraints

So far we have used the Ashtekar connection Aia as one
of the canonical variables as required for holonomies.
From now on we will explicitly use the spin connection
and extrinsic curvature,

Aia ¼ �ia þ 	Ki
a;

where 	 is the Barbero-Immirzi parameter. Also the ca-
nonical pair Ki

a ¼ �Ki
a þ �Ki

a; E
a
i ¼ �Eai þ �Eai can be split

into the homogeneous parts
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�K i
a ¼ �k�ia; �Eai ¼ �p�ai ;

corresponding to the flat FRW-background, and the inho-
mogeneous perturbations which, for the scalar mode, are
described by a pair of scalar functions each:

�Ki
a ¼ �ia�1 þ @a@

i�2; �Eai ¼ �ai "1 þ @i@
a"2:

(25)

Note that in the perturbed context, the independent phase
space variables are ð �k; �pÞ and ð�Ki

a; �E
a
i Þ, and the non-

trivial Poisson brackets between them are given by [59]

f �k; �pg ¼ 8�G

3V0

;

f�Ki
aðxÞ; �Ebj ðyÞg ¼ 8�G�ij�

b
a�

3ðx� yÞ:
(26)

The Hamiltonian density (13), expressed in terms of the
extrinsic curvature, becomes

H ¼ �jki
EcjE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ½2@c�id þ �imnð�mc �nd � Km

c K
n
dÞ� þH 	;

(27)

where the last term is proportional to the Barbero-Immirzi
parameter,

H 	 ¼ 	�jki
2EcjE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ð@cKi

d þ �imn�
m
c K

n
dÞ

� 	�jki
2EcjE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp DcK

i
d ¼ 2	

Ecjffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp DcGj (28)

with the Gauss constraint GJ, which thus vanishes. Indeed,
the Gauss constraint implies that the extrinsic curvature

can bewritten asKi
d ¼ KdbE

bi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp

whereKdc ¼ Kcd.
Consequently,

H 	 / �ijk
EcjE

d
kE

b
i

detE
DcKdb ¼ �bcdDcKdb ¼ 0:

Thus the classical theory in ðKi
a; E

b
j Þ is explicitly insensi-

tive to the Barbero-Immirzi parameter, as it should. The
	-dependence, however, will appear in the correction func-
tions resulting from a quantization procedure (after which
no unitary transformation exists to change 	 without leav-
ing a trace on observable quantities).

The remaining part of the Hamiltonian density can be
expanded straightforwardly in a perturbation series,
although the spin connection requires some care. Its full
expression is

�ia ¼ � 1

2
�ijkEbj

�
@aE

k
b � @bE

k
a þ EckE

l
a@cE

l
b

� Eka
@bðdetEÞ
detE

�
; (29)

where Eia with a lower spatial index designates a cotriad of

density weight minus one, whose perturbed expression
reads

Ela ¼ 1

�p
�la � 1

�p2
�Eck�ca�

kl:

The first order part of (29),

��ia ¼ 1

2 �p
ð�ijc �ba � �ibc �

j
a þ �ijb�ac þ �iba �

j
cÞ@b�Ecj ;

(30)

is simplified significantly for a scalar perturbation of the
form (25). The diagonal part of �Ecj (in the term @b�E

c
j ,

which is �cj@b"1) contributes to the linearized spin connec-

tion

��iðdiagÞa ¼ 1

2 �p
ð0� �iba @b"1 � �iba @b"1 þ 3�iba @b"1Þ

¼ 1

2 �p
�iba @b"1: (31)

For the off diagonal perturbation, on the other hand, the
expression @b�E

c
j � @b@

c@j"2 is symmetric in the indices

b, c, j, implying that only one term in (30) remains:

��iðoff�diagÞ
a ¼ 1

2 �p
½0� 0þ 0þ �iba @b�"2�

¼ 1

2 �p
�iba @b�"2:

Combining the last two expressions, we obtain the line-
arized spin connection

��ia ¼ ��
iðdiagÞ
a þ ��

iðoff�diagÞ
a ¼ 1

2 �p
�ija @jð"1 þ�"2Þ:

(32)

Note that this expression is diffeomorphism invariant to
linear order. Remarkably, the (gradient of the) term in the
parenthesis can be expressed as the divergence of the
unsplit triad perturbation

@jð"1 þ�"2Þ ¼ @a�E
a
j ;

which can be easily checked by inspection. Thus, for scalar
mode the linearized spin connection can be expressed as

��ia ¼ 1

2 �p
�ija @b�E

b
j : (33)

The second order part of the gravitational Hamiltonian
constraint also contains a term quadratic in �ai . However,
as such a term is necessarily multiplied with a background
quantity, the term becomes proportional to the trace of the
spin connection, �ai �

i
a. For the scalar perturbation, the

latter can be shown to vanish up to at least third order
using similar symmetry arguments.
In the spin connection part of the Hamiltonian, the first

order term is contributed solely by the ‘‘derivative term’’

ANOMALY FREEDOM IN PERTURBATIVE LOOP QUANTUM . . . PHYSICAL REVIEW D 78, 063547 (2008)

063547-9



�
2�jki

EcjE
d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp @c��

i
d

�ð1Þ ¼ 2ffiffiffiffi
�p

p @i@a�E
a
i ;

whereas the second order part comes from both the deriva-
tive and the quadratic terms:

�
2�jki

EcjE
d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp @c��

i
d

�ð2Þ ¼ 1

�p3=2
�ij�Eai @a@b�E

b
j ;

and

�
�jki

EcjE
d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp �imn��

m
c ��

n
d

�ð2Þ ¼ 1

2 �p3=2
�ij@a�E

a
i @b�E

b
j :

Combining the last two terms, we obtain (up to a total
divergence)

�
�jki

EcjE
d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ð2@c��id þ �imn��

m
c ��

n
dÞ
�ð2Þ

¼ � 1

2 �p3=2
�ij@a�E

a
i @b�E

b
j : (34)

Expanding also the extrinsic curvature term, we thus arrive
at the expression for the gravitational Hamiltonian density

H ¼ H ð0Þ þH ð1Þ þH ð2Þ with

H ð0Þ ¼ �6 �k2
ffiffiffiffi
�p

p
;

H ð1Þ ¼ �4 �k
ffiffiffiffi
�p

p
�cj�K

j
c �

�k2ffiffiffiffi
�p

p �jc�Ecj þ
2ffiffiffiffi
�p

p @c@
j�Ecj ;

H ð2Þ ¼ ffiffiffiffi
�p

p
�Kj

c�Kk
d�

c
k�

d
j �

ffiffiffiffi
�p

p ð�Kj
c�cjÞ2 �

2 �kffiffiffiffi
�p

p �Ecj�K
j
c

�
�k2

2 �p3=2
�Ecj�E

d
k�

k
c�

j
d þ

�k2

4 �p3=2
ð�Ecj�jcÞ2

� �jk

2 �p3=2
ð@c�EcjÞð@d�EdkÞ: (35)

Likewise, the perturbed diffeomorphism constraint in-
cluding up to quadratic order in perturbations is

Dgrav½Na� ¼ 1

8�G

Z
�
d3x�Nc½ �p@cð�dk�Kk

dÞ � �pð@k�Kk
cÞ

� �k�kcð@d�EdkÞ�: (36)

We now consider the contribution from the scalar matter
sector. The classical Hamiltonian is given by

Hmatter½N� ¼
Z
�
d3xNðH � þH r þH ’Þ; (37)

where the kinetic, gradient, and potential terms are defined
in (16). Again, we have a perturbation expansion with

H ð0Þ
� ¼ ��2

�’

2 �p3=2
; H ð0Þ

r ¼ 0;

H ð0Þ
’ ¼ �p3=2Vð �’Þ;

(38)

H ð1Þ
� ¼ ����

�p3=2
� ��2

2 �p3=2

�jc�Ecj
2 �p

; H ð1Þ
r ¼ 0;

H ð1Þ
’ ¼ �p3=2

�
V;’ð �’Þ�’þ Vð �’Þ�

j
c�Ecj
2 �p

�
;

(39)

and

H ð2Þ
� ¼ 1

2

��2

�p3=2
� ����

�p3=2

�jc�Ecj
2 �p

þ 1

2

��2

�p3=2

�ð�jc�EcjÞ2
8 �p2

þ �kc�
j
d�E

c
j�E

d
k

4 �p2

�
;

H ð2Þ
r ¼ 1

2

ffiffiffiffi
�p

p
�ab@a�’@b�’

H ð2Þ
’ ¼ 1

2
�p3=2V;’’ð �’Þ�’2 þ �p3=2V;’ð �’Þ�’

�jc�Ecj
2 �p

þ �p3=2Vð �’Þ
�ð�jc�EcjÞ2

8 �p2
� �kc�

j
d�E

c
j�E

d
k

4 �p2

�
:

(40)

The perturbed diffeomorphism constraint for the scalar
matter field is

Dmatter½Na� ¼
Z
�
d3x�Nc ��@c�’: (41)

In the following two subsections we explicitly compute the
Poisson brackets between the perturbed classical con-
straints and show that their algebra is closed. At the same
time, we will be including primary correction functions
and see how the algebra changes.

D. Poisson bracket between Hamiltonian and
diffeomorphism constraints

We begin by considering the gravitational sector of the
classical constraint algebra. We will see later that for
computational purposes it is convenient to split the classi-
cal perturbed gravitational Hamiltonian as

Hgrav½N� ¼ 1

16�G

Z
�
d3xNH ¼ Hgrav½�N� þHgrav½ �N�:

(42)

Here Hgrav½�N� includes only the perturbed component of

the lapse function whereas Hgrav½ �N� involves only the

background lapse. Explicit expressions for each part of
the perturbed Hamiltonian constraint are

Hgrav½ �N� ¼ 1

16�G

Z
d3x �N½H ð0Þ þH ð2Þ�;

Hgrav½�N� ¼ 1

16�G

Z
d3x�NH ð1Þ;

(43)

where perturbed Hamiltonian densities are given in
Eqs. (35). We consider now the Poisson bracket between
the gravitational Hamiltonian Hgrav½N� in (43) and the
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gravitational diffeomorphism constraint Dgrav½Na� in (36):

fHgrav½N�; Dgrav½Na�g ¼ �Hgrav½�Na@a�N�: (44)

This Poisson bracket between classical perturbed con-
straints (44) is very similar to its counterpart between the
full classical constraints [10], also computed in
Appendix B. This demonstrates the consistency of per-
turbed constraint expressions and elementary Poisson
brackets between background and perturbed basic
variables.

As in the gravitational sector, the classical perturbed
Hamiltonian for the scalar matter field including up to
quadratic terms in perturbations can be expressed as
Hmatter½N� ¼ Hmatter½�N� þHmatter½ �N� where

Hmatter½ �N� :¼
Z

d3x �N½ðH ð0Þ
� þH ð0Þ

’ Þ

þ ðH ð2Þ
� þH ð2Þ

r þH ð2Þ
’ Þ�;

Hmatter½�N� :¼
Z

d3x�N½H ð1Þ
� þH ð1Þ

’ �:

(45)

Perturbed Hamiltonian densities for scalar matter are given
in Eqs. (38)–(40). The Poisson bracket between the matter
Hamiltonian constraint and the total diffeomorphism con-
straint can be computed as

fHmatter½N�; Dgrav½Na� þDmatter½Na�g
¼ �Hmatter½�Na@a�N�: (46)

Combining gravitational sector (44) and matter sector (46)
contributions, we can evaluate the Poisson bracket between
the total Hamiltonian and diffeomorphism constraints as

fH½N�; D½Na�g ¼ fHgrav½N�; Dgrav½Na�g
þ fHmatter½N�; Dgrav½Na� þDmatter½Na�g

¼ �Hgrav½�Na@a�N� �Hmatter½�Na@a�N�
¼ �H½�Na@a�N�: (47)

Clearly, perturbed expressions of total constraints along
with elementary Poisson brackets between background and
perturbed basic variables satisfy the same Poisson brackets
as the full expressions.

We now analyze the situation for primary corrected
constraints. As in the classical situation, we split the pri-
mary quantum corrected gravitational Hamiltonian con-
straint as

HP
grav½N� ¼ 1

16�G

Z
d3xN
ðEai ÞH

¼ HP
grav½�N� þHP

grav½ �N�: (48)

The part of Hamiltonian constraint containing only the

perturbed lapse function HP
grav½�N� and the part of

Hamiltonian constraint containing only background lapse
HP

grav½ �N� are defined as

HP
grav½ �N� :¼ 1

16�G

Z
d3x �Nð �
H ð0Þ þ 
ð2ÞH ð0Þ

þ 
ð1ÞH ð1Þ þ �
H ð2ÞÞ;

HP
grav½�N� :¼ 1

16�G

Z
d3x�Nð �
H ð1Þ þ 
ð1ÞH ð0ÞÞ;

(49)

where �
 � 
ð0Þ. The Poisson bracket between the primary
quantum corrected Hamiltonian constraint (48) and the
diffeomorphism constraint (36) can be computed as

fHP
grav½N�; Dgrav½Na�g ¼ �HP

grav½�Na@a�N� þAHD
grav

(50)

where

AHD
grav ¼ � 1

16�G

Z
d3xð@c�NjÞ �p

�
�
�NH ð0Þ @


ð1Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ

þ �N

�
H ð0Þ

�
�
ð1Þ

�p
�cj þ

1

3

@ �


@ �p

�Ecj
�p

þ @
ð2Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ
�

þH ð1Þ @

ð1Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ
��

(51)

would appear as an anomaly if primary corrected con-
straints were used as quantum constraints: the Poisson
bracket (50) between the quantum corrected Hamiltonian
constraint and diffeomorphism constraint has additional
terms which cannot be expressed completely in terms of
the gravitational constraints for any lapse function or shift
vector. Thus, these terms in the constraint algebra are
potentially anomalous.
Next we explore this issue for the quantum corrected

scalar matter sector. Similarly to the classical Hamiltonian
constraint, the quantum corrected matter Hamiltonian can
be split as

HP
matter½N� ¼

Z
d3xN½�ðEai ÞH � þ �ðEai ÞH r þH ’�

¼: HP
matter½�N� þHP

matter½ �N�: (52)

The two parts HP
matter½�N� and HP

matter½ �N� of the matter
Hamiltonian are defined as
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HP
matter½ �N� :¼

Z
d3x �N½ð ��H ð0Þ

� þH ð0Þ
’ Þ

þ ð�ð2ÞH ð0Þ
� þ�ð1ÞH ð1Þ

� þ ��H ð2Þ
� þ ��H ð2Þ

r
þH ð2Þ

’ Þ�;
HP

matter½�N� :¼
Z

d3x�N½�ð1ÞH ð0Þ
� þ ��H ð1Þ

� þH ð1Þ
’ �;

(53)

where �� � �ð0Þ. Here �ð0Þ, �ð1Þ, and �ð2Þ denote zeroth, first,
and second order terms in perturbations of the quantum
correction function �. The Poisson bracket between the
quantum corrected scalar matter Hamiltonian (52) and the
total diffeomorphism constraint Dgrav½Na� þDmatter½Na�
can be computed as

fHP
matter½N�; Dgrav½Na� þDmatter½Na�g
¼ �HP

matter½�Na@a�N� þAHD
matter: (54)

As in the gravitational sector, there are additional terms
present also in the matter sector Poisson bracket which are

AHD
matter ¼ �

Z
d3xð@c�NjÞ �p

�
�
�NH ð0Þ

�
@�ð1Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ

þ �N

�
H ð0Þ

�

�
��ð1Þ

�p
�cj þ

1

3

@ ��

@ �p

�Ecj
�p

þ @�ð2Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ
�

þH ð1Þ
�

@�ð1Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ
��
: (55)

Matter sector anomaly terms are similar to anomaly terms
in the gravitational sector, but there are important differ-
ences. In particular, matter anomaly terms involve only the
kinetic sector of the matter Hamiltonian density H �. In
contrast, gravitational anomaly terms contain the total
gravitational Hamiltonian density H . Thus, one cannot
even hope to combine all anomaly terms to form the total
Hamiltonian constraint for specific correction functions.
Moreover, cancellation would require a lapse depending on
correction functions. The requirement of an anomaly free
constraint algebra then demands that gravitational sector
and matter sector anomaly terms must vanish separately.
Combining contributions from the gravitational sector (50)
and the matter sector (54), we can write the Poisson bracket
between the quantum corrected total Hamiltonian con-
straint and the total diffeomorphism constraint as

fHP½N�; D½Na�g ¼ �HP½�Na@a�N� þAHD
grav þAHD

matter:

(56)

E. Poisson bracket between two Hamiltonian con-
straints

We now consider the Poisson bracket between two
Hamiltonian constraints smeared with different lapse func-
tions. It can be split into three components as follows

fH½N1�; H½N2�g ¼ fHgrav½N1�; Hgrav½N2�g
þ fHmatter½N1�; Hmatter½N2�g
þ ½fHmatter½N1�; Hgrav½N2�g
� ðN1 $ N2Þ�: (57)

Using the perturbed expression of the classical gravita-
tional Hamiltonian (43) we compute the Poisson bracket
between gravitational Hamiltonian constraints as

fHgrav½N1�; Hgrav½N2�g ¼ fHgrav½�N1�; Hgrav½ �N�g
þ fHgrav½ �N�; Hgrav½�N2�g

¼ fHgrav½�N1 � �N2�; Hgrav½ �N�g

¼ Dgrav

� �N

�p
@að�N2 � �N1Þ

�
;

(58)

where we have used the property that
fHgrav½�N1�; Hgrav½�N2�g ¼ 0. Similarly, using the per-

turbed expression of the classical scalar matter
Hamiltonian (45), we compute the pure matter sector con-
tribution as

fHmatter½N1�; Hmatter½N2�g ¼ Dmatter

� �N

�p
@að�N2 � �N1Þ

�
:

(59)

It is easy to show that the net contribution from the Poisson
bracket between gravitational Hamiltonian and matter
Hamiltonian parts in the constraint vanishes. In particular,

fHmatter½N1�; Hgrav½N2�g � ðN1 $ N2Þ ¼ 0: (60)

Combining Eqs. (58)–(60) we evaluate the Poisson bracket
between total Hamiltonian constraints as

fH½N1�; H½N2�g ¼ D

� �N

�p
@að�N2 � �N1Þ

�
: (61)

Thus, the perturbed expression of the classical Hamiltonian
constraint indeed satisfies the same Poisson bracket with
itself as its unperturbed expression.
Now using the perturbed expression of the primary

quantum corrected Hamiltonian (48) we compute the
Poisson bracket between quantum corrected gravitational
Hamiltonian constraints as

fHP
grav½N1�; HP

grav½N2�g ¼ fHgrav½�N1 � �N2�; Hgrav½ �N�g

¼ Dgrav

�
�
2

�N

�p
@að�N2 � �N1Þ

�

þAHH
grav (62)
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with

AHH
grav ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ

�
ð �
 �k2 �p�Kj

cÞ
�
�2

@ �


@ �p
�cj þ

@
ð1Þ

@ð�Eai Þ
ð�cj�ai þ 3�ci �

a
j Þ
�

þ ð2 �
 �k @c@
j�EcjÞ

�
@ �


@ �p
� @
ð1Þ

@ð�Eai Þ
�ai

�
þ ð6 �
 �k3 �pÞ

�
@
ð2Þ

@ð�Eai Þ
�ai �

@
ð1Þ

@ �p

�
þ ð6
ð1Þ �k3 �pÞ

�
@ �


@ �p
� @
ð1Þ

@ð�Eai Þ
�ai

�

þ ð �
 �k3�EcjÞ
@
ð1Þ

@ð�Eai Þ
f�jc�ai � 3�ac�

j
i g
�
: (63)

Similarly, using Eq. (52) we compute the Poisson bracket
between primary quantum corrected scalar matter
Hamiltonians as

fHP
matter½N1�;HP

matter½N2�g ¼Dmatter

�
�� ��

�N

�p
@að�N2 ��N1Þ

�
:

(64)

Equation (64) is analogous to its classical counterpart

except that the new shift vector for the resulting diffeo-
morphism constraint now contains quantum correction
functions �� and ��. Net contributions from the Poisson
bracket between quantum corrected gravitational
Hamiltonian and matter Hamiltonian constraints are

fHP
matter½N1�; HP

grav½N2�g � ðN1 $ N2Þ ¼ AHH
m (65)

with

AHH
matter ¼

Z
d3x �Nð�N1 � �N2Þ

�
��2

2 �p3=2
ð ffiffiffiffi

�p
p
�Kj

cÞ
�
� 2

3

@ ��

@ �p
�cj þ

@�ð1Þ

@ð�Eai Þ
ð�cj�ai � �ci �

a
j Þ
�

þ ����

�p3=2
ð2 �k ffiffiffiffi

�p
p Þ

�
@ ��

@ �p
� @�ð1Þ

@ð�Eai Þ
�ai

�
� ��2

2 �p3=2
ð2 �k ffiffiffiffi

�p
p Þ

�
@�ð2Þ

@ð�Eai Þ
�ai �

@�ð1Þ

@ �p

�

þ ��2

2 �p3=2

� �kffiffiffiffi
�p

p �Ecj

��
� 4

3

@ ��

@ �p
�jc þ @�ð1Þ

@ð�Eai Þ
ð�jc�ai þ �ac�

j
i Þ
��
: (66)

Using Eqs. (62), (64), and (65) we can combine contributions from the gravitational and matter sectors to express the
Poisson bracket between primary quantum corrected total Hamiltonians:

fHP½N1�; HP½N2�g ¼ D

�
�
2

�N

�p
@að�N2 � �N1Þ

�
þDmatter

�
ð �� ��� �
2Þ �N

�p
@að�N2 � �N1Þ

�
þAHH

grav þAHH
matter:

F. Conditions for an anomaly free constraint algebra

In contrast to the classical situation, we have seen that
primary quantum corrected constraints fail to form a first
class constraint algebra for arbitrary correction functions.
To interpret this properly, we recall that quantum correc-
tion functions that we have used as a guideline in the
Hamiltonian constraint are not completely known. In par-
ticular, one can compute only zeroth order terms using
homogeneous models [54,60,61] (as well as some partially
gauge-fixed inhomogeneous cases using lattice states
[53]). Linear and quadratic terms in perturbations of quan-
tum correction functions can in principle be computed
using the machinery of the full theory [52]. However
such computations are not yet available. In this section,
we will analyze whether there are conditions on quantum
correction functions that we must impose based solely on
the requirement of an anomaly free constraint algebra.

First, we note that the explicit appearance of the matter
diffeomorphism constraint in Eq. (67), drops out if the
quantum correction functions satisfy

�
 2 ¼ �� �� : (67)

This requirement may be seen as a consistency relation
between gravitational and matter correction functions,
which has important physical implications: For instance,
it ensures that gravitational waves and massless scalar
fields propagate with the same group velocity given by
the physical speed of light [22].
Furthermore, in order for the constraint algebra to be

closed, AHD
grav should vanish irrespective of the choice of

lapse function. In other words, anomaly terms involving
background lapse �N and perturbed lapse �N must vanish
independently. This requirement leads to


ð1Þ ¼ 0 and
1

3

@ �


@ �p

�Ecj
�p

þ @
ð2Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ ¼ 0:

(68)

On the other hand, from Eq. (63) the conditions
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1

3

@ �


@ �p
�ai ¼

@
ð1Þ

@ð�Eai Þ
and

@
ð1Þ

@ �p
¼ @
ð2Þ

@ð�Eai Þ
�ai (69)

are required to make AHH
grav vanish. Clearly, the require-

ment of an anomaly free constraint algebra imposes re-
strictions on the first and second order terms of the
quantum correction functions. However, it is evident that
Eqs. (68) and (69) are overcomplete for the unknown

functions 
ð1Þ and 
ð2Þ. Importantly, these conditions are
incompatible with each other for nontrivial primary cor-
rections and admit only trivial solutions of �
 ¼ constant,


ð1Þ ¼ 0, and 
ð2Þ ¼ 0 which is just the classical situation
without quantum corrections. The situation for the scalar
matter sector is very similar. Using Eq. (55) it is easy to see
that AHD

grav ¼ 0 requires

�ð1Þ ¼ 0 and
1

3

@ ��

@ �p

�Ecj
�p

þ @�ð2Þ

@ð�Eai Þ
ð�aj�ci � �cj�

a
i Þ ¼ 0;

(70)

while

1

3

@ ��

@ �p
�ai ¼

@�ð1Þ

@ð�Eai Þ
and

@�ð1Þ

@ �p
¼ @�ð2Þ

@ð�Eai Þ
�ai ; (71)

solvesAHH
matter ¼ 0. As in the gravitational sector, anomaly

free requirements on matter quantum correction functions

admit only trivial solutions of �� ¼ constant, �ð1Þ ¼ 0, and

�ð2Þ ¼ 0. There are no additional requirements on the
quantum correction function � as only its background
component appears in the perturbed Hamiltonian.
However, Eq. (67) then requires that also �� must be
constant.

At this stage, we could only conclude that inverse-triad
corrections leave no trace whatsoever in effective con-
straints of an anomaly free quantization. This would be
extremely puzzling given the crucial role played by the
corresponding operators for well-defined fundamental con-
straints of loop quantum gravity. Fortunately, what we have
shown is, in fact, a weaker statement since we assumed the
primary correction function to depend only locally on the
triad in algebraic form. What we have shown is that this
pure triad dependence is insufficient, and wewill now relax
this assumption by introducing additional corrections
which we call counterterms. These terms are not directly
motivated by simple expressions computed from a con-
straint operator, but they will be fixed in terms of primary
correction functions by anomaly freedom. In the conclu-
sions, we will comment on the expectations for the pres-
ence of such terms based on a loop quantization.

IV. ANOMALY FREE QUANTUM CONSTRAINTS

In the previous section, we have shown that the presence
of only primary quantum correction functions does not
lead to an anomaly free perturbed constraint algebra. It

is, however, possible that the chosen form of quantum
correction functions, as they have been used in all studies
so far, does not capture all possible quantum effects.
Naturally, one is then led to ask whether there are ‘‘coun-
terterms’’ to the chosen form of the correction functions
that should be included in quantum corrected expressions
of the Hamiltonian constraint to make the constraint alge-
bra anomaly free. We show here that such expectations are
indeed realized. In particular, it is possible to arrive at a
quantum corrected constraint algebra which is anomaly
free by including specific counterterms to the primary
quantum corrected Hamiltonian constraint.

A. Gravitational sector

For a nontrivial primary quantum correction function it
is not possible for both AHD

grav and AHH
grav to vanish simul-

taneously. However, it turns out that one can perform
partial anomaly cancellation in the constraint algebra
even for nontrivial quantum correction functions by relax-
ing some of the conditions imposed so far to result in
manageable computations. We approach this by adding
counterterms, i.e. further potential quantum corrections,
ensuring first that the quantum corrected Hamiltonian con-
straint is covariant under spatial diffeomorphisms, i.e.
AHD

grav ¼ 0. At this point, it is important that the diffeo-

morphism constraint should not receive quantum correc-
tions of the type studied here. Counterterms thus appear
only in the Hamiltonian constraint. We have seen that
condition (68) on the quantum correction function, in

particular 
ð1Þ ¼ 0, precisely ensures this requirement
and we can simplify the primary gravitational constraint
(45) to

HP
grav½ �N� :¼ 1

16�G

Z
d3x �N½ �
H ð0Þ

þ ð
ð2ÞH ð0Þ þ �
H ð2ÞÞ�;
HP

grav½�N� :¼ 1

16�G

Z
d3x�N½ �
H ð1Þ�:

(72)

Similarly, we simplify the expression ofAHH
grav (59), which

we then refer to as

AP
grav ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þð2 �
 �pÞ@ �


@ �p

�
� �k

�p
ð@c@j�EcjÞ � �k2ð�cj�Kj

cÞ þ �k3
ð�jc�EcjÞ

2 �p

�
:

(73)

As we have already seen, canceling this anomaly based
solely on primary corrections could be achieved only for
the trivial case of constant 
. To cancel the anomaly terms
(73) without having to require constant �
, we need to
generate additional terms which take a form similar to
primary anomaly terms. In fact, additional corrections
not considered so far can easily arise in an effective
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Hamiltonian constraint. Adding additional terms into the
Hamiltonian constraint however can potentially generate
new anomaly terms in the Poisson bracket
fHP

grav½N�; Dgrav½Na�g. To avoid this we should ensure that

the counterterms being added to the Hamiltonian constraint
commute with the diffeomorphism constraint. Moreover,
counterterms should not affect the background dynamics
as there are no anomalies in the constraint algebra when
one turns off inhomogeneity. Thus, counterterms should be
constructed using only those terms which contain inhomo-
geneous perturbations.

We notice that while we describe the emergence of
counterterms in a constructive manner, all this reflects
requirements which fundamental anomaly freedom would
pose. To that end, we consider a minimal approach for
constructing counterterms. In particular, we require that
counterterms should generate only those three kinds of
terms which are already present in the anomaly expression
(73). With this requirement, the allowed form of counter-
terms that can be included in the quantum corrected
Hamiltonian is given by HC

grav½N� ¼ HC
grav½�N� þ

HC
grav½ �N� where

HC
grav½�N� ¼ 1

16�G

Z
d3x�N �


�
�4fð �pÞ �k ffiffiffiffi

�p
p ð�cj�Kj

cÞ

� gð �pÞ
�k2ffiffiffiffi
�p

p ð�jc�EcjÞ
�

(74)

and

HC
grav½ �N� ¼ 1

16�G

Z
d3x �N �


�
�
�hð �pÞ �jk

2 �p3=2
ð@c�EcjÞð@d�EdkÞ

�
: (75)

Here we have introduced three dimensionless scalar func-
tions f, g and h which depend on the quantum correction
functions and are to be determined through anomaly can-
cellation conditions. Only background components of
these functions are relevant as the counterterms are already
quadratic in perturbations.
The new terms can be interpreted as resulting from a

dependence of the primary 
 on extrinsic curvature com-
ponents and spatial derivatives of the triad as a general
functional. Thus, the introduction of counterterms relaxes
some of the conditions imposed earlier on 
. The Poisson
bracket between counterterms and the diffeomorphism
constraint can be computed as

fHC
grav½N�; D½Na�g ¼ 1

8�G

Z
d3x �
ð@c�NcÞ

� �N½�ð2fþ gÞð �k2 ffiffiffiffi
�p

p Þ�: (76)

Thus, the requirement that counterterms commute with the
diffeomorphism constraint leads to the simple condition

2fþ g ¼ 0 (77)

on the coefficient functions. Out of three unknown coeffi-
cient functions only two remain to be determined. Using
Eqs. (74) and (75) we compute contributions from counter-
terms to the Poisson bracket between Hamiltonian con-
straints

AC
grav ¼ fHC

grav½N1�; HP
grav½N2�g � ðN1 $ N2Þ ¼ fHC

grav½�N1 � �N2�; HP
grav½ �N�g þ fHP

grav½�N1 � �N2�; HC
grav½ �N�g

¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
2

�
�k2ð�cj�Kj

cÞ
�
f� g� 4 �p

@f

@ �p

�
þ �k3

ð�jc�EcjÞ
2 �p

�
�fþ g� 2 �p

@g

@ �p

�

þ
�k

�p
ð@c@j�EcjÞð�h� fÞ

�
: (78)

Since the perturbed classical constraint algebra is closed
without counterterms, the quantum counterterms must van-
ish in the classical limit, i.e. when all primary correction
functions are unity. Counterterms can then depend on
primary correction functions only through their deriva-
tives. Given the expanded form (9) of primary quantum
correction functions used here, terms such as ð@ �
=@ �pÞ2 can
be neglected compared to the terms @ �
=@ �p. For the same
reason the contributions from the Poisson bracket between
counterterms fHC

grav½N1�; HC
grav½N2�g can be neglected com-

pared to the contributions considered in (78).

Combining all contributions from the original anomaly
(73) and from counterterms (78) one can express the total
gravitational anomaly Agrav :¼ AP

grav þAC
grav as

Agrav ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
2

� �k

�p
ð@c@j�EcjÞG1

þ �k2ð�cj�Kj
cÞG2 þ �k3

ð�jc�EcjÞ
2 �p

G3

�
; (79)

where
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G 1 ¼ �h� fþ 2 �p

�


@ �


@ �p
; (80)

G 2 ¼ f� g� 4 �p
@f

@ �p
� 2 �p

�


@ �


@ �p
; (81)

G 3 ¼ �fþ g� 2 �p
@g

@ �p
þ 2 �p

�


@ �


@ �p
: (82)

Anomaly cancellation will require coefficients of

(@c@
j�Ecj), (�

c
j�K

j
c) and (�jc�Ecj) to vanish. This in turn

implies that the coefficient functions f, g and h should be
such that they satisfy three equations G1 ¼ 0, G2 ¼ 0 and
G3 ¼ 0. On the other hand, f and g also need to satisfy
Eq. (77). Thus, the set of equations for f, g and h may
appear to be over-complete. However, it is remarkable to
note that Eq. (77) along with Eq. (81) solves the Eq. (82)
identically. In particular using Eq. (77), it is easy to see that

G 3 ¼ �G2: (83)

Thus for a given quantum correction function 
, there are
unambiguous solutions for f, g and h such that the con-
straint algebra is anomaly free. In particular, for a back-
ground quantum correction function 
 given in (9),

f ¼ �g

2
¼ 2

4n
 þ 3

�p

�


@ �


@ �p
; h ¼ 4

2n
 þ 1

4n
 þ 3

�p

�


@ �


@ �p
;

(84)

solve Eq. (77) and ensure vanishing of Eqs. (80)–(82).

B. Cosmological constant

For obtaining anomaly freedom in the gravitational sec-
tor by adding appropriate counterterms, it was crucial that
coefficients G2 and G3 are related through Eq. (83). Thus,
one should consider the robustness of this relation under
the inclusion of additional classical terms. Including a
nonzero cosmological constant to the gravitational sector
provides a definite test to see whether such a relation can
still be satisfied. Counterterms in the gravitational sector
would now generate additional contributions due to the
presence of the cosmological constant term. We now show
that a nonzero cosmological constant does not spoil the
nontrivial consistency condition (83).

Contributions to the gravitational Hamiltonian con-
straint from a nonzero cosmological constant � are

H�½N� ¼ 1

8�G

Z
d3xN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p
� ¼: H�½�N� þH�½ �N�:

(85)

As with the matter potential term, no primary inverse-triad
corrections are expected. The perturbed expressions of
H�½�N� and H�½ �N�, including up to quadratic terms in
perturbations are given by

H�½ �N� ¼ 1

16�G

Z
d3x �N½H ð0Þ

� þH ð2Þ
� �;

H�½�N� ¼ 1

16�G

Z
d3x�NH ð1Þ

� :

(86)

The explicit expressions of perturbed densitiesH ð0Þ
� ,H ð1Þ

�

and H ð2Þ
� are

H ð0Þ
� ¼ 2� �p3=2; H ð1Þ

� ¼ 2� �p3=2
ð�jc�EcjÞ

2 �p
; (87)

H ð2Þ
� ¼ 2� �p3=2

�ð�jc�EcjÞ2
8 �p2

� ð�kc�jd�Ecj�EdkÞ
4 �p2

�
: (88)

Contributions to the anomaly expression arising from the
Poisson bracket between counterterms and cosmological
constant terms are

A� ¼ fHC
grav½N1�; H�½N2�g � ðN1 $ N2Þ

¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
ð� �pÞ

�
�
�ð�cj�Kj

cÞf� �k
ð�jc�EcjÞ

2 �p
ðfþ gÞ

�
: (89)

Combining contributions from counterterms and the origi-
nal anomaly in the presence of a nonzero cosmological
constant, one can evaluate the total gravitational anomaly
Agrav :¼ AP

grav þAC
grav þA� as

Agrav ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
2

� �k

�p
ð@c@j�EcjÞG�

1

þ �k2ð�cj�Kj
cÞG�

2 þ �k3
ð�jc�EcjÞ

2 �p
G�

3

�
; (90)

where new coefficients in the anomaly expression are

G �
1 ¼ G1; G�

2 ¼ G2 � f
� �p

�
 �k2
;

G�
3 ¼ G3 � ðfþ gÞ � �p

�
 �k2
:

(91)

(The �-dependence cancels upon using the background
Friedmann equation.) Using Eq. (77), which remains un-
changed, we again note that the new coefficients satisfy the
same nontrivial consistency relation

G �
3 ¼ �G�

2 : (92)

Thus, also in the presence of a nonzero cosmological
constant there are unambiguous solutions for f, g and h
such that the constraint algebra is anomaly free. This
demonstrates that anomaly freedom of the quantum cor-
rected constraint algebra including appropriate counter-
terms is a robust feature.
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C. Scalar matter

For cosmological applications, we must ensure the ex-
istence of consistent equations in the presence of matter.
Similarly to the gravitational sector we ensure first that the
quantum corrected scalar matter Hamiltonian is covariant
under spatial diffeomorphism, i.e. AHD

matter ¼ 0. This re-
quirement implies that we should impose conditions (71)
on the quantum correction function � and simplify the
expression of the primary quantum corrected matter
Hamiltonian as

HP
matter½ �N� :¼

Z
d3x �N½ð ��H ð0Þ

� þH ð0Þ
’ Þ

þ ð�ð2ÞH ð0Þ
� þ ��H ð2Þ

� þ ��H ð2Þ
r þH ð2Þ

’ Þ�
HP

matter½�N� :¼
Z

d3x�N½ ��H ð1Þ
� þH ð1Þ

’ �: (93)

This also simplifies the matter anomaly termAHH
matter which

we then refer to as

AP
matter ¼

Z
d3x �Nð�N1 � �N2Þ

�
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�
� 10 �p
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��
:

For computational convenience we consider the construc-
tion of counterterms for the kinetic and potential sectors
separately.

1. Kinetic sector

To cancel anomalies in the kinetic sector of scalar
matter, we start with a general form of possible counter-
terms as HC

�r½N� :¼ HC
�½�N� þHC

r½�N� þHC
�½ �N� þ

HC
r½ �N� where

HC
�½�N� ¼

Z
d3x�N

�
f1ð �pÞ �� ����

�p3=2

� f2ð �pÞ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

�
;

HC
r½�N� ¼ 0

(94)

and

HC
�½ �N� ¼

Z
d3x �N

�
g1ð �pÞ ����

2

2 �p3=2
� g2ð �pÞ �� ����

�p3=2

ð�jc�EcjÞ
2 �p

�� ��2

2 �p3=2

�
g3ð �pÞ

ð�jc�EcjÞ2
8 �p2

þ g4ð �pÞ
ð�kc�jd�Ecj�EdkÞ

4 �p2

��
;

Hc
r½ �N� ¼

Z
d3x �N

�
g5ð �pÞ ��

ffiffiffiffi
�p

p
2

�ab@a�’@b�’

�
: (95)

The general guidelines followed for the gravitational sector led us to introduce seven dimensionless unknown functions f1,
f2, g1, g2, g3, g4 and g5 which should be related to primary quantum correction functions as it will be determined through
anomaly cancellation conditions.

The Poisson bracket between counterterms (94) and (95) and the total diffeomorphism constraint is

fHC
�r½N�; D½Na�g ¼

Z
d3x

�
ð@c�NjÞ �N

�
g4

�� ��2

2 �p3=2

�Ecj
2 �p

�

þ ð@c�NcÞ
�
�Nð2f1 � f2Þ �� ��2

2 �p3=2
þ �Nðg1 � g2Þ �� ����

�p3=2
� �Nð2g2 � g3 þ g4Þ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

��
: (96)

Requiring that counterterms commute with the diffeomor-
phism constraint leads to the conditions

2f1 ¼ f2; g1 ¼ g2; 2g2 ¼ g3; g4 ¼ 0:

(97)

Given that g4 is required to vanish, we will drop the
corresponding term from the set of counterterms in our
further evaluation. We began with seven unknown func-
tions in the counterterms for the kinetic sector. Requiring

that counterterms commute with the diffeomorphism con-
straint imposes four conditions. This in turn allows only
three more conditions to be imposed on these functions
from anomaly cancellation in the remaining Poisson
bracket of Hamiltonian constraints.
There are some subtleties in finding anomaly cancella-

tion conditions for the matter sector. Inclusion of counter-
terms to the gravitational sector has generated additional
contributions both in the gravitational as well as the matter
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sector. Thus, matter sector counterterms need to cancel the original anomaly expression (94) but also contributions from
gravitational counterterms. Contributions from gravitational counterterms to anomaly expressions of the matter kinetic
sector are

A C
grav�r :¼ fHC

grav½N1�; HP
�r½N2�g � ðN1 $ N2Þ

¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ����

�p3=2

�
 �kffiffiffiffi
�p

p ð3fÞ þ �� ��2

2 �p3=2
ð�cj�Kj

cÞ �
ffiffiffiffi
�p

p ðfÞ þ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

�
 �kffiffiffiffi
�p

p ðg� 5fÞ
�
: (98)

Similarly, contributions from counterterms of the matter kinetic sector to the Poisson bracket between total Hamiltonians
can be computed as

AC
�r :¼ fHC

�r½N1�; HP
grav½N2� þHP

�r½N2�g � ðN1 $ N2Þ

¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ��

�p
��r2�’ðf1 þ g5Þ þ �� ����

�p3=2

�
 �kffiffiffiffi
�p

p
�
2 �p
@f1
@ �p

� 3f1 þ 3g2

�

þ �� ��2

2 �p3=2
ð�cj�Kj

cÞ �
ffiffiffiffi
�p

p ð�f2Þ þ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

�
 �kffiffiffiffi
�p

p
�
�2 �p

@f2
@ �p

þ 4f2 � 3g3

��
: (99)

We then combine the original anomaly (94) with contributions (98) from gravitational counterterms and contributions from
matter kinetic sector counterterms (99) to express the total anomaly A�r :¼ AP

matter þAC
grav�r þAC

�r in the kinetic
sector of scalar matter as

A �r ¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ����

�p3=2

�
 �kffiffiffiffi
�p

p B1 þ �� ��2

2 �p3=2
ð�cj�Kj

cÞ �
ffiffiffiffi
�p

p B2 þ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

�
 �kffiffiffiffi
�p

p B3 þ �� ��

�p
��r2�’B4

�
;

(100)

where

B 1 ¼ 2 �p

��

@ ��

@ �p
þ 3fþ 2 �p

@f1
@ �p

� 3f1 þ 3g2; (101)

B 2 ¼ � 2 �p

3 ��

@ ��

@ �p
þ f� f2; (102)

B 3 ¼ � 10 �p

3 ��

@ ��

@ �p
� 5fþ g� 2 �p

@f2
@ �p

þ 4f2 � 3g3;

(103)

B 4 ¼ f1 þ g5: (104)

In the presence of a nonzero scalar matter potential, the
imposition of background and perturbed Hamiltonian con-
straints does not determine matter kinetic terms in terms of
gravitational terms in the Hamiltonian constraint. In such
situations anomalies in the kinetic sector of scalar matter
must vanish independently of the gravitational sector
anomaly. From, Eq. (100) it is evident that anomaly free-
dom in the kinetic sector requires four conditions to be
satisfied, i.e. B1 ¼ 0, B2 ¼ 0, B3 ¼ 0 and B4 ¼ 0.
However as we mentioned, after imposing Eqs. (97) we

have only three undetermined functions in kinetic sector
counterterms. Thus it may appear once again that there is
over-determination of counterterms. However, similarly to
the gravitational sector, coefficients of the anomaly ex-
pression (100) satisfy a nontrivial consistency relation. In
particular, using relations (77) and (97), one notes that

B 3 ¼ �2B1 �B2: (105)

Thus, cancellation of kinetic sector anomalies requires
only three equations to be satisfied by counterterm coef-
ficients. In other words, counterterms for kinetic sector are
unambiguously determined by anomaly cancellation
conditions.

2. Potential sector

We recall that the potential sector did not involve any
primary quantum correction functions and did not contrib-
ute to the matter sector anomaly. However, including
counterterms in the gravitational and matter kinetic sectors
leads to new anomaly terms involving the scalar matter
potential. Such new anomaly contributions from gravita-
tional counterterms to the Poisson bracket between
Hamiltonians can be computed as
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AC
grav’ :¼ fHC

grav½N1�; HP
’½N2�g � ðN1 $ N2Þ

¼
Z

d3x �Nð�N1 � �N2Þ
�

�
ffiffiffiffi
�p

p �p3=2Vð �’Þð�cj�Kj
cÞð�fÞ þ �
 �kffiffiffiffi

�p
p �p3=2V;’ð �’Þ�’ð�3fÞ

þ �
 �kffiffiffiffi
�p

p �p3=2Vð �’Þ ð�
j
c�EcjÞ
2 �p

ð�f� gÞ
�
: (106)

Similar anomaly contributions from counterterms of the matter kinetic sector are

AC
’� :¼ fHC

�r½N1�; HP
’½N2�g � ðN1 $ N2Þ

¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ��

�p3=2
�p3=2V;’’ð �’Þ�’ð�f1Þ þ ����

�p3=2
�p3=2V;’ð �’Þð�f1 þ g1Þ

þ �� ��

�p3=2
�p3=2V;’ð �’Þ

ð�jc�EcjÞ
2 �p

ðf2 � f1 � g2Þ
�
: (107)

Thus, counterterms of the matter kinetic sector generate a new anomaly term involving V;’’ð �’Þ. Gravitational counter-
terms on the other hand, do not lead to such a term. For nonvanishing f1, not all terms can cancel by combining Eqs. (106)
and (107). Even though we did not consider primary quantum corrections in the potential sector, for anomaly freedom we
need to allow counterterms even here. As in the kinetic sector, we begin with a general expression of possible counterterms
in the potential sector HC

’½N� :¼ HC
’½�N� þHC

’½ �N� where

HC
’½�N� ¼

Z
d3x�N

�
f3ð �pÞ �p3=2V;’ð �’Þ�’þ f4ð �pÞ �p3=2Vð �’Þ ð�

j
c�EcjÞ
2 �p

�
; (108)

and

HC
’½ �N� ¼

Z
d3x �N

�
g6ð �pÞ 12 �p3=2V’’ð �’Þ�’2 þ g7ð �pÞ �p3=2V;’ð �’Þ�’

ð�jc�EcjÞ
2 �p

þ �p3=2Vð �’Þ
�
g8ð �pÞ

ð�jc�EcjÞ2
8 �p2

� g9ð �pÞ
�kc�

j
d�E

c
j�E

d
k

4 �p2

��
: (109)

We have introduced six new unknown functions f3, f4, g6, g7, g8 and g9 in the counterterms of the potential sector. To
ensure invariance of the potential sector counterterms under diffeomorphism constraint we compute the Poisson bracket
between counterterms and the diffeomorphism constraint:

fHC
’½N�; D½Na�g ¼

Z
d3x �pð@c�Nc�ai � @i�N

aÞ

�
�
�N �p3=2f4Vð �’Þ �

i
a

2 �p
þ �N �p3=2

�
g7V;’ð �’Þ�’ �

i
a

2 �p
þ Vð �’Þ

�
g8

ð�jc�EcjÞ�ia
4 �p2

� g9
�ic�

j
a�Ecj

2 �p2

���
: (110)

It is then easy to see that counterterms commute with the diffeomorphism constraint only if the coefficients satisfy

f4 ¼ 0; g7 ¼ 0; g8 ¼ 0; g9 ¼ 0: (111)

Thus diffeomorphism invariance of the counterterms allows just two independent functions in the potential sector. The
nonvanishing counterterms in the potential sector reduce to

HC
’½N� ¼

Z
d3x

�
�Nf3 �p

3=2V;’ð �’Þ�’þ �N
1

2
g6 �p

3=2V;’’ð �’Þ�’2

�
: (112)

Contributions from counterterms of the potential sector to the Poisson bracket between total Hamiltonians can be
computed as
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AC
’ :¼ fHC

’½N1�; HP
grav½N2� þHQ

matter½N2�g � ðN1 $ N2Þ

¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ��

�p3=2
�p3=2V;’’ð �’Þ�’ðf3 � g6Þ þ ����

�p3=2
�p3=2V;’ð �’Þðf3Þ þ �� ��

�p3=2
�p3=2V;’ð �’Þ

ð�jc�EcjÞ
2 �p

ð�f3Þ

þ �
 �kffiffiffiffi
�p

p �p3=2V;’ð �’Þ�’
�
2 �p
@f3
@ �p

þ 3f3

��
: (113)

Combining (106), (107), and (113) we form the total anomaly term A’ :¼ AC
grav’ þAC

’� þAC
’ in the scalar matter

potential sector:

A’ ¼
Z

d3x �Nð�N1 � �N2Þ
�
�� ��V;’’ð �’Þ�’D1 þ V;’ð �’Þ

�
����D2 þ �� ��

ð�jc�EcjÞ
2 �p

D3

�
þ ð �
 �k �pÞV;’ð �’Þ�’D4

� ð �
 �pÞVð �’Þ
�
ð�cj�Kj

cÞfþ �k
ð�jc�EcjÞ

2 �p
ðfþ gÞ

��
(114)

where

D1 ¼ f3 � f1 � g6;

D2 ¼ f3 � f1 þ g1;

D3 ¼ �f3 þ f2 � f1 � g2;

D4 ¼ 2 �p
@f3
@ �p

þ 3f3 � 3f:

(115)

As in the gravitational and matter kinetic sectors, coeffi-
cients of the potential sector anomaly satisfy a nontrivial
consistency relation

D 3 ¼ �D2 (116)

using (97). We recall that counterterms (113) of the poten-
tial sector have only two unknown functions f3 and g6
which would be determined by choosing, say,D1 ¼ 0 and
D2 ¼ 0. Then, we would automatically have D3 ¼ 0, but
there are still nonvanishing terms in the anomaly (114) of
the potential sector. In particular, the last two terms in
(114) are similar to the anomaly terms due to cosmological
constant (89) and can be absorbed into anomaly terms of
the gravitational and matter kinetic sectors by subtracting
the total Hamiltonian constraint with suitable lapse func-
tion from it. Vanishing of total anomaly terms from the
potential sector then requires that D4 should also vanish
i.e. D4 ¼ 0 [62]. However, requiring D4 to vanish im-
poses additional restriction on counterterms which in turn
requires primary correction functions 
, � and � to satisfy
another consistency requirement [see Eq. (134)] in pres-
ence of a nonzero scalar potential, apart from the relation
(67). After imposingD1 ¼ 0,D2 ¼ 0,D3 ¼ 0 andD4 ¼
0, we can express the remaining terms in Eq. (114) as

Arem
’ ¼ Agrav’ þA�r’ �HP

�
�Nð�N1 � �N2Þ �
ffiffiffiffi

�p
p

�
�
ð�cj�Kj

cÞfþ �k
ð�jc�EcjÞ

2 �p
ðfþ gÞ

��
; (117)

where part of the potential sector anomaly to be included in
the gravitational sector anomaly can be expressed as

Agrav’ ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
2

�
�k2ð�cj�Kj

cÞð�3fÞ

þ �k3
ð�jc�EcjÞ

2 �p
ð�3f� 3gÞ

�
; (118)

and another part that needs to be included in the anomaly
expression of the matter kinetic sector is

A�r’ ¼
Z

d3x �Nð�N1 � �N2Þ
�

�
ffiffiffiffi
�p

p �� ��2

2 �p3=2
ð�cj�Kj

cÞðfÞ

þ �
 �kffiffiffiffi
�p

p �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

ðfþ gÞ
�
: (119)

We have seen earlier that the presence of a nonzero
cosmological constant modifies the anomaly cancellation
conditions as reflected in Eq. (91). Similarly, the presence
of a nontrivial scalar matter potential leads to changes in
the anomaly cancellation conditions for both the gravita-
tional sector as well as the kinetic sector of matter.
In particular, we can combine Eqs. (79) and (118) to
express the total gravitational anomalyAgrav :¼ AP

grav þ
AC

grav þAgrav’ as

Agrav ¼ 1

8�G

Z
d3x �Nð�N1 � �N2Þ �
2

� �k

�p
ð@c@j�EcjÞG’

1

þ �k2ð�cj�Kj
cÞG’

2 þ �k3
ð�jc�EcjÞ

2 �p
G’

3

�
; (120)

where the new coefficients are

G ’
1 ¼ G1; G’

2 ¼ G2 � 3f;

G’
3 ¼ G3 � 3f� 3g:

(121)

Using Eq. (77), we again note that the new coefficients
satisfy the same nontrivial consistency relation
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G ’
3 ¼ �G’

2 : (122)

Thus also in the presence of a nontrivial scalar matter
potential, there are unambiguous solutions for f, g and h
such that the gravitational sector of constraint algebra is
anomaly free. Similarly, for the matter kinetic sector we
can combine the original anomaly (94), contributions (98)
from gravitational counterterms, contributions (99) from
kinetic sector counterterms and contributions (119) from
the potential sector to express the total anomaly in the
kinetic sector of scalar matter as

A�r :¼ AP
matter þAC

grav�r þAC
�r þA�r’

¼
Z

d3x �Nð�N1 � �N2Þ

�
�
�� ����

�p3=2

�
 �kffiffiffiffi
�p

p B’
1 þ �� ��2

2 �p3=2
ð�cj�Kj

cÞ �
ffiffiffiffi
�p

p B’
2

þ �� ��2

2 �p3=2

ð�jc�EcjÞ
2 �p

�
 �kffiffiffiffi
�p

p B’
3 þ �� ��

�p
��r2�’B’

4

�
;

(123)

with new coefficients

B’
1 ¼ B1; B’

2 ¼ B2 þ f;

B’
3 ¼ B3 þ fþ g; B’

4 ¼ B4
(124)

in the matter kinetic sector anomaly expression. Also here,
the new coefficients satisfy a consistency relation

B ’
3 ¼ �2B’

1 �B’
2 (125)

using (77) and (97). This relation is analogous to Eq. (105)
and likewise it ensures that anomaly cancellation condi-
tions lead to unambiguous expressions for counterterms in
the kinetic sector of scalar matter when there is a nontrivial
potential.

D. Quantum corrected total Hamiltonian constraint

We now combine all primary correction functions and
the counterterms to form the quantum corrected total
Hamiltonian constraint HQ½N� :¼ HP½N� þHC½N� for
the system consisting of a scalar matter field with arbitrary
potential:

HQ
grav½ �N� :¼ 1

16�G

Z
d3x �N½ �
H Qð0Þ þ 
ð2ÞH Qð0Þ

þ �
H Qð2Þ�;
HQ

grav½�N� :¼ 1

16�G

Z
d3x�N½ �
H Qð1Þ�;

(126)

where the background density is unchanged except for the

explicit factor of the primary correction, i.e. H Qð0Þ �
H ð0Þ. However the perturbed densities now involve coun-
terterms:

H Qð1Þ ¼ �4ð1þ fÞ �k ffiffiffiffi
�p

p
�cj�K

j
c � ð1þ gÞ

�k2ffiffiffiffi
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2 �kffiffiffiffi
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d þ
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4 �p3=2
ð�Ecj�jcÞ2

� ð1þ hÞ �jk

2 �p3=2
ð@c�EcjÞð@d�EdkÞ: (127)

It should be noted here that the terms in gravitational
Hamiltonian which involve counterterms, contain either
trace or divergence of perturbed basic variables. Thus,
inclusion of counterterms does not affect the earlier results
for vector and tensor modes [21,22]. The complete quan-
tum corrected matter Hamiltonian constraint is given by

HQ
matter½ �N� ¼

Z
�
d3x �N½ð ��H Qð0Þ

� þH Qð0Þ
’ Þ

þ ð�ð2ÞH Qð0Þ
� þ ��H Qð2Þ

� þ ��H Qð2Þ
r

þH Qð2Þ
’ Þ�

HQ
matter½�N� ¼

Z
d3x�N½ ��H Qð1Þ

� þH Qð1Þ
’ �;

(128)

where background densities are again unchanged, i.e.

H Qð0Þ
� � H ð0Þ

� and H Qð0Þ
’ � H ð0Þ

’ . As in the gravita-
tional sector, perturbed matter densities include counter-
terms and are given by
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ffiffiffiffi
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p
�ab@a�’@b�’;
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’ ¼ �p3=2

�
ð1þ g6Þ 12V;’’ð �’Þ�’
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�jc�Ecj
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4 �p2

��
: (129)

To summarize the conditions on nonvanishing coeffi-
cients of the counterterms, we note that there are three such
functions in the gravitational sector (127), six in the kinetic
sector and two in the potential sector of scalar matter (129).
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Thus for the system under consideration we have a total of
11 correction functions contained in all counterterms.
Invariance of counterterms under diffeomorphisms, (77)
and (97), led to four conditions

g ¼ �2f; f2 ¼ 2f1; g2 ¼ g1; g3 ¼ 2g2
(130)

among the nonvanishing coefficients. These equations
trivially lead to the solutions for g, f2, g2 and g3, leaving
seven functions to be determined.

Cancellation of anomaly terms from the Poisson bracket
between Hamiltonian constraints led to three conditions
(121) from the gravitational sector

G ’
1 ¼ 0; G’

2 ¼ 0; G’
3 ¼ 0; (131)

among which only two are independent due to (122). These
two independent equations explicitly solve f and h in
terms of the primary correction function 
. Thus, there
are only five remaining functions that need to be deter-
mined. Anomaly cancellation from matter kinetic sector
(124) leads to four conditions

B ’
1 ¼ 0; B’

2 ¼ 0; B’
3 ¼ 0; B’

4 ¼ 0:

(132)

Given the relation (125), there are only three independent
equations which leads to explicit solutions for f1, g1 and g5
in terms of primary correction functions 
 and �. The
remaining two free functions f3 and g6 are constrained
by requiring cancellation of anomalies from the potential
sector which gives four conditions

D 1 ¼ 0; D2 ¼ 0; D3 ¼ 0; D4 ¼ 0:

(133)

Using Eq. (115), one notes that D1 ¼ 0 and D2 ¼ 0 al-
ready determines both f3 and g6 in terms of other counter-
terms coefficients which are already fixed.

While D3 ¼ 0 is not an independent equation, D4 ¼ 0
imposes a nontrivial restriction on counterterms. Since all
of them have been determined at this stage, consistency
requires the primary correction functions to satisfy

�
0 �p
�


þ �p

3

�
�
0 �p
�


�0 � ��0 �p
��

� �p

9

�
��0 �p
��

�0 þ 2 �p2

9

�
��0 �p
��

�00 ¼ 0:

(134)

Note that this relation ties the matter correction function to
the gravitational correction function, but it is independent
of the matter fields. Finally, from (67) we have the relation
�
2 ¼ �� �� to be satisfied by the primary correction
functions.

To summarize, the requirement of anomaly freedom in
the constraint algebra tightly controls the allowed forms of
primary correction functions. For primary corrections of
the form (9), for instance, one can easily see that solutions
exist provided certain relations between the coefficients

c
, c� and powers n
, n� in the two primary correction
functions 
 and � are satisfied. Thus, quantization ambi-
guities are nontrivially reduced, which allows stringent
consistency tests by direct calculations from a full repre-
sentation of the underlying operators. These restrictions
indirectly help to eliminate some of the quantization ambi-
guities encountered in quantizing inverse-triad operators.

V. CONCLUSIONS

In this paper we have analyzed quantum corrected con-
straints at the perturbative effective level. The key issue has
been whether they form a closed Poisson algebra, which
would ensure consistency of the equations of motion they
generate. There are correction functions 
, �, and �whose
expressions are well known in homogeneous models. A
direct extension of the functions as scalars of density
weight zero correcting inhomogeneous constraints would
suggest that they (i) depend only on the triad Eai (but not on
the extrinsic curvature Ki

a), (ii) depend on the triad alge-
braically (i.e. do not contain spatial derivatives of Eai ), and
(iii) in the perturbed context, depend on the background
triad �Eai and its perturbation �Eai only in the combination
Eai ¼ �Eai þ �Eai . However, as we have found, this would
allow a closed algebra only if corrections are trivial.
At the same time, from the constructive point of view, it

is not surprising that the three conditions cannot be met
together. Indeed, the only scalar quantity that can be con-
structed from the triad alone is its determinant—a density-
weight-one object—leaving no possibility of cancelling
the density weight. One could relax any of these conditions
and see whether that would allow nontrivial corrections.
For instance, by allowing correction functions to depend on
spatial curvature, which would require spatial derivatives
of the triad, we could alleviate the problem of zero density
weight since this would make available the quantity

Eaiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp @a

�
@bE

b
iffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp

�
:

On the other hand, if we relax the first condition, quantities

of the form Eai K
i
a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp
would be allowed.

We were therefore led to conclude that expectations
from homogeneous models did not capture all possible
quantum effects, and turned to investigating what quantum
corrections of inhomogeneous constraints would be al-
lowed in principle, and which ones should be ruled out.
In this process, we have generated several counterterms in
addition to the primary corrections suggested by homoge-
neous models. The resulting counterterms admit nontrivial
quantum corrections, and their presence and form can be
related to fundamental aspects of loop quantum gravity.
For instance, we have seen that quantum corrections must
be connection dependent even when they come from
inverse-triad corrections. This can be interpreted as mean-
ing that the computation of effective constraints, based on
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expectation values of constraint operators, must be done in
coherent states such that a holonomy dependence of
inverse-triad expressions results. Correction functions
must also depend on spatial derivatives of the triad, which
can be seen as leading terms in a derivative expansion of
nonlocal expressions involving fluxes, i.e. 2-dimensionally
integrated triads. There are also quite unexpected effects,
such as counterterms in the matter sector involving deriva-
tives of the potential. Not all of them are simply realized as
a consequence of the expansion of Vð �’þ �’Þ by inhomo-
geneities. This suggests that the matter potential must be
quantized in a nonlocal way to ensure anomaly freedom.
This form of nonlocality is currently not realized in quan-
tizations of scalar matter in loop quantum gravity. It sug-
gests concrete ways to change full constructions so as to
provide an (off shell) anomaly free formulation.

From the perturbed second order constraints one can
directly derive Hamiltonian equations of motion for the
perturbed variables as well as gauge transformations on
them. Both equations of motion and gauge transformations
will be corrected by quantum gravity terms, which has to
be combined for equations of motion of gauge-invariant
variables of the form (5)–(7). Imposing the conditions
found for an anomaly free constraint algebra must, on
general grounds, result in a consistent set of equations.
This has already been verified for vector and tensor modes
(see [21,22], respectively). In a companion paper [12], we
explicitly derive gauge transformations and construct
gauge-invariant variables taking into account quantum
corrections, which we will then use to derive gauge-
invariant equations of motion describing cosmological
perturbations.

We have provided one consistent set of equations by a
process which demonstrates that the possibilities of non-
trivial quantum corrections are rather tight. In fact, existing
proposals for primary correction functions are nontrivially
restricted. Yet, different versions may be available, which
could in principle be compared with full derivations of
effective Hamiltonians to fix remaining ambiguities. But
there may also be quantization ambiguities which cannot
be removed based solely on consistency considerations;
they would have to be restricted phenomenologically in-
stead. It is thus important also for a fundamental under-
standing to evaluate cosmological implications of the
quantum corrected perturbation equations.

In addition to other choices regarding one type of quan-
tum corrections, which in this paper is inverse-triad cor-
rections, there are different general types of corrections. In
loop quantum gravity, we have two additional classes:
corrections of higher powers of the connection or extrinsic
curvature due to the use of holonomies, and genuine quan-
tum back reaction effects which include the influence of
the whole wave function on its expectation values. (It is the
latter which underlies constructions such as the low-energy
effective action used in particle physics.) These corrections

turn out to be more difficult to compute in consistent form,
which is still in progress. Our consistent equations are thus
not to be considered as complete effective equations, and
including the corresponding terms of one type may add to
the effects of another type or decrease them (in a way
which is regime dependent). But it is unlikely that com-
plete cancellations happen because corrections of the dif-
ferent types take such different forms. Moreover, a
complete cancellation would mean that the characteristic
fundamental representation of loop quantum gravity would
leave no trace on the physics of the theory.
While quantitative results are expected to depend on the

specific form of corrections and the interplay of different
types, the occurrence of qualitative effects signalling de-
viations from classical relativity is more robust. This dif-
fers from other results of loop quantum cosmology, such as
bounces in homogeneous models where a sharp zero result
for the time derivative of a scale factor is required. Such
sharp conditions can easily be destroyed when additional
quantum corrections are included; see e.g. [7]. Compared
to that, the complete elimination of qualitative effects of
one type of correction by including another type is highly
unlikely.
The consistent constraint algebra shows that nontrivial

quantum corrections which reflect the underlying discrete-
ness of spatial geometry are possible. In this sense, general
covariance is preserved. However, we have shown that the
classical constraint algebra, while consistently deformed,
is not represented exactly but receives quantum corrections
from the corrected constraints. One can see this directly
from (62), for instance, which carries a factor of �
2 in the
smearing function of the diffeomorphism constraint. This
is required by consistency since the classical algebra can-
not be realized with nontrivial quantum corrections. Thus,
an effective action of loop quantum gravity cannot be
simply of higher-curvature type. (Nonlocal features, for
instance, would then be essential.) Nevertheless, we expect
that some of the corrections can be formulated by effective
higher-curvature actions which applies even to the inverse-
triad corrections used here. Some of the counterterms,
which depend on extrinsic curvature components as well
as spatial derivatives of the triad, can in fact be interpreted
as bringing the corrected constraints in a form amenable to
being formulated as a higher-curvature action. In this con-
text, we emphasize that the absence of new degrees of
freedom in this Hamiltonian framework is not in conflict
with the higher-derivative nature of higher-curvature ef-
fective actions as also discussed in [5]: a perturbative
interpretation of higher-derivative actions, which is the
only appropriate way in quantum gravity, does not give
rise to more solutions than expected classically [63].
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APPENDIX A: COMPARISON WITH ISOTROPIC
MODELS

An important measure for the size of quantum correc-
tions is the characteristic scale a� which signals the onset
of nonperturbative effects. As a critical value for the scale
factor, it does not have absolute meaning because it can be
rescaled by a choice of coordinates. It is ratios such as a=a�
which have physical meaning related to the patch density
of a quantum gravity state. For a denser state features of
correction functions based on inverse-triad components are
realized on larger scales, which increases the correspond-
ing quantum corrections.

These effects are also important if one tries to include
the behavior in homogeneous models, even though an
exactly homogeneous model provides only limited means
of referring to spatial discreteness of an underlying state
and its refinement. For this reason, care is needed if one
tries to address possibilities of refinement schemes and
the size of quantum corrections in purely homogeneous
settings, as is often done due to the simplicity of homoge-
neous models. Quantum corrections in a fully inhomoge-
neous situation must be expected to be larger than in a
naive isotropic quantization which ignores the factorN of

the patch density and implicitly assumes N 1=3 � 1 as in
[64]. This is the reason why some minisuperspace consid-
erations artificially suppress those corrections. Corrections
from holonomies, on the other hand, increase with decreas-
ing vertex density such that they would appear to be more
pronounced. It is possible to mimic the enhancement of
inverse-triad corrections even in exact homogeneous mod-
els by computing their correction function for operators
based on higher representations of SU(2) instead of the
fundamental one [60]. The corresponding spin label is then
related to the vertex density.

In addition to the size of corrections, there is also the
issue of the correct scaling behavior of correction terms. To
have independence of the coordinate size V0 of the region
whose patches are counted, we must have N / V0.
However, this provides coordinate independent quantum
corrections only if we multiply by another function which
can absorb the coordinate dependence of V0. The simplest
possibility in isotropic models is to use N / a3V0 for
which corrections depend neither on the size of the volume
nor on coordinates. This behavior is indeed well motivated
based on lattice refinements (where the physical vertex
density is constant) and was introduced in [65] based on
scaling arguments. IfN is allowed to depend directly only
on the scale factor (and not on _a=a, say), and there is no
other parameter which rescales under changing coordi-
nates other than V0, this is indeed the only consistent
choice. In this sense, the behavior proposed in [65] is

unique in isotropic models up to a single constant which
determines the absolute number of patches.
This uniqueness is, however, contingent on conditions

which are too strong for reliably modelling what happens
in inhomogeneous situations. If the model is no longer
exactly homogeneous, the refinement of underlying states
is history dependent in ways which do not simply amount
to a dependence on a. One can always express the refine-
ment as a dependence on scaling-independent observables
such as _a=awhich provide an equally good measure for the
history of different phases of the Universe. For a given
background solution, one can then express this as a depen-
dence on a alone, given that all observables depend on a. In
general, however, this provides more complicated func-
tions than just N ðaÞ / a3V0 for the patch density. Some
phases can, for instance, be described by a power-law form
N ðaÞ ¼ N 0a

xV0 where N 0 arises in a complicated
process by expressing the refinement via a function only
of a. In particular, because the original refinement is
history dependent only via observable quantities, this con-
stant will automatically be equipped with a scaling depen-
dence such thatN 0a

xV0 is coordinate independent even if
x � 3. The emergence of such a parameter can only be
seen in the proper inhomogeneous context, invalidating
considerations based solely on homogeneous models.

APPENDIX B: POISSON BRACKETS BETWEEN
UNPERTURBED CONSTRAINTS

It is instructive to compute Poisson brackets between
primary quantum corrected constraints without expanding
by inhomogeneities. We first consider the gravitational
Hamiltonian constraint (14). As HP

grav commutes with mat-

ter diffeomorphism Dmatter, it is sufficient to compute
fHP

grav½N�; Dgrav½Na�g. Classically, this Poisson bracket is

fHgrav½N�; Dgrav½Na�g ¼ �Hgrav½Na@aN�: (B1)

The (gravitational) diffeomorphism constraint acts as a
Lie derivative on a (gravitational) phase space function

fFðA; EÞ; Dgrav½Na�g ¼ LNaF: (B2)

The Poisson bracket between HP
grav½N� and Dgrav½Na� then

is

fHP
grav½N�; Dgrav½Na�g �

�Z
�
d3xN
H ; Dgrav½Na�

�

¼
Z
�
d3xNLNað
H Þ

¼
Z
�
d3xNðNa@að
H Þ

þ ð@aNaÞ
H Þ
¼

Z
�
d3xð�Na@aNÞ
H

� �HP
grav½Na@aN�: (B3)

BOJOWALD, HOSSAIN, KAGAN, AND SHANKARANARAYANAN PHYSICAL REVIEW D 78, 063547 (2008)

063547-24



Where we have used the fact that the quantity 
H has
density weight one to expand the Lie derivative and inte-
grated by parts in the next line. By the same token, we
would not obtain the correct algebra if 
 would not be of
density weight zero. Clearly, any functional of the (gravi-
tational) variables defined by integration must be an inte-
gral of a density-weight-one function. Thus the only
restriction on the correction function, obtained so far, is
that it must be of zero density weight. In fact, only this
condition makes the spatial integrals well defined.

The matter Hamiltonian constraint has nonzero Poisson
brackets with both gravitational and matter parts of the
diffeomorphism constraint. However, the total diffeomor-
phism constraint acts as a Lie derivative on any function of
all phase space variables

fFðA; E; ’; �Þ; D½Na�g ¼ LNaF: (B4)

Hence its Poisson bracket with the (gravitational) diffeo-
morphism constraint should boil down to an expression
analogous to (B3). Again, the only condition on the cor-
rection functions is that they have zero density weight. In
that case not only are the quantum corrected constraints
first class, but also form an algebra identical to the classical
one.

In what follows we will make extensive use of
lemma 1: Consider a functional

F½N� ¼
Z

d3xNðxÞfð’;�Þ (B5)

of two canonically conjugate scalar [66] fields ’ and �. If
f does not depend on spatial derivatives of the fields, the
Poisson bracket

fF½N1�; F½N2�gð’;�Þ ¼ 0 (B6)

vanishes.
Proof: Since the integrand does not contain spatial de-

rivatives, we have the functional derivative �F½N�=�’ ¼
N@f=@’ and

fF½N1�; F½N2�g �
Z

d3x

�
�F½N1�
�’

�F½N2�
��

� ðN1 $ N2Þ
�

¼
Z

d3x

�
N1

@f

@’
N2

@f

@�
� ðN1 $ N2Þ

�

¼ 0:

On the contrary, if spatial derivatives of the fields are
present in the integrand, the relevant functional derivative
involves derivatives of the smearing function which im-
plies a nonvanishing final expression for the Poisson
bracket after antisymmetrization over N1 and N2.
Using this result, let us analyze the expression

fHP½N1�; HP½N2�g � fHP
grav½N1� þHP

matter½N1�; HP
grav½N2� þHP

matter½N2�g
¼ fHP

grav½N1�; HP
grav½N2�g þ fHP

matter½N1�; HP
matter½N2�g þ ðfHP

grav½N1�; HP
matter½N2�g � ðN1 $ N2ÞÞ (B7)

term by term. The gravitational constraints yield

fHP
grav½N1�; HP

grav½N2�g ¼
Z
�
d3x

�
�Hgrav½ ~N1�

�Aia

�Hgrav½ ~N2�
@Eai

� ðN1 $ N2Þ
�
þ

Z
�
d3x

�
�Hg½ ~N1�
�Aia

@


@Eai
N2H � ðN1 $ N2Þ

�

¼ Dgrav½ ~N1@
a ~N2 � ~N2@

a ~N1� þAgrav grav; (B8)

where we have used the fact that if ~N1;2 were independent of phase space variables then we would simply have the classical
constraint algebra but with new lapse functions ~N1 and ~N2. However, since ~N1;2 do depend on the densitized triad there is
an extra (potentially anomalous) term in the Poisson bracket which is the second term Agrav grav, proportional to the
derivatives of the correction function. The nontrivial contributions to the anomaly

A grav grav ¼ �
Z
�
d3x

�
N1

@


@Eai0
H

�

�Ai
0
a

�Z
�
d3yN2


2Eci E
d
jffiffiffiffiffiffiffiffiffiffi

detE
p @cA

k
d�ijk

�
� ðN1 $ N2Þ

�

¼
Z
�
d3xH

@


@Eak
�ijk

�
N1@c

�

N2

2Eci E
a
jffiffiffiffiffiffiffiffiffiffi

detE
p

�
� ðN1 $ N2Þ

�
(B9)

come from the gradient terms of the Hamiltonians. Note that, for convenience, we switched the order of terms in the first
line of (B9). In the second line, the only term in the parenthesis that survives the antisymmetrization is the one proportional
to the gradient of the lapse function @cN2. Thus the anomaly simply boils down to

A grav grav ¼ HP
grav½M
� with M
 :¼ 2�ijk

Eci E
a
jffiffiffiffiffiffiffiffiffiffi

detE
p @


@Eak
ðN1@cN2 � N2@cN1Þ: (B10)
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It is easy to see that the symmetricity condition

Eaj
@


@Eak
¼ Eak

@


@Eaj
(B11)

is sufficient to make the anomaly (B10) vanish due the
contraction with �ijk. We should point out that (B11) is
definitely satisfied for any triad-dependent scalar function,
which has all internal indices contracted.

The cross Poisson bracket fHP
grav½N1�; HP

matter½N2�g �
ðN1 $ N2Þ can be computed similarly. In the absence of
curvature couplings, such that the matter Hamiltonian
contains neither connection nor spatial derivatives of the
triad, this Poisson bracket is given by

fHP
grav½N1�; HP

matter½N2�g � ðN1 $ N2Þ

¼
Z
�
d3x

�
�Hgrav½ ~N1�

�Aia

@�

@Eai
N2H � � ðN1 $ N2Þ

�

þ
Z
�
d3x

�
�Hgrav½ ~N1�

�Aia

@�

@Eai
N2H r � ðN1 $ N2Þ

�

¼ HP
�½M�� þHP

r½M��; (B12)

where

HP
�½M�� ¼

Z
�
d3xM�H �;

HP
r½M�� ¼

Z
�
d3xM�H r

(B13)

with the effective lapse functions

M� :¼ 2�ijk
Eci E

a
jffiffiffiffiffiffiffiffiffiffi

detE
p @�

@Eak
ðN1@cN2 � N2@cN1Þ;

M� :¼ 2�ijk
Eci E

a
jffiffiffiffiffiffiffiffiffiffi

detE
p @�

@Eak
ðN1@cN2 � N2@cN1Þ

(B14)

similar to (B10). These vanish if the correction functions
satisfy

Eaj
@�

@Eak
¼ Eak

@�

@Eaj
; Eaj

@�

@Eak
¼ Eak

@�

@Eaj
: (B15)

Finally, the Poisson bracket between two matter
Hamiltonians involves only functional derivatives with
respect to the matter variables’ and�. By virtue of lemma
1, the nontrivial contribution comes from

�Z
�
d3xN1�H �;

Z
�
d3xN2�H r

�
ð’;�Þ

� ðN1 $ N2Þ:

Since the correction functions do not depend on the matter
variables, they act as constant factors, i.e.

fHP
matter½N1�; HP

matter½N2�g
¼ Dmatter½��ðN1@

aN2 � N2@
aN1Þ�; (B16)

Combining (B8), (B12), and (B16) and assuming (B11)
and (B15) we obtain

fHP½N1�; HP½N2�g ¼ Dgrav½
2ðN1@
aN2 � N2@

aN1Þ�
þDmatter½��ðN1@

aN2 � N2@
aN1Þ�:
(B17)

It is easy to see that the constraint algebra closes, if 
2 ¼
�� in addition to the requirement that 
, �, and � are all
scalars of vanishing density weight. In that case the right-
hand side of (B17) reduces to the total diffeomorphism
constraint

fHP½N1�; HP½N2�g ¼ D½
2ðN1@
aN2 � N2@

aN1Þ�
� D½ ~N1@

a ~N2 � ~N2@
a ~N1Þ�: (B18)

So far in this appendix, we have worked nonperturba-
tively which gives only a few conditions on quantum
correction functions. The anomaly freedom conditions
(68) and (69) obtained in the main part of this paper, where
the condition of vanishing density weight turns out to be
quite nontrivial, appear much more restrictive compared
with the relatively mild-looking requirement derived in the
context of the unperturbed system in this appendix. It is
therefore pertinent to comment on this apparent
discrepancy.
Note that the conditions on the three correction func-

tions imply the same functional form of 
, �, and �. Thus
we shall restrict our consideration to only one of them. In
Sec. III A, we had made the following assumptions con-
cerning the primary correction function 
:
(i) 
 depends only on the triad Eai (but not on the

extrinsic curvature Ki
a or the connection),

(ii) 
 depends only algebraically on the triad Eai (but
not its spatial derivatives)

(iii) in the perturbed context, 
 depends on the back-
ground triad �Eai and its perturbation �E

a
i only in the

combination �Eai þ �Eai � Eai (i.e. 
 is expected to
originate from a full unperturbed expression).

One can check by inspection that assumption (iii) im-
plies that (69) is automatically satisfied. Indeed, using the
Taylor expansion


ðEai Þ ¼ 
ð �Eai Þ þ
@
ðEai Þ
@Eai

�������� �Eai

�Eai

þ 1

2

@2
ðEai Þ
@Eai @E

b
j

�������� �Eai

�Eai �E
b
i þ � � �

� �
þ 
ð1Þ þ 
ð2Þ þ � � � (B19)

it is easy to see that the terms on the right-hand side are not

entirely independent. Clearly the relations between �
, 
ð1Þ,
and 
ð2Þ are exactly written in Eq. (69).
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However, of greater concern is the other condition,

Eq. (68). In particular, the requirement 
ð1Þ ¼ 0 [along
with (69)] rules out all possible nontrivial solutions. In
order to understand its origin let us revisit the seemingly
trivial restriction on the correction function to be of zero
density weight. We start by formulating the following
lemma 2: A scalar 
ðEai Þ of density weight zero satisfying
the three assumptions above must be a constant function.

Proof: Consider a scalar 
ðEai Þ of density weight w
satisfying the aforementioned assumptions. Its Lie deriva-
tive along an arbitrary shift vector Na is given by

L ~N
 ¼ Nb@b
þ w
@bN
b:

On the other hand,

L ~N
 ¼ @


@Eai
L ~NE

a
i

¼ @


@Eai
ðNb@bE

a
i � Ebi @bN

a þ Eai @bN
bÞ:

These equations are valid for any Na. In the context of
cosmological perturbation theory, �Na ¼ 0, hence Na ¼
�Na. In the perturbative expansion of the right-hand side
of the equations there is no contribution from the back-
ground part. Equating the corresponding linear order
terms, we obtain

w �
@b�N
b ¼

�
@


@Eai

�ð0Þð �Eai @b�Nb � �Ebi @b�N
aÞ:

Using �Eai ¼ �p�ai , the derivative ð@
=@Eai Þð0Þ �
ð@
=@ �Eai Þj �Eai can be rewritten as 1

3�
a
i @ �
= �p, which yields

2 �p

3

@ �


@ �p
@b�N

b ¼ w �
@b�N
b:

The divergence of a generic shift vector does not vanish,
and therefore the derivative of the background correction
function is @ �
=@ �p ¼ 2

3
�pw
. Requiring w ¼ 0 results in

@ �
=@ �p ¼ 0 and consequently from (69), 
ð1Þ ¼ 0, 
ð2Þ ¼
0, and so on. This concludes the proof of the lemma.

In light of this, we are led to the following conclusion.
The three assumptions that we made on the functional form
of the correction functions are incompatible with the con-
ditions for anomaly freedom, unless 
, �, and � are con-
stants. Therefore, to allow a nontrivial solution we have to
relax one or more of the assumptions which makes the
algebra much more involved. In the main text of this paper,
we organize these calculations by the method of
counterterms.

APPENDIX C: POISSON BRACKETS OF
PERTURBED VARIABLES

A direct application of the Poisson brackets given by
(24) can sometimes be problematic. For instance, the
Poisson bracket between the two original fields f’;�g,

given by

f �’þ �’ðxÞ; ��þ ��ðxÞg �’; ��;�’;��
¼ f �’; ��g �’; �� þ f�’ðxÞ; ��ðyÞg�’;�� ¼ 1

V0

þ �ðx� yÞ;
(C1)

does not agree with the original expression f’ðxÞ; �ðyÞg ¼
�ðx� yÞ. This can be traced to the fact that (24) provides
Poisson brackets for the fields ð �’; ��; �’; ��Þ only if the
conditions (21) are used in (22) to identify �’ and �� with
the sole zero modes of inhomogeneous fields. The con-
straints (21) clearly have a nonzero Poisson bracket
f
1; 
2g, which makes them of the second class.
According to Dirac [67], second-class constraints corre-

spond to nonphysical degrees of freedom and can be dealt
with in the following way. (i) One should take linear
combinations of (all) the constraints, in order to bring as
many of them into first-class form as possible, and
(ii) redefine the Poisson bracket to

fF;Gg��’;�� ¼ fF;Gg�’;��
� fF; 
ag�’;��Cabf
b;Gg�’;��; (C2)

where

Cabf
b; 
cg ¼ �ac

so as to remove the variations with respect to the non-
physical degrees of freedom. Using (21) we obtain

C11 ¼ C22 ¼ 0; C21 ¼ �C12 ¼ ðV0�1�2Þ�1;

which implies

fF;Gg��’;�� ¼ fF;Gg�’;��
� 1

V0

�Z
d3z

�F

�ð�’Þ
Z

d3z0
�G

�ð��Þ
� ðF $ GÞ

�
: (C3)

Let us first point out the basic properties of the Dirac
bracket (C3). For the field perturbations

f�’ðxÞ; ��ðyÞg��’; ��;�’;�� ¼ �ðx� yÞ � 1

V0

:

Clearly the last term would remove the extra contribution
in (C1) yielding the expected result

f’;�g��’; ��;�’;�� ¼ f �’; ��g �’; �� þ f�’ðxÞ; ��ðyÞg��’;��
¼ 1

V0

þ �ðx� yÞ � 1

V0

¼ f’;�g’;�:

Thus the Dirac bracket ensures a correct transition from the
full theory to the perturbed one. By construction, the con-
straints (21) now commute, f
1; 
2g� ¼ 0, and we can
impose 
1 and 
2 strongly. Moreover, Dirac brackets
between a first order functional and a functional of arbi-
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trary order vanish, which can be seen by inspection using
(C3). Thus for any two functionals, their linear terms do
not contribute to the Dirac bracket [68].

We will now address an issue directly related to closure
of the constraints algebra. When computing Poisson brack-
ets in the context of perturbation theory, one has a choice
between two methods:

(1) calculate the Poisson bracket of the constraints with
respect to the full fields and expand the resulting
expression in orders of perturbations, or

(2) expand the constraints first and then compute their
Poisson (Dirac) brackets in terms of the expanded
fields.

It is, in general, not guaranteed that the two approaches
agree for arbitrary functionals which depend on the fields
and their first derivatives. However, we have
lemma 3: If the fields �’, ��, �’, and �� enter the func-
tionals

F ¼
Z

d3xfð’;r’;�;r�Þ;

G ¼
Z

d3xgð’;r’;�;r�Þ
(C4)

only as a combination ’ � �’þ �’ or � � ��þ ��, then
the two procedures described above yield the same result
for fF;Gg.
Proof: We shall show that the second procedure is

equivalent to the first one. First of all, as linear terms do
not contribute to (C3), we can rewrite the Dirac bracket
between two expanded constraints as

fFð0Þ þ Fð2Þ; Gð0Þ þGð2Þg��’; ��;�’;��
¼ fFð0Þ þ Fð1Þ þ Fð2Þ; Gð0Þ þGð1Þ þGð2Þg��’; ��;�’;��
� fF;Gg��’; ��;�’;��:

According to (C3), we have

fF;Gg��’; ��;�’;�� ¼ 1

V0

�
@F

@ �’

@G

@ ��
� @F

@ ��

@G

@ �’

�
þ

Z
d3x

�
�F

�ð�’Þ
�G

�ð��Þ �
�F

�ð��Þ
�G

�ð�’Þ
�

� 1

V0

�Z
d3z

�F

�ð�’Þ
Z

d3z0
�G

�ð��Þ �
Z

d3z
�F

�ð��Þ
Z

d3z0
�G

�ð�’Þ
�

¼ 1

V0

Z
d3z

@f

@’

Z
d3z0

@g

@�
þ

Z
d3x

�F

�’

�G

��
� ð’$ �Þ

� 1

V0

Z
d3z

�
@f

@’
� @a

@f

@ð@a’Þ
�Z

d3z0
�
@g

@�
� @a

@g

@ð@a�Þ
�
� ð’$ �Þ

¼
Z

d3x
�F

�’

�G

��
� ð’$ �Þ � fF;Gg’;�:

In the second equality, we have used

@f

@ �’
¼ @f

@’
;

�F

�ð�’Þ ¼
�F

�’
¼ @f

@’
� @a

@f

@ð@a’Þ
and dropped the surface integrals originating from integra-
tion of the total divergence terms. It is now easy to see that
if higher-derivative terms were present in the functionals,
they would have merely led to additional surface terms and
would not have affected the final conclusion.

Since linear functionals do not contribute to Dirac
brackets, they can be omitted, and one can restrict consid-
eration to terms of the zeroth and second order only.
Moreover, for functionals of an even order, the second
term in the Dirac bracket (C3) vanishes, and one can
simply use the Poisson bracket (24).

A somewhat similar consistency issue arises when it
comes to equations of motion, generated e.g. by a
(Hamiltonian) constraint

H ¼
Z

d3xhð’;r’;�;r�Þ: (C5)

There are again two approaches: (i) either derive the equa-
tions of motion for the original fields and then split into the
background and (linear) perturbation, or (ii) expand the
constraint and obtain separately equations of motion for
the homogeneous and inhomogeneous parts of the field. In
other words, one needs to compare

f’;Hg with f �’;Hg� and f�’;Hg�: (C6)

We start by noting that

_’ ¼ f’;Hg’;� ¼ �H

��
¼ @h

@�
� @a

@h

@ð@a�Þ ; (C7)

whereas the equation of motion for the background field
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_�’ ¼ f �’;Hg �’; �� ¼ 1

V0

Z
d3x

@h

@ ��
¼ 1

V0

Z
d3x

@h

@�

¼ 1

V0

Z
d3x

�
@h

@�
� @a

@h

@ð@a�Þ
�
¼ 1

V0

Z
d3x

�h

��

coincides with the background part of the equation of

motion (C7) for the total field, ð�H=��Þð0Þ. At the same
time, the equation of motion for the perturbation

� _’ðxÞ ¼ f�’ðxÞ; Hg��’;��
¼ �H

�ð��ðxÞÞ �
1

V0

Z
d3y

�H

�ð��ðyÞÞ
¼

Z
d3y

�
�ðx� yÞ � 1

V0

�
�H

��ðyÞ ¼
�
�H

��

�ð1Þ

is nothing else but the perturbed part of the Eq. (C7). In
fact, one can think of the kernel �ðx� yÞ � 1=V0 as cut-
ting off the background part of the function, with which it
is integrated. It is again pertinent to mention that the linear
(as well as the background) part of the functional does not
contribute to the perturbed equation of motion, that is

� _’ðxÞ ¼ f�’ðxÞ; Hg��’;�� ¼ f�’ðxÞ; Hð2Þg�’;��: (C8)

Note that in the second equality the Poisson bracket is
used, not the Dirac bracket.

To summarize, we have shown that in order to proceed to
the perturbation theory, the Dirac bracket (C3) in terms of
the background and perturbed variables should be used.
Nevertheless, when dealing with already expanded func-
tionals, containing only even order terms, the Dirac bracket
reduces to the Poisson bracket (24).

So far we have considered perturbations of a scalar field.
Generalization to tensorial fields is rather straightforward
for any rank. In particular, we need the canonical pair of
loop quantum gravity, i.e. the extrinsic curvature and den-
sitized triad whose perturbations have Dirac brackets

fF;Gg�
�Ki

a;�E
a
i

¼ fF;Gg�Ki
a;�E

a
i

� 1

V0

�Z
d3zd3z0

�F

�ð�Ki
aðzÞÞ

�G

�ð�Eai ðz0ÞÞ
� ðF $ GÞ

�
; (C9)

where F and G are arbitrary functionals of Ki
a and E

a
i .

Of interest is also a generalization of the Dirac brackets
to the case of local second-class constraints. Let us split the
triad and extrinsic curvature into the diagonal and traceless
parts

Ki
a ¼ ��ia þ �ia; Eai ¼ "�ai þ "ai ; (C10)

such that


1 :¼ tr"ai ¼ 0; 
2 :¼ tr�ia ¼ 0: (C11)

It is easy to see that the pairs ð�; "Þ and ð�ia; �ai Þ are

symplectically orthogonal. Indeed, the symplectic struc-
ture takes the form

Z
d3xð _"�ia þ _"iaÞð��ia þ �iaÞ ¼

Z
d3xð3 _"�þ _"ia�

i
aÞ:

However the constraints (C11) are second class under
the tentative Poisson bracket

fF;Gg�;";�ia;"ai ¼
1

3

Z
d3x

�
�F

��

�G

�"
� �F

�"

�G

��

�

þ
Z

d3x

�
�F

��ia

�G

�"ai
� �F

�"ai

�G

��ia

�
: (C12)

Specifically,

f
2ðxÞ; 
1ðyÞg�ia;"ai ¼ 3�ðx� yÞ: (C13)

As before, we define the Dirac brackets

fF;Gg� ¼ fF;Gg �
Z

d3zd3z0fF; 
aðzÞgCabðz; z0Þ
� f
bðzÞ; Gg; (C14)

where the matrix Cabðx; yÞ is now space dependent and
satisfies

Z
d3yCabðx; yÞf
bðyÞ; 
cðzÞg ¼ �ac�ðx� zÞ: (C15)

Using the constraints (C11) in the equation above, we find
that

C11ðx; yÞ ¼ C22ðx; yÞ ¼ 0; (C16)

C12ðx; yÞ ¼ �C21ðx; yÞ ¼ 1

3
�ðx� yÞ: (C17)

Therefore the Dirac bracket reads

fF;Gg�
�ia;"

a
i

¼
Z

d3z
�F

��iaðzÞ
�G

�"ai ðzÞ

� 1

3

Z
d3z

�
�jb�F

��jbðzÞ
�ck�G

�"ckðzÞ
�
� ðF $ GÞ:

(C18)

It is easy to see by inspection that the constraints (C11)
indeed commute under this Dirac bracket, f
1; 
2g� ¼ 0,
so these constraints may be imposed strongly. Also, the
Dirac bracket between the original canonical variables has
the correct expression

fKi
aðxÞ; Ebj ðyÞg��;";�kc;"ck ¼ �ba�

i
j�ðx� yÞ

¼ fKi
aðxÞ; Ebj ðyÞgKk

c;E
k
c
:

Earlier on we have seen that one can still use the Poisson
bracket rather than the corresponding Dirac bracket if one
removes from the original constraints (that is before split-
ting the canonical variables) all the terms proportional to
the second-class constraints arising because of the split-
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ting. This still holds for local second-class constraints. In
the case at hand, as soon as all the terms containing traces
of the extrinsic curvature and the densitized triad are

omitted, the remaining constraints form the correct algebra
under the Poisson bracket (C12).
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