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3Observatoire de Paris, LERMA, Laboratoire Associé au CNRS UMR 8112, 61, Avenue de l’Observatoire, 75014 Paris, France

(Received 3 July 2008; published 30 September 2008)

The transfer function TðkÞ of dark matter (DM) perturbations during matter domination is obtained by

solving the linearized collisionless Boltzmann-Vlasov equation. We provide an exact expression for TðkÞ
for arbitrary distribution functions of decoupled particles and initial conditions, which can be system-

atically expanded in a Fredholm series. An exhaustive numerical study of thermal relics for different

initial conditions reveals that the first two terms in the expansion of TðkÞ provide a remarkably accurate

and simple approximation valid on all scales of cosmological relevance for structure formation in the

linear regime. The natural scale of suppression is the free-streaming wave vector at matter-radiation

equality, kfsðteqÞ ¼ ½4��0M=½h ~V2ið1þ zeqÞ��1=2. An important ingredient is a nonlocal kernel determined

by the distribution functions of the decoupled particles which describes the memory of the initial

conditions and gravitational clustering and yields a correction to the fluid description. This correction

is negligible at large scales k � kfsðteqÞ but it becomes important at small scales k � kfsðteqÞ. Distribution
functions that favor the small momentum region yield longer-range memory kernels and lead to an

enhancement of power at small scales k > kfsðteqÞ. Fermi-Dirac and Bose-Einstein statistics lead to long-

range memory kernels, with longer-range for bosons, both resulting in enhancement of TðkÞ at small

scales. For DM thermal relics that decoupled while ultrarelativistic we find kfsðteqÞ ’
0:003ðgd=2Þ1=3 ðm=keVÞ ½kpc��1, where gd is the number of degrees of freedom at decoupling. For

WIMPS we obtain kfsðteqÞ ¼ 5:88ðgd=2Þ1=3 ðm=100 GeVÞ1=2 ðTd=10 MeVÞ1=2 ½pc��1. For k � kfsðteqÞ,
TðkÞ � 1� C½k=kfsðteqÞ�2 where C ¼ Oð1Þ and independent of statistics for thermal relics. We provide

simple and accurate fits for TðkÞ in a wide range of small scales k > kfsðteqÞ for thermal relics and

different initial conditions. The numerical and analytic results for arbitrary distribution functions and

initial conditions allow an assessment of DM candidates through their impact on structure formation.
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I. INTRODUCTION AND RESULTS

The concordance �CDM standard cosmological model
successfully explains a wide range of highly precise astro-
physical and cosmological observations. The main ingre-
dients are an early stage of accelerated expansion
(inflation), a more recent stage of accelerated expansion
driven by dark energy, and the presence of dark matter
(DM) composed of primordial particles which are cold
and collisionless at the time when the first structures
formed [1,2].

In the cold dark matter (CDM) model, structure forma-
tion proceeds in a hierarchical bottom up approach: small
scales become nonlinear and collapse first and their merger
and accretion leads to structure on larger scales. This is a
consequence of the fact that CDM features negligible small
velocity dispersions leading to a power spectrum that
favors small scales. In this hierarchical scenario, dense

clumps that survive the merger process form satellite
galaxies.
Large scale �CDM simulations seemingly lead to an

overprediction of satellite galaxies [3] by almost an order
of magnitude over the number of satellites that have been
observed in Milky Way sized galaxies [3–7]. These simu-
lations also yield a distinct prediction: virialized DM halos
should feature a density profile that increases monotoni-
cally towards the center [3,8–11] such as the Navarro-
Frenk-White profile [8] or more general central density
profiles �ðrÞ � r�� with 1 � � & 1:5 [5,8,11]. These pro-
files accurately describe clusters of galaxies but indicate a
divergent cusp at the center of the halo.
There is, however, an accumulating body of observatio-

nal evidence [12–19] that seems to indicate that the density
profile in the central regions of dwarf galaxies is smooth
leading to the suggestion that the central regions feature
smooth cores instead of cusps as predicted by CDM.
Warm dark matter (WDM) particles were invoked [20–

22] as possible solutions to the above mentioned discrep-
ancies both in the overabundance of satellite galaxies and
as a mechanism to smooth out the cusped density profiles
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predicted by CDM simulations into the cored profiles
seemingly observed in dwarf-spheroidal satellite galaxies
(dShps). WDM particles feature a range of velocity dis-
persion in between the CDM and hot dark matter leading to
free-streaming scales that smooth out small scale features
and could be consistent with core radii of the dSphs.

Even if these problems of the CDM model find other
astrophysical solutions, it remains an important and in-
trinsically interesting question to assess the clustering
properties of WDM candidates, since these may emerge
from extensions beyond the standard model of particle
physics. Furthermore, it remains an important aspect to
understand possible departures of the CDM paradigm at
small scales provided by alternative particle physics
candidates.

The gravitational clustering properties of collisionless
DM in the linear regime are described by the power spec-
trum of gravitational perturbations and, in particular, the
transfer function that converts the primordial power spec-
trum into the power spectrum later in the matter dominated
era, which in turn, is the input in the large scale numerical
simulations of galaxy formation. Free streaming [2] of
collisionless DM leads to a suppression of the transfer
function on length scales smaller than the free-streaming
scale via Landau damping [23].

Perturbations in a collisionless system of particles with
gravitational interactions is fundamentally different from
fluid perturbations in the presence of gravity. The (perfect)
fluid equations correspond to the limit of the vanishing
mean free path. In a gravitating fluid, pressure gradients
tend to restore hydrostatic equilibrium with the speed of
sound in the medium, and short wavelength fluctuations
are simple acoustic waves. For large wavelengths, the
propagation of pressure waves cannot halt gravitational
collapse on a dynamical time scale. The dividing line is
the Jeans length: perturbations with shorter wavelengths
oscillate as sound waves, while perturbations with longer
wavelengths undergo gravitational collapse.

In a gas of collisionless particles with gravitational
interaction the situation is different since the mean free
path is much larger than the size of the system (Hubble
radius) and the fluid description is not valid. Instead, the
collisionless Boltzmann-Vlasov equation for the distribu-
tion function must be solved to obtain the dynamics of
perturbations [1,24,25].

Just as in the case of plasma physics, the linearized
Boltzmann-Vlasov equation describes collective excita-
tions [26]. In the case of a collisionless gas with gravita-
tional interactions these collective excitations describe
particles free-streaming in and out of the gravitational
potential wells of which they are the source. The damping
of short wavelength collective excitations is akin to Landau
damping in plasmas [26]: it is a result of dephasing via
phase mixing when the particles are out of phase with the
potential wells that they produce [27] and leads to the
collisionless damping of the collective modes [28].

Gilbert [29] studied the linearized Boltzmann-Vlasov
equation in a matter dominated cosmology for nonrelativ-
istic particles described by a (unperturbed) Maxwell-
Boltzmann distribution function. This equation was cast
as a Volterra integral equation whose numerical solution
revealed a limiting value of the wave vector above which
density perturbations are Landau damped and below which
they grow via gravitational (Jeans) instability [29]. The
results were consistent with replacing the speed of sound
by the Maxwellian velocity dispersion in the Jeans length
[up to a normalization factor of Oð1Þ]. Gilbert’s equations
were solved numerically to study: (i) the collisionless
damping of density fluctuations in an expanding cosmol-
ogy with massive neutrinos with an approximated Fermi-
Dirac distribution function [23]; (ii) the dissipationless
clustering of neutrinos with a truncation of the Fermi-
Dirac distribution function and an analytic fit to the nu-
merical solution of the integral equation [30]. These results
were also used to analyze the linear regime [21];
(iii) cosmological perturbations and massive light neutri-
nos [25,31], and more recently similar integral equations
were solved approximately for thermal neutrino relics [32].
DM may be composed of several species [33], a possi-

bility that can be accommodated in most extensions of the
standard model, with candidates ranging from weakly
interacting massive particles (WIMPs) [2] to axions [2]
and sterile neutrinos [34–36]. DM candidates may be
produced in the early Universe via different mechanisms
and some of them are conjectured to decouple and freeze-
out with nonthermal distribution functions. Sterile neutri-
nos are an example of this DM candidate [34–36]. It is
important to understand the clustering properties of pos-
sible DM particles that decoupled in or out of local thermal
equilibrium. Predictions for the effective free-streaming
length and transfer function are a necessary ingredient in
the study of structure formation. The free-streaming length
in such mixture was recently investigated in Ref. [37] for
arbitrary distribution functions of relic particles that de-
coupled in or out local thermodynamic equilibrium (LTE).
This study analyzed the Boltzmann-Vlasov equation in
Minkowski space-time focusing on the marginally unstable
collective modes. It revealed important (and intriguing)
aspects of the free-streaming lengths associated with the
distribution function of the decoupled particles.
A program that bridges the microphysics of the produc-

tion, evolution, and decoupling of DM particles with large
scale structure formation begins by obtaining the distribu-
tion function of the DM particles from the dynamics of
production and decoupling. The DM distribution function
determines the abundance [2], primordial phase space
properties, and generalized constraints on the DM candi-
date [38,39] and their free-streaming lengths [37]. Results
in this direction have been reported [39,40]. The primordial
phase space density of particles D permits one to obtain
deep insights on DM [39]. The phase space density can
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only decrease during gravitational dynamics via mergers
and ‘‘violent relaxation’’ [41]. Recent photometric and
kinematic data on dwarf-spheroidal satellite galaxies in
the MilkyWay (dShps) and the observed DM density today
yield upper and lower bounds on the mass, primordial
phase space densities, and velocity dispersion of the
DM candidates [39]. Combining these constraints with
recent results from N-body simulations yield estimates
on the mass of the DM particles in the range of a few
keV [39].

The DM distribution function after freeze-out is the
main ingredient to obtain the transfer function and the
power spectrum in the linear theory. In principle the DM
transfer function may be obtained by modifying the pub-
licly available cosmic microwave background (CMB) an-
isotropy codes [42,43] that treat baryons, photons, and dark
matter [44], to account for the different distribution func-
tions of several species and range of parameters, masses,
and couplings.

In practice, this is a computationally daunting problem:
fairly complicated nonequilibrium distribution functions
for a variety of possible DM species (axions, sterile neu-
trinos, etc.) must be input in the codes (with substantial
modifications of the standard codes). The exploration of
the parameter space (masses, couplings, and mixing an-
gles) and their impact on the transfer function would
require an enormous computational effort.

After matter-radiation equality, the contribution from
the baryon-photon fluid to the DM transfer function can
only be a few percent [1]. DM only couples to the baryon-
photon fluid via gravitational interaction and the most
prominent feature of this coupling on the DM transfer
function are baryon acoustic oscillations on a scale corre-
sponding to the sound horizon at recombination, corre-
sponding today to about 150 Mpc [45–47]. Our goal is to
understand the (DM) transfer function at much smaller
scales � & Mpc, at which the effect of the acoustic oscil-
lations of the baryon-photon fluid can be safely neglected.

Objectives: The main goals of this article are the fol-
lowing:

(a) to provide an analytic, accurate, and simple frame-
work to obtain the DM transfer function during
matter domination for general initial conditions
and arbitrary distribution functions of relic DM
particles that decoupled in or out of LTE and that
are nonrelativistic after matter-radiation equality.
Neglecting the gravitational coupling to the
baryon-photon fluid entails that the DM transfer
function will eventually require corrections at the
few percent level. However, we seek to gain under-
standing of robust features of TðkÞ at small scales.

(b) to understand the impact of the statistics of the relic
particle on the small scale properties of the transfer
function. More precisely, we study which features of
the distribution function affect more prominently
the power spectrum at small scales.

Summary of Results:We study the linearized collision-
less Boltzmann-Vlasov equation in the nonrelativistic limit
for particles that decoupled in or out of LTE with arbitrary
(but isotropic) distribution functions and general initial
conditions.
It is transformed into an integro-differential equation for

density perturbations which features nonlocal kernels that
include memory of gravitational clustering and represent
corrections to the fluid description.
The influence of this memory becomes more important

at small scales. Fermi-Dirac (FD) and Bose-Einstein (BE)
statistics result in long-range memory, with the longer
range for Bose-Einstein statistics. Distribution functions
that favor small momenta lead to longer-range memory and
result in an enhancement of the transfer function at small
scales.
We obtain an exact expression for TðkÞ for arbitrary

initial conditions and distribution functions and provide a
Fredholm expansion that systematically includes the ef-
fects of memory of gravitational clustering and higher
moments of the distribution function, which are corrections
to the fluid approximation.
An exhaustive numerical study of thermal relics that

decoupled relativistically, [Fermions (FD) and Bosons,
(BE)] or nonrelativistically [WIMPs, Maxwell-
Boltzmann (MB)] for different initial conditions reveals
that the first two terms of the Fredholm series, given by
Eq. (2.111) provide an accurate and simple approximation
to the exact transfer function. These include explicitly the
corrections to the fluid description and the influence of
statistics on small scales. This approximation furnishes a
useful tool to extract the broad properties of the transfer
functions for arbitrary initial conditions and distribution
functions.
The approximate expression for the transfer function

given by Eq. (2.111) features three main ingredients: (i)
the solutions of Jeans fluid equations; (ii) the free-
streaming solution of the Boltzmann equation in absence
of gravitational perturbations; (iii) a nonlocal kernel that
depends on the distribution function of the decoupled
particles, it defines the second contribution in
Eq. (2.111), includes memory of gravitational clustering,
and represents a correction beyond the fluid
approximation.
The scale of suppression of TðkÞ is the comoving free-

streaming wave vector at matter-radiation equality,
kfsðteqÞ, where

kfsðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��0MaðtÞ

h ~p2

m2i

vuut ; (1.1)

and the angular brackets refer to the average with the
distribution function of the decoupled particle, �0M is the
DM matter density today and aðtÞ the scale factor.
We find,
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kfsðteqÞ ¼

8>><
>>:

5:88
pc ðgd2 Þ1=3ð m

100 GeVÞ1=2ð Td

10 MeVÞ1=2 WIMPs

0:002 84ðgd2 Þ1=3 m
keV ½kpc��1 FD thermal relics

0:003 17ðgd2 Þ1=3 m
keV ½kpc��1 BE thermal relics

(1.2)

where gd is the number of relativistic species at
decoupling.

For large scales k & kfsðteqÞ, the contribution of the

nonlocal memory kernel is subleading, whereas for scales
k > kfsðteqÞ the memory of gravitational clustering and

corrections beyond the fluid approximation become
important.

FD and BE distribution functions lead to long-range
memory kernels with Bose-Einstein statistics leading to
the longest range. Longer-range memory leads to an en-
hancement of the transfer function (and power spectrum) at
small scales as depicted in Fig. 10. For k > kfsðteqÞ the
difference in statistics of the decoupled particles becomes
very important.

At large scales k � kfsðteqÞ the transfer function TðkÞ in
terms of the variable � ¼ ffiffiffi

2
p

k=kfsðteqÞ has the following

behavior for all cases considered

TðkÞ ¼ 1�
�
�

�0

�
2 þOð�4Þ (1.3)

where �0 is the same for Fermi-Dirac, Bose-Einstein, and
Maxwell-Boltzmann distribution functions, and is given by
Eq. (3.21).

The transfer function for the three different cases (MB,
FD, and BE) can be compared by parametrizing them in
terms of �. This comparison for different initial conditions
is displayed in Fig. 10. Simple functional fits to TðkÞ are
provided on different regions of k for various initial con-
ditions for thermal relics.

II. GILBERT’S EQUATION

After decoupling from the plasma, or freeze-out, the
distribution function of the decoupled particles obeys the
collisionless Boltzmann equation. In absence of gravita-
tional perturbations the solution of this equation yields a
distribution function of the form [2,39]

f0ðPfðtÞ; tÞ ¼ f0

�
PfðtÞaðtÞad

�
¼ f0ðpÞ; (2.1)

where PfðtÞ, aðtÞ, ad are the physical momentum, scale

factor, and its value at decoupling, respectively, and ~p is
the comoving momentum. Consistently with isotropy we
assume that f0 is a function of p ¼ j ~pj.

During the matter dominated era, for modes that are
deep inside the Hubble radius and DM particles that are
nonrelativistic the evolution of DM density perturbations
and gravitational perturbations is studied with the non-
relativistic Boltzmann-Vlasov equation [24]. The nonrela-
tivistic case applies to all comoving scales (physical scales

today) � & 170 Mpc which were inside the Hubble radius
at matter-radiation equality and DM particles with masses
m> few eV that decoupled before matter-radiation
equality.
To linear order in perturbations the distribution function

of the decoupled particle and the Newtonian gravitational
potential are [1,24,25]

fð ~p; ~x; tÞ ¼ f0ðpÞ þ F1ð ~p; ~x; tÞ (2.2)

’ð ~x; tÞ ¼ ’0ð ~x; tÞ þ ’1ð ~x; tÞ; (2.3)

where f0ðpÞ is the unperturbed distribution function of the
decoupled particle, ’0ð ~x; tÞ is the background gravitational
potential that determines the homogeneous and isotropic
Friedmann-Robertson-Walker metric, and ~p, ~x are comov-
ing variables.
The reader is referred to Refs. [1,23,25,29–31] for de-

tails on the linearization of the nonrelativistic collisionless
Boltzmann-Vlasov equation.
In conformal time � and in terms of comoving variables

~p, ~x the linearized Boltzmann-Vlasov equation is
[23,29,30]

1

a

@F1

@�
þ ~p

ma2
� ~r ~xF1 �m ~r ~x’1 � ~r ~pf0 ¼ 0; (2.4)

along with Poisson’s equation,

r2
~x’1 ¼ 4�Gm

a

Z d3p

ð2�Þ3 F1ð ~x; �Þ: (2.5)

It is convenient [29,30] to introduce a new time variable s
related to the conformal time � by

ds ¼ d�

a
; (2.6)

and to take spatial Fourier transforms of the gravitational
potential ’1ð ~x; �Þ and the perturbation F1ð ~x; �Þ to obtain

@F1ð ~k; ~p; sÞ
@s

þ i ~k � ~p
m

F1ð ~k; ~p; sÞ
� i ~k � ~r ~pf0ðpÞa2ðsÞ’1ð ~k; sÞ ¼ 0 (2.7)

where

’1ð ~k; sÞ ¼ � 4�Gm

k2aðsÞ
Z d3p

ð2�Þ3 F1ð ~k; ~p; sÞ: (2.8)

Integrating from the initial time s ¼ si to s, the
Boltzmann-Vlasov equation (2.7) yields
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F1ð ~k; ~p; sÞ ¼ F1ð ~k; ~p; siÞe�ið ~k� ~p=mÞðs�siÞ þ im ~k � ~r ~pf0ðpÞ
�

Z s

si

ds0e�ið ~k� ~p=mÞðs0�siÞa2ðs0Þ’1ð ~k; s0Þ: (2.9)

This equation can be turned into an integral equation for
the gravitational potential by multiplying both sides by
�4�Gm=½k2aðsÞ�, integrating in ~p, and using the relation
(2.8). We obtain

’1ð ~k; sÞ þ i
4�Gm2

k2aðsÞ
Z d3p

ð2�Þ3
~k � ~r ~pf0ðpÞ

�
Z s

si

ds0e�ið ~k� ~p=mÞðs�siÞa2ðs0Þ’1ð ~k; s0Þ

¼ � 4�Gm

k2aðsÞ
Z d3p

ð2�Þ3 F1ð ~k; ~p; siÞe�ið ~k� ~p=mÞðs�siÞ: (2.10)

The right-hand side of this equation, the inhomogeneity, is
determined by the first term in the solution Eq. (2.9) and
describes the free-streaming solution of the Boltzmann
equation in absence of gravitational perturbations. This
can be seen directly by performing the inverse Fourier

transform in ~k to spatial coordinates, which yields for the
inhomogeneity the following form:

Z d3p

ð2�Þ3 F
�
~x� ~p

m
ðs� siÞ

�

where F ½ ~x� ¼ � 4�Gm

aðsÞ
Z

ei
~k� ~xF1ð ~k; ~p; siÞ d

3k

k2
:

(2.11)

For a species that has become nonrelativistic: ~p=m ¼ ~v
where ~v is the comoving velocity. Using the relation
Eq. (2.6) and d� ¼ dt=aðtÞ we see that

p

m
ðs� siÞ ¼

Z t

ti

vðt0Þ
aðt0Þ dt

0 	 lfsðv; tÞ (2.12)

where vðtÞ ¼ v=aðtÞ is the physical velocity of the non-
relativistic particle and lfsðv; tÞ is the comoving free-

streaming distance that the particle with comoving velocity
v has traveled during (comoving) time from ti until t [2].
The physical distance is obtained by multiplying the above
expression by aðtÞ. Therefore the inhomogeneity Eq. (2.11)
in Eq. (2.10) is of the form

Z v2dv

2�2
F ½x� lfsðv; tÞ�:

The variable s, related to conformal time as in Eq. (2.6),
obeys the differential equation

ds

da
¼ 1

a3HðaÞ ; (2.13)

where a is the scale factor andH the Hubble parameter. For
matter dominated cosmology

HðaÞ ¼ H0M

a3=2
; (2.14)

where

H2
0M ¼ 8�G

3
�0M 	 H2

0�M; (2.15)

where H0 ¼ 100h km sec�1 Mpc�1 is the Hubble parame-
ter today and �0M is the matter density today with �M ¼
0:233 for DM.
Normalizing the scale factor to unity today, namely,

að0Þ ¼ 1 and taking si ¼ 0 as initial value for the time
variable s, Eq. (2.13) is integrated to yield

s ¼ 2

H0Ma
1=2
i

�
1�

�
ai
a

�
1=2

�
: (2.16)

The initial value of the scale factor ai corresponds to the
value at matter-radiation equality ai ¼ aeq ¼ 1=ð1þ zeqÞ
with zeq ’ 3050. It is convenient to introduce a dimension-

less time variable u as

s ¼ 2u

H0Ma
1=2
eq

; (2.17)

so that

u ¼ 1�
�
aeq
a

�
1=2 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

1þ zeq

s
;

0 � u � 1� a1=2eq ’ 0:982

(2.18)

and the scale factor in terms of the variable u is

aðuÞ ¼ aeq

ð1� uÞ2 : (2.19)

A. The free-streaming length

We note that during matter domination, the comoving
free-streaming distance is given by

lfsðtÞ ¼ v
Z t

ti

dt0

a2ðt0Þ ¼
v

H0M

Z t

ti

da

a3=2

¼ 2v

H0M

�
1ffiffiffiffiffiffiffi
aeq

p � 1ffiffiffiffiffiffiffiffi
aðtÞp �

: (2.20)

We see that the second term in lfsðtÞ scales as 1=
ffiffiffiffiffiffiffiffi
aðtÞp

. This

observation will be important below to establish the red-
shift dependence of the comoving free-streaming wave
vector.
Motivated by the expression for the free-streaming dis-

tance Eq. (2.12) and (2.20) and by the usual Jeans wave
vector for fluids [24], we introduce the physical free-
streaming wave vector,

kp;fsðtÞ ¼
kfsðtÞ
aðtÞ : (2.21)
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The comoving free-streaming wave vector is defined as

k2fsðtÞ ¼
3H2

0MaðtÞ
2h ~V2i ¼ a2ðtÞ 4�G�MðtÞ

h ~V2ðtÞi ;

�MðtÞ ¼ �0M

a3ðtÞ ; h ~V2ðtÞi ¼ h ~V2i
a2ðtÞ :

(2.22)

This definition of the free-streaming wave vector is analo-
gous to that of the Jeans wave vector in a fluid replacing the

speed of sound by

ffiffiffiffiffiffiffiffiffi
h ~V2i

q
(see the discussion below).

It is clear from this expression that the comoving free-
streaming wave vector scales as

kfsðtÞ ¼ kfsð0Þ
ffiffiffiffiffiffiffiffi
aðtÞ

p
; (2.23)

where, using Eq. (2.22),

kfsð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3H2

0M

2h ~V2i

vuut : (2.24)

The comoving free-streaming wavelength is given by

�fsðtÞ 	 2�

kfsðtÞ : (2.25)

There is a simple interpretation of kfsðtiÞ: consider the

comoving free-streaming distance that a particle with co-

moving velocity v ¼
ffiffiffiffiffiffiffiffiffi
h ~V2i

q
travels from the initial time

ti ¼ teq until today. Setting s ¼ 0 in Eq. (2.20) and neglect-

ing the second term since 1=
ffiffiffiffiffiffiffiffiffi
að0Þp ¼ 1 � 1=

ffiffiffiffiffiffiffi
aeq

p ’ 55:2,

we find

lfsðv; 0Þ ¼
2

ffiffiffiffiffiffiffiffiffi
h ~V2i

q
H0Ma

1=2
i

: (2.26)

Therefore,

kfsðteqÞ ¼ 0:0181kfsð0Þ ¼
ffiffiffi
6

p
lfsðv; 0Þ ) �fsðteqÞ

¼
ffiffiffi
2

3

s
�lfsðv; 0Þ: (2.27)

We note that the free-streaming wave vector at teq is related

to the free-streaming distance that the particle has traveled
between matter-radiation equality and today.

The matter density today is1

�0M ¼ mn0; n0 ¼
Z d3p

ð2�Þ3 f0ðpÞ: (2.28)

It also proves convenient to introduce the density pertur-

bation

�ð ~k; sÞ ¼ m
Z d3p

ð2�Þ3 F1ð ~k; ~p; sÞ; (2.29)

related to the gravitational potential as

’1ð ~k; sÞaðsÞ ¼ � 4�G

k2
�ð ~k; sÞ; (2.30)

and the gravitational potential normalized at the initial time

�ð ~k; uÞ ¼ ’1ð ~k; sÞ
’1ð ~k; 0Þ

; (2.31)

where sðuÞ is given by Eq. (2.17).

The unperturbed distribution function ~f0ðpÞ is a dimen-
sionless function, and as such it can be written as a function
of the ratio of the comoving momentum p and the value of
the decoupling temperature today Td;0 and other dimen-

sionless quantities, such as the ratio of the mass of the
particle to the decoupling temperature, dimensionless cou-
pling constants from the microphysics of decoupling, etc.
[2,39], namely,

f0ðpÞ 	 f0ðy; x1; x2 � � �Þ; y ¼ p

Td;0

;

x1 ¼ m

Td

� � � ;
(2.32)

where Td is the decoupling temperature and Td;0 ¼ Tdad is
its value today. Using entropy conservation it follows that
[2]

Td;0 ¼
�
2

gd

�
1=3

TCMB; (2.33)

where TCMB ¼ 2:348� 10�4 eV is the CMB temperature
today and gd is the effective number of relativistic degrees
of freedom at decoupling. For these distributions

n0 ¼ T3
d;0

Z 1

0

dy

2�2
y2f0ðyÞ:

Integrating by parts the momentum integral in the left-hand

side of Eq. (2.10), integrating over the angle k̂ � p̂ ¼ cos�
and dividing both sides of the integral Eq. (2.10) by the
initial value

’1ð ~k; 0Þ ¼ � 4�Gm

k2aeq

Z d3p

ð2�Þ3 F1ð ~k; ~p; 0Þ; (2.34)

the integral equation (2.10) becomes

�ðk; uÞ � 6

�
ð1� uÞ2

Z u

0
�½�ðu� u0Þ� �ðk; u0Þ

½1� u0�4 du
0

¼ ð1� uÞ2I½�u�; (2.35)

where

1We consider a species with a single internal degree of free-
dom, a different value g can easily be included in the final
expressions.
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� 	 2k

H0�
1=2
M a1=2i

Td;0

m
: (2.36)

Using Eq. (2.33) and the value

�Mh
2 ¼ 0:105 (2.37)

for nonbaryonic dark matter, � becomes

� ¼ 240

�
2

gd

�
1=3 keV

m
k kpc: (2.38)

The cosmologically relevant range where this approach
applies goes from scales well inside the Hubble radius
(where the nonrelativistic approximation is valid) until
the smallest scales where the linearized approximations
are valid

ð1000 MpcÞ�1 & k & ð0:01 MpcÞ�1: (2.39)

Therefore, the range of the dimensionless variable � re-
sults as

0:2410�3

�
2

gd

�
1=3 keV

m
& � & 24

�
2

gd

�
1=3 keV

m
: (2.40)

As it is customary, we only consider distributions spheri-

cally symmetric on ~k. The nonlocal kernel in Eq. (2.35) is
given by

�½z� ¼
Z 1

0
dyy~f0ðyÞ sin½yz�; (2.41)

where we introduced the normalized distribution function

~f 0ðyÞ 	 f0ðyÞR1
0 dyy2f0ðyÞ

;
Z 1

0
y2 ~f0ðyÞdy ¼ 1; (2.42)

and

I½�u� ¼ 1R1
0 p2dpF1ðk; p; 0Þ

Z 1

0
p2dpF1ðk; p; 0Þ

�
sinð�puTd;0

Þ
ð�puTd;0

Þ ; (2.43)

where we have assumed that F1 does not depend on the
direction of ~p.

The inhomogeneity I½�u� obeys the initial conditions

I½�u ¼ 0� ¼ 1;
d

du
I½�u�ju¼0 ¼ 0: (2.44)

The density perturbation normalized at the initial time
namely

	ðk; uÞ ¼ �ðk; sÞ
�ðk; 0Þ (2.45)

is related to �ðk; uÞ [see Eq. (2.19) and (2.30)] by

�ðk; uÞ ¼ aeq

aðuÞ	ðk; uÞ ¼ ð1� uÞ2	ðk; uÞ: (2.46)

Then, from Eq. (2.35) 	ðk; uÞ obeys the Volterra equation
of the second kind

	ðk; uÞ � 6

�

Z u

0
�½�ðu� u0Þ� 	ðk; u0Þ

½1� u0�2 du
0 ¼ I½�u�:

(2.47)

which is Gilbert’s equation [29].
The initial conditions of the inhomogeneity Eq. (2.44)

lead to the following initial conditions on the gravitational
potential and density perturbations

	ðk; u ¼ 0Þ ¼ 1;
d

du
	ðk; uÞju¼0 ¼ 0 (2.48)

�ðk; u ¼ 0Þ ¼ 1;
d

du
�ðk; uÞju¼0 ¼ �2: (2.49)

B. Exact results from Gilbert’s equation

The long-wavelength limit � ! 0 of Eq. (2.47) affords
an exact solution. In this limit,

lim
�!0

1

�
�½�ðu� u0Þ� ¼ u� u0; I½0� ¼ 1; (2.50)

and ðu� u0Þ�ðu� u0Þ is the Green’s function of the dif-
ferential operator d2=d2u. Therefore taking the second
derivative with respect to u of the Volterra equation (2.47),
we obtain

€	ð0; uÞ � 6

ð1� uÞ2 	ð0; uÞ ¼ 0; (2.51)

the solution satisfying the initial conditions Eq. (2.48) is

	ð0; uÞ ¼ 3

5

1

ð1� uÞ2 þ
2

5
ð1� uÞ3; (2.52)

which in terms of the scale factor Eq. (2.19) is given by

	ð0; uÞ ¼ 3

5

aðuÞ
aeq

þ 2

5

�
aeq

aðuÞ
�
3=2

: (2.53)

This is the usual long-wavelength solution for density
perturbations in a matter dominated cosmology. From
Eq. (2.46) the long-wavelength limit of the gravitational
potential is

�ð0; uÞ ¼ 3
5 þ 2

5ð1� uÞ5: (2.54)

We now show that 	ðk; uÞ behaves as 1=ð1� uÞ2 for all
values of � when u ! 1.
Let us assume a general power law behavior for 	ðk; uÞ

as u ! 1,

	ðk; uÞ ¼u!1
Að�Þð1� uÞ��½1þOð1� uÞ�: (2.55)

For u ! 1 the integral in Eq. (2.47) is dominated by the
region u0 � u� 1, and we note that

�½�ðu� u0Þ� ¼u0!u
�ðu� u0Þ: (2.56)
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In this limit we obtain

6

�

Z u

0

�½�ðu�u0Þ�
½1�u0�2 ð1�u0Þ��du0 ¼u!1 6

�ð�þ 1Þ ð1� uÞ��:

(2.57)

Inserting this result in Eq. (2.47) we find two solutions:
� ¼ 2, �3 which are precisely the singular and regular
solutions found in the long-wavelength limit [1].
Therefore, the dominant behavior for u ! 1 for all values
of � is

	ðk; uÞ ¼u!1 Að�Þ
ð1� uÞ2 ¼ Að�ÞaðuÞ

aeq
(2.58)

�ðk; uÞ ¼u!1
Að�Þ (2.59)

where in order to find the function Að�Þ we have to
integrate the Gilbert equation from u ¼ 0, where the initial
conditions were defined, up to u ! 1. �ðk; uÞ is a slowly
varying function of u in the sense that it is always finite as
we see from Eq. (2.59).

The transfer function: TðkÞ is defined from the limit [1]

lim
u!1

aeq
aðuÞ

	ðk; uÞ
	ðk; 0Þ ¼ lim

u!1
�ðk; uÞ; (2.60)

where we have used the relation Eq. (2.46) and the initial
condition Eq. (2.48). It is customary to normalize the
transfer function so that TðkÞ ! 1 as k ! 0, obtaining

TðkÞ 	 lim
u!1

�ðk; uÞ
�ð0; uÞ ¼

5

3
lim
u!1

ð1� uÞ2	ðk; uÞ

¼ 5

3
�ðk; u ¼ 1Þ ¼ 5

3
Að�Þ: (2.61)

A numerical study of 	ðk; uÞ and TðkÞ depicted in Figs. 1–
5, 7, 9, and 10 shows that TðkÞ decreases with k (or�). This
is to be expected, k ¼ 0 corresponds to the mode that
grows the fastest as it is the most gravitationally unstable,
larger values of k result in slower growth as a consequence
of free-streaming. The behavior of the k ¼ 0 mode is that
of cold dark matter Eq. (2.52).

Therefore, TðkÞ is a measure of the suppression of the
k > 0 wave modes and the k scale of suppression of TðkÞ is
necessarily related to the free-streaming wave number.

The final power spectrum PfðkÞ is related to the initial

one PiðkÞ as [1]
PfðkÞ ¼ T2ðkÞPiðkÞ: (2.62)

If perturbations do not grow or decay substantially during
the prior, radiation dominated phase, PiðkÞ is nearly the
inflationary primordial power spectrum [1].

Gilbert’s equation (2.47) can be solved in a power series
in u, appropriate for short times. We find from Eq. (2.43)

I½�u� ¼u!0
1� b�2u2 þOðu4Þ;

b 	 1

6T2
d;0

R1
0 p4dpF1ðk; p; 0ÞR1
0 p2dpF1ðk; p; 0Þ

: (2.63)

Thus, we find from Eqs. (2.63) and (2.47),

	ðk; uÞ ¼u!0
1þ u2½3� b�2� þOðu4Þ: (2.64)

Therefore 	ðk; uÞ starts out by growing or decreasing for
small u depending on whether �< �c or �> �c, respec-
tively, where

�c ¼
ffiffiffi
3

b

s
:

Namely, for �< �c the mode 	ðk; uÞ is gravitationally
unstable from the start (u ¼ 0) while for �> �c the
mode starts being gravitationally stable. However, due to
the cosmological expansion all modes redshift and even-
tually become gravitationally unstable at some time u < 1.
As can be seen from Eq. (2.58), for u ! 1 all modes are
unstable.
At early times, �c determines the stability limit of

density perturbations.
We carried out an exhaustive numerical study for cold,

hot, and warm dark matter [Maxwellian (MB), BE, and FD
distributions]. We find for large � that TðkÞ decreases
exponentially in the Maxwell-Boltzmann case while for
both bosons and fermions TðkÞ asymptotically decreases
with a power law or exponentially (see below Secs. IVA
and IVB).
At different scales, the suppression of TðkÞ is described

by a characteristic wave vector kchar which depends on the
initial conditions, the particle statistics and the regime of
wave numbers.
We obtain kchar from the numerical study for different

cases and k regimes, in all cases considered we find that
kchar � kfsðteqÞ.

C. Thermal and Gilbert’s initial conditions

It remains to specify the initial perturbation F1ðk; p; u ¼
0Þ of the distribution function. Although in principle this
function should be obtained from the full evolution through
the prior radiation dominated stage, in what follows we
consider the physically motivated case of adiabatic pertur-
bations for which the perturbation F1ðk; p; u ¼ 0Þ corre-
sponds to a temperature perturbation,

Td;0 ! Td;0

�
1þ�TðkÞ

Td;0

�
;

namely,

F1ðk; p; u ¼ 0Þ ¼ T
df0ðp; TÞ

dT

�TðkÞ
T

: (2.65)

These are the initial conditions proposed in Refs. [21,23].
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Alternative initial conditions were proposed by Gilbert
[29], who chose

F1ðk; p;u ¼ 0Þ ¼ f0ðpÞCðkÞ; (2.66)

with some unspecified function CðkÞ.

D. Solution of the Gilbert equation in powers of k

We can solve the Gilbert equation (2.47) in powers of
�2, [that is, powers of k2, see Eq. (2.36)]

	ðk; uÞ ¼ 	0ðuÞ þ �2	1ðuÞ þOð�4Þ; (2.67)

where 	0ðuÞ is given by Eq. (2.52) and 	1ð0Þ ¼ 	0
1ð0Þ ¼ 0.

Inserting Eq. (2.67) in Eq. (2.47), using Eq. (2.63) and
deriving twice with respect to u leads to the equation

�
d2

du2
� 6

ð1� uÞ2
�
	1ðuÞ ¼ 2½3b� �b� 3b	0ðuÞ�

where �b ¼ b for Gilbert initial conditions and �b ¼ 5
3 b for

temperature initial conditions. This inhomogeneous differ-
ential equation for 	1ðuÞ can be easily solved using the
Green’s function of the differential operator in the left-
hand side. We find for u ! 1 after calculation,

	1ðuÞ ¼u!1

(� 8b
35

1
ð1�uÞ2 þOð1Þ Gilbert initial conditions;

� 31b
105

1
ð1�uÞ2 þOð1Þ Temperature initial conditions:

(2.68)

Using Eq. (2.61) we now obtain TðkÞ in powers of �2,

TðkÞ ¼
(
1� 8b

21�
2 þOð�4Þ Gilbert initial conditions;

1� 31b
63 �

2 þOð�4Þ Temperature initial conditions;
(2.69)

where b is given by Eq. (2.63).

E. Gilbert’s equation as an integro-differential equation

The results obtained above suggest to convert the
Volterra equation into an integro-differential equation.
Taking the second derivative with respect to u of
Eq. (2.47) yields

€	ðk; uÞ � 6	ðk; uÞ
ð1� uÞ2 þ 6�2

Z u

0
du0

Z 1

0
dyy4 ~f0ðyÞ

� sin½�yðu� u0Þ�
�y

	ðk; u0Þ
ð1� u0Þ2 ¼

€I½k; u�: (2.70)

It proves convenient to write the following identity in the y
integral:

y4 ¼ y2 �y2 þ y2ðy2 � �y2Þ; (2.71)

where

�y 2 ¼
Z 1

0
dyy4 ~f0ðyÞ with

Z 1

0
dyy2 ~f0ðyÞ ¼ 1;

(2.72)

and to introduce

3�2 	 �2 �y2; � ¼ 2kTd;0

mH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y2

3�Maeq

vuut ; (2.73)

where Eq. (2.36) was used.
In terms of kfs [see Eqs. (2.15), (2.24), and (2.73)] we

find that

�2 ¼ 2k2

k2fsðteqÞ
¼ 2k2

k2fsð0Þaeq
; kfsð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
3�M

2�y2

s
H0

m

Td;0

:

(2.74)

Using the original Eq. (2.47) to replace the term with �y2 in
terms of 	ðk; uÞ and I½�u�, we obtain the following
integro-differential equation for density perturbations

€	ðk; uÞ � 6	ðk; uÞ
ð1� uÞ2 þ 3�2	ðk; uÞ �

Z u

0
du0Kðu� u0Þ

� 	ðk; u0Þ
ð1� u0Þ2 ¼

€I½k; u� þ 3�2I½�u�; (2.75)

where the nonlocal kernel Kðu� u0Þ is given by

Kðu� u0Þ ¼ 6�
Z 1

0
yð �y2 � y2Þ~f0ðyÞ sin½�yðu� u0Þ�dy;

(2.76)

and we note that

�y 2

�
Td;0

m

�
2 ¼ h ~V2i (2.77)

is the three dimensional velocity dispersion of the non-
relativistic particles today.
Using Eq. (2.26), � [Eq. (2.73)] can also be written as

� ¼
ffiffiffi
2

p
k

kfsðteqÞ ¼
1ffiffiffi
3

p klfsðv; 0Þ ¼ 2�ffiffiffi
3

p lfsðv; 0Þ
�

; (2.78)

where � is the wavelength of the perturbation.
Using Eqs. (2.24), (2.33), and (2.37), kfsðteqÞ and

lfsðv; 0Þ are given by
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kfsðteqÞ ¼ 0:0102ffiffiffiffiffi
�y2

p �
gd
2

�
1=3 m

keV
½kpc��1 (2.79)

�fsðteqÞ ¼
ffiffiffi
2

3

s
�lfsðv; 0Þ ¼ 616

ffiffiffiffiffi
�y2

q �
2

gd

�
1=3 keV

m
kpc:

(2.80)

The transfer function for the three different cases (MB, FD,
and BE) turns out to be parametrized by the dimensionless

ratio � ¼ ffiffiffi
2

p
k=kfsðteqÞ allowing us to compare the three

different cases, in Fig. 10 below.
The alternative form Eq. (2.75) of the original Volterra

(Boltzmann-Vlasov) [Eq. (2.47)] equation has several mer-
its:

(i) Neglecting the nonlocal term and the inhomogeneity,
Eq. (2.75) can be written in a more familiar form in
terms of cosmic time t:

d2	

dt2
þ 2H

d	

dt
þ

�
k2h ~V2i
a4ðtÞ � 4�G�MðtÞ

�
	 ¼ 0

(2.81)

where h ~V2i is given by Eq. (2.77) and h ~V2i=a2ðtÞ is
the physical squared velocity of the nonrelativistic
particles. The term between brackets in Eq. (2.81)
can be written as

h ~V2i
a2ðtÞ

�
k2

a2ðtÞ �
k2fsðtÞ
a2ðtÞ

�
(2.82)

where kfsðtÞ is the comoving free-streaming wave

vector Eq. (2.22). This equation must be compared to
the usual fluid equation [24] in which the comoving
Jeans wave vector kJðtÞ replaces kfsðtÞ with

k2JðtÞ ¼
4�G

c2s
�0MaðtÞ; (2.83)

where cs is the comoving speed of sound during
matter domination. This expression shows that the
comoving Jeans wave vector in the fluid description

scales as
ffiffiffiffiffiffiffiffi
aðtÞp

during matter domination, just as the
free-streaming wave vector kfsðtÞ does. Thus, we see
that the long-wavelength limit � ! 0 (� ! 0) of
Eq. (2.75) yields the familiar fluid description.
Therefore the contribution from the nonlocal kernel
Kðu� u0Þ is a correction to the fluid description. It
will be seen below that this correction becomes
important at small scales k > kfsðteqÞ.

(ii) In the long-wavelength limit � ! 0 (� ! 0) the
kernel Kðu� u0Þ decreases as �4 � �2 and its con-
tribution to the dynamics of density perturbations
becomes negligible.
Furthermore, expanding the kernel Kðu� u0Þ in a
power series in k it can be seen that each term
corresponds to higher correlations of the form

��
p

m

�
2þn

�
�

��
p

m

�
n
���

p

m

�
2
�
:

These correlations are typically neglected in the
moment hierarchy of the Boltzmann equation [1].

(iii) At short times u� 0 it follows thatZ u

0
Kðu� u0Þdu0 ¼u!0

Oð�4u4Þ;

hence, its contribution is subleading for u & 1=�
since 	ðk; u� 0Þ � 1 by the initial condition.

(iv) As u ! 1, the u0 integral in the kernel is dominated
by the region u� u0 � 1 for which 	ðk; u0Þ �
Að�Þ=ð1� u0Þ2 as obtained in Eq. (2.58), therefore
it follows that for u� 1,Z u

0
du0Kðu� u0Þ 	ðk; u0Þ

ð1� u0Þ2

¼u!1
�4½ �y4 � ð �y2Þ2� ln 1

1� u
� 1

ð1� uÞ2 : (2.84)

Therefore in this region the contribution of the
kernel is subleading as compared to the first three
terms in Eq. (2.75) although it could be larger than
the inhomogeneity on the right-hand side.

(v) It explicitly yields the asymptotic behavior 	ðk; u !
1Þ / 1=ð1� uÞ2 as a consequence of the second
term in Eq. (2.75) and the analysis above. This
feature will be seen manifestly in the analysis below.

F. The exact transfer function and its Fredholm
expansion

The above analysis points out that in all the regimes of
interest the nonlocal contribution from the kernel is small
as compared to the first three terms in Eq. (2.75) and can be
treated perturbatively. For this purpose, it is convenient to
write Eq. (2.75) as

€	ðk; uÞ � 6

ð1� uÞ2 	ðk; uÞ þ 3�2	ðk; uÞ ¼ S½	;u�:
(2.85)

The source term is

S½	;u� ¼ SB½u� þ SNB½	;u� (2.86)

where SB½u� and SNB½	; u� play the role of the Born (B)
and next to Born (NB) approximations,

SB½u� ¼ €Iþ 3�2I (2.87)

SNB½	; u� ¼
Z u

0
du0Kðu� u0Þ 	ðk; u0Þ

½1� u0�2 : (2.88)

As discussed above [see Eq. (2.81)], in cosmic time the
left-hand side of Eq. (2.85) is precisely of the form of the
Jeans equation for fluids. The right-hand side S½	; u� may
be interpreted as an additional pressure term nonlocal in
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time which includes free-streaming through the initial
condition in SB. In the long-wavelength limit S½	; u� van-
ishes along with the usual pressure term 3�2	ðk; uÞ leading
to the usual fluidlike equation for cold dark matter density
perturbations.

Equation (2.85) lends itself to a Fredholm (iterative)
solution, the basis of which is the homogeneous solution
and the retarded Green’s function of the differential opera-
tor on the left in Eq. (2.85).

For S½	; u� ¼ 0, Eq. (2.85) becomes the homogeneous
differential equation

€	 ð0Þðk; uÞ � 6

ð1� uÞ2 	
ð0Þðk; uÞ þ 3�2	ð0Þðk; uÞ ¼ 0;

(2.89)

which is solved in terms of Bessel’s functions. The general
solution is given by

	ð0ÞðzÞ ¼ Ah1ðzÞ þ Bh2ðzÞ; (2.90)

with

z 	 z0ð1� uÞ; z0 ¼
ffiffiffi
3

p
�; (2.91)

h1ðzÞ and h2ðzÞ are related to the spherical Bessel functions
n2ðzÞ and j2ðzÞ [48],

h1ðzÞ 	 �zn2ðzÞ ¼
�
3

z2
� 1

�
coszþ 3

z
sinz; (2.92)

h2ðzÞ 	 zj2ðzÞ ¼
�
3

z2
� 1

�
sinz� 3

z
cosz; (2.93)

h1ðzÞ and h2ðzÞ are the fundamental irregular and regular
solutions, respectively, with the small argument behavior
for z ! 0 (u ! 1)

h1ðzÞ ¼z!0 3

z2
; h2ðzÞ ¼z!0 z3

15
; (2.94)

and Wronskian

W½z� ¼ h02ðzÞh1ðzÞ � h01ðzÞh2ðzÞ ¼ 1; (2.95)

where the prime denotes d=dz. The mode functions h1;2ðuÞ
are identified as the growing and decaying solutions of
Jeans fluid equations (2.81). The initial conditions
Eq. (2.48) yield

	ð0Þðz0Þ ¼ 1; 	ð0Þ0 ðz0Þ ¼ 0: (2.96)

Using Eq. (2.95) we find

A ¼ h02ðz0Þ; B ¼ �h01ðz0Þ; (2.97)

and the homogeneous solution is given by

	ð0ÞðzÞ ¼ h02ðz0Þh1ðzÞ � h01ðz0Þh2ðzÞ: (2.98)

Using the small argument behavior Eq. (2.94), for � ¼ 0

(k ¼ 0) the homogeneous solution 	ð0ÞðzÞ reduces to
Eq. (2.52).

The general solution: The inhomogeneous equa-
tion (2.85) can be formally solved in terms of the retarded
Green’s function of the differential operator on its left-hand
side which obeys�

d2

du2
� 6

ð1� uÞ2 þ 3�2

�
Gðu; u0Þ ¼ 	ðu� u0Þ: (2.99)

Gðu; u0Þ can be explicitly written in terms of h1;2ðuÞ
[Eqs. (2.92) and (2.93)] as,

Gðu; u0Þ ¼ 1ffiffiffi
3

p
�
½h1ðuÞh2ðu0Þ � h2ðuÞh1ðu0Þ��ðu� u0Þ:

(2.100)

The formal solution of Eq. (2.85) is then given by

	ðk; uÞ ¼ 	ð0ÞðzÞ þ 1ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ

� h2ðuÞh1ðu0Þ�S½	; u0�du0: (2.101)

It is convenient to separate explicitly the source term SB½u�
Eq. (2.87) which does not involve the kernelKðu� u0Þ, but
only involves the free-streaming solution of the Boltzmann
equation in absence of self-gravity. Integrating by parts
twice the term with €I, using the differential equation (2.99)
obeyed by the Green’s function and the initial conditions
Eq. (2.44), we obtain

	ðk; uÞ ¼ 	ð1Þðk; uÞ þ 1ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ

� h2ðuÞh1ðu0Þ�SNB½	;u0�du0; (2.102)

where

	ð1Þðk; uÞ ¼ I½�u� þ 6ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ � h2ðuÞh1ðu0Þ�

� I½�u0�
ð1� u0Þ2 du

0: (2.103)

The gravitational potential �ðk; uÞ can be analogously ex-
pressed using its relation with the density perturbation 	
Eqs. (2.46) and (2.101) with the result

�ðk; uÞ ¼ �ð1Þðk; uÞ þ 1ffiffiffi
3

p
�
ð1� uÞ2

Z u

0
½h1ðuÞh2ðu0Þ

� h2ðuÞh1ðu0Þ�SNB½	;u0�du0; (2.104)

where

�ð1Þðk; uÞ ¼ ð1� uÞ2	ð1Þðk; uÞ (2.105)

is the Born term.
It is straightforward to check that for k ¼ 0 the second

term in Eq. (2.104) vanishes and �ð1Þð~0; uÞ is given by
Eq. (2.54) (for this note that I½0� ¼ 1).
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Free-streaming for k � 0 leads to collisionless Landau
damping of the gravitational potential and density pertur-
bation. Although density perturbations still grow as 1=ð1�
uÞ2 for u ! 1 the gravitational potential is bound j�j � 1
and is a slow variable.

We obtain an exact expression for TðkÞ inserting
Eq. (2.104) into the definition of the normalized transfer
function Eq. (2.60) and using the small argument limits
Eq. (2.94),

TðkÞ ¼ 10ffiffiffi
3

p
�3

Z 1

0
h2ðuÞ

�
I½�u�

ð1� uÞ2 þ
1

6
SNB½	; u�

�
du;

(2.106)

where 	ðk; uÞ, argument of SNB [see Eq. (2.88)], is the
solution of the integral equation (2.102) and we have
neglected terms proportional to aeq � 10�4. In obtaining

this result we have used the fact that I½�u� given by
Eq. (2.43) is finite at u ¼ 1 and that in this limit 	ðk; uÞ /
1=ð1� uÞ2. Only the terms featuring h1ðuÞ outside the
integrals survive in this limit. The terms with h1ðu0Þ inside
the integrals yield at most terms / 1=ð1� uÞ3 but they are
multiplied by ð1� uÞ5, and vanish for u ! 1. Furthermore,
in the long-wavelength limit I½0� ¼ 1; SNB / �4 and from
the small argument behavior Eq. (2.94) it is straightforward
to confirm that Tðk ¼ 0Þ ¼ 1.

The integral equations (2.102) and (2.104) can be iter-
ated generating the usual Fredholm series as

	ðk; uÞ ¼ 	ð1Þðk; uÞ þ 	ð2Þðk; uÞ þ � � � ;
�ðk; uÞ ¼ �ð1Þðk; uÞ þ�ð2Þðk; uÞ þ � � � ;

(2.107)

where 	ð1Þðk; uÞ is given by Eq. (2.103) to which we refer as
the Born term because of its obvious similarity to the
solution of a potential scattering problem,

	ð2Þðk; uÞ ¼ 1ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ

� h2ðuÞh1ðu0Þ�SNB½	ð1Þ;u0�du0 (2.108)

SNB½	ð1Þ; u� ¼
Z u

0
du0Kðu� u0Þ	

ð1Þðk; u0Þ
½1� u0�2 ; (2.109)

�ð1Þðk; uÞ is given by Eq. (2.105) and

�ð2Þðk; uÞ ¼ ð1� uÞ2 1ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ

� h2ðuÞh1ðu0Þ�SNB½	ð1Þ;u0�du0: (2.110)

The small argument behavior Eq. (2.94) makes manifest
that the solution 	ðk; uÞ indeed has the asymptotic behavior
/ 1=ð1� uÞ2 as u ! 1. Furthermore, since the function
I½�u� describes the free-streaming solution of the
Boltzmann equation in absence of self-gravity, the formal
solution Eq. (2.102) exhibits explicitly the free-streaming
phenomenon.

The transfer function has also a systematic Fredholm
expansion which up to second order yields

TðkÞ ¼ 10ffiffiffi
3

p
�3

Z 1

0
h2ðuÞdu

�
I½�u�

ð1� uÞ2 þ
1

6
SNB½	ð1Þ;u�

�
	 TBðkÞ þ TNBðkÞ; (2.111)

where we refer to the first order term

TBðkÞ ¼ 10ffiffiffi
3

p
�3

Z 1

0
h2ðuÞdu I½�u�

ð1� uÞ2 ; (2.112)

as the Born term because its origin is the Born term for the

gravitational potential �ð1Þðk; uÞ and

TNBðkÞ ¼ 5

3
ffiffiffi
3

p
�3

Z 1

0
h2ðuÞSNB½	ð1Þ; u�du; (2.113)

is the next to Born (second order) correction, where

	ð1Þðk; uÞ and SNB½	ð1Þ; u� are given by Eqs. (2.103) and
(2.109), respectively.
At this point it is worthwhile to emphasize the following

important aspect: the first order, Born term in the transfer
function only depends on the initial condition and de-
scribes the free-streaming suppression. The second order
term, the integral of SNB, contains the information on the
higher moments of the distribution function of the de-
coupled particles and the corrections to the fluid approxi-
mation through the nonlocal kernel Kðu� u0Þ Eq. (2.76).
The details of the distribution function beyond the first
moment h ~p2i enter the transfer function at second order
and beyond in the Fredholm series. It will be shown below
that these contributions include memory of gravitational
clustering and become important at short wavelengths
� > 1.
Equation (2.111) provides a useful approximation to the

transfer function for general initial conditions and distri-
bution functions. Specific examples for which we obtain an
exact numerical evaluation (see below) show that the sec-
ond order approximation Eq. (2.111) is remarkably accu-
rate in a wide range of scales. These are some of the main
results of this article.

III. COLD DARK MATTER: NONRELATIVISTIC,
MAXWELL-BOLTZMANN DISTRIBUTION

The unperturbed distribution function for particles that
decoupled while nonrelativistic in local thermal equilib-
rium is a solution of the collisionless Boltzmann equation
(in absence of gravitational perturbations), given by

f0ðPfðtÞ; tÞ ¼ N e�ðP2
f
ðtÞa2ðtÞ=2mTda

2
d
Þ; (3.1)

where the explicit expression for the normalization factor
N may be found in Ref. [39], PfðtÞ is the physical

momentum, aðtÞ is the scale factor and Td, ad are the
temperature and scale factor at decoupling, respectively.
Since p ¼ PfðtÞaðtÞ is the comoving momentum (equal to
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the physical momentum today) and Tdad ¼ Td;0 is the

decoupling temperature today, the unperturbed Maxwell-
Boltzmann distribution function can be written in terms of
dimensionless variables as

f0ðy; xÞ ¼ N e�ðy2=2xÞ; y ¼ p

Td;0

; x ¼ m

Td

;

(3.2)

and the normalized distribution function is given by

~f 0ðyÞ ¼ 4ffiffiffiffi
�

p ½2x�3=2 e
�ðy2=2xÞ; (3.3)

�y2 [Eq. (2.73)] and � [Eq. (2.73)] are in this case,

�y 2 ¼ 3
m

Td

; � ¼
ffiffiffiffiffiffi
Td

m

s
�: (3.4)

The typical values of the masses and decoupling tempera-
tures for WIMPs are m� 100 GeV and Td � 10 MeV
[49], for which gd � 10 [2]. Using the result for the free-
streaming wave vector today Eq. (2.79) we find

kfsðteqÞ ¼ 5:88

pc

�
gd
2

�
1=3

�
m

100 GeV

�
1=2

�
Td

10 MeV

�
1=2

:

(3.5)

Within the cosmologically relevant range of scales where
the linearized approximation is valid, Eq. (2.39) and using
(2.73) it follows that in this range � � 10�5.

The kernel �½�ðu� u0Þ� that enters in the Volterra
equation (2.47) is best obtained by performing the momen-
tum integrals of the distribution function in Cartesian
coordinates rather than performing the angular integration
first. This is a consequence of the fact that the distribution
function is a function of ~p2. We obtain the following
equation for density perturbations

	ðk; uÞ � 6
Z u

0
du0ðu� u0Þe�ð�2=2Þðu�u0Þ2 	ðk; u0Þ

½1� u0�2
¼ I½�u�; (3.6)

where I½�u� [Eq. (2.43)] is the inhomogeneity determined
by the initial condition. Taking two derivatives with respect
to u and using Eq. (3.6) we obtain

€	ðk; uÞ � 6

1� u2
	ðk; uÞ þ 3�2	ðk; uÞ

� 6�4
Z u

0
du0ðu� u0Þ3e�ð�2=2Þðu�u0Þ2 	ðk; u0Þ

½1� u0�2
¼ €I½�u� þ 3�2I½�u�: (3.7)

From this expression we obtain the explicit form of the
kernel Kðu� u0Þ that defines the source term Eq. (2.88)
and enters in the transfer function Eq. (2.106), namely,

Kðu� u0Þ ¼ 6�4ðu� u0Þ3e�ð�2=2Þðu�u0Þ2 : (3.8)

In the cosmologically relevant case � � 10�5, we can
safely approximate the density perturbation, gravitational
potential, and transfer function by their Born term in the
Fredholm series, namely,

	ð1Þðk; uÞ ¼ I½�u� þ 6ffiffiffi
3

p
�

Z u

0
½h1ðuÞh2ðu0Þ � h2ðuÞh1ðu0Þ�

� I½�u0�
ð1� u0Þ2 du

0; (3.9)

�ð1Þðk; uÞ ¼ ð1� uÞ2	ð1Þðk; uÞ; (3.10)

TBðkÞ ¼ 10ffiffiffi
3

p
�3

Z 1

0
h2ðuÞ I½�u�

ð1� uÞ2 du: (3.11)

For the sake of comparison with the exact result and to
display the dependence on initial conditions we study both

FIG. 1 (color online). Nonrelativistic, Maxwell-Boltzmann distribution. Left panel: The gravitational potential �ðk; uÞ vs u for � ¼
0, 0.25, 0.4, 0.75, 1. Right panel: the transfer function T2ðkÞ vs �. In both cases the solid line corresponds to the exact solution of
Eq. (2.47) with the initial condition Eq. (3.13) and the dashed line to the Born approximation Eqs. (3.10) and (3.11).
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initial conditions Eqs. (2.65) and (2.66). The calculation of
I½�u� in both cases is best performed with Cartesian coor-
dinates, we find for the case of temperature perturbations
Eq. (2.65)

IT½�u� ¼
�
1� 1

3
�2u2

�
e�ð1=2Þ�2u2 ; (3.12)

and for Gilbert’s initial condition Eq. (2.66)

IG½�u� ¼ e�ð1=2Þ�2u2 : (3.13)

They are connected by the simple relationship

IT½�u� ¼
�
1þ 1

3
�

@

@�

�
IG½�u�: (3.14)

Figures 1 and 2 display the exact results for �ðk;uÞ and
T2ðkÞ obtained by numerical integration of Eq. (3.6) and

using the relation (2.46), compared to the solution obtained
with the Born approximation. It is clear that the Born
approximation is remarkably accurate for � & 1, namely
k & kfsðteqÞ. Figure 3 compares T2ðkÞ for the initial con-

ditions Eq. (3.12) and (3.13). The exact numerical results
are indistinguishable from the Born approximation in the
range displayed.

A. Short wavelength: memory of gravitational
clustering

Although for WIMPs only the region of � � 1 is of
cosmological relevance as discussed above, it is important
to study the opposite limit � 
 1 to understand how the
memory kernel Kðu� u0Þmodifies the transfer function. It
proves convenient to change variables to z ¼ �ðu� u0Þ
and to replace in Eq. (2.88) the density perturbation 	 by
the gravitational potential �ðk; uÞ which is bounded in
time, to write

SNBðuÞ ¼ 6
Z �u

0
z3e�ðz2=2Þ �½k;u� z

��
½1� uþ z

��4
dz: (3.15)

Since �ðk; u� 0Þ � 1 it is clear from this expression that
SNB is negligible either at small time (u � 1=�) or in the

long-wavelength limit � � 1. The factor z3e�ðz2=2Þ in the

integrand grows as z3 at small z, attains a maximum at z ¼ffiffiffi
3

p
, namely, u� u0 � 1=�, and falls off exponentially for

z >
ffiffiffi
3

p
for 1� u 
 1=�.

Therefore, SNB begins to contribute for u > 1=�. Since
�ðk; uÞ is still �Oð1Þ during this interval it follows that
SNB becomes of Oð1Þ, whereas for large � the Born term
for Gilbert’s (G) initial conditions,

SB;G ¼ �2½2þ �2u2�e�ð1=2Þ�2u2 ; (3.16)

is suppressed for u 
 1=�. Analogous conclusions follow

FIG. 2 (color online). Nonrelativistic, Maxwell-Boltzmann distribution. Left panel: �ðk; uÞ vs � for � ¼ 0, 0.25, 0.4, 0.75, 1. Right
panel: T2ðkÞ vs �. In both cases the solid line corresponds to the exact solution of Eq. (2.47) with the initial condition Eq. (3.12) and the
dashed line to the Born approximation Eqs. (3.10) and (3.11).

FIG. 3 (color online). Nonrelativistic, Maxwell-Boltzmann
distribution. Comparison between T2ðkÞ vs � for the initial
conditions Eqs. (3.12) and (3.13). The exact result and the
Born approximation are indistinguishable in this range.
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for temperature perturbations where the expression for
SB;A follows combining Eqs. (3.14) and (3.16).

Therefore, for � 
 1 there is a crossover in behavior:
during 0 � u � 1=� the Born term which dominates is of
Oð1Þ and the second order correction is negligible, while at
u� 1=� both terms become of the same order, and for u >
1=� the second order correction becomes important.
Finally, for 1� u � 1=� the small z region dominates
yielding a logarithmic behavior for the second order cor-
rection. When this correction becomes important for � 

1, the transfer function TðkÞ is very small, suppressed at
least by the prefactor 1=�3.

For � 
 1, in the region with �u 
 1 the upper limit of
the integral can be taken to infinity. For 1=� � u � 1�
1=� the dominant contribution arises from the region u�
0where�� 1 is largest, in this region the full integral is of
Oð1Þ.

Furthermore, since to leading order � decays via free-
streaming on a time scale u� 1=�, its derivative is large
during the initial free-streaming regime but becomes small
for u � 1=� as can be gleaned from Figs. 1 and 2. This
analysis leads to the conclusion that SNBðuÞ becomes im-
portant for � 
 1 in the region �u 
 1, where it is of the
same order (or larger) than the free-streaming contribution
(Born term). When SNBðuÞ becomes non-negligible the
transfer function is suppressed by �1=�3. Therefore, the
corrections to the Born term become relevant at small
scales when the transfer function has diminished
substantially.

In the region u 
 1=� the following Markovian ap-
proximation is reliable:

�

�
k; u� z

�

�
� �½k; u� � _�½k; u� z

�
þ � � � : (3.17)

We emphasize that this Markovian approximation is valid
only after the initial free-streaming transient for u > 1=�,

since during the transient _�� �. Therefore, although such
Markovian approximation is available after the initial tran-
sient, the value of the gravitational potential must be
matched to that at the end of the free-streaming period in
order to provide the full dynamical evolution.
The analysis above suggests that the influence of the

memory kernel Kðu� u0Þ becomes important for short
wavelengths � > 1. Thus, for scales � � �fsðteqÞ �
lfsðv; 0Þ where � > 1 we need to include the second order

term in the Fredholm expansion in the transfer function
given by Eq. (2.111), where

SNB½	ð1Þ; u� ¼ 6�4
Z u

0
du0ðu� u0Þ3e�ð�2=2Þðu�u0Þ2

� 	ð1Þðk; u0Þ
½1� u0�2 (3.18)

and 	ð1Þðk; uÞ is given by Eq. (3.9). Higher order terms are
further suppressed by extra powers of 1=� in the transfer
function.
The addition of the second order correction yields a

remarkably accurate fit to the exact solution of the
Boltzmann-Vlasov equation in a wide range of scales
down to scales � � �fsðteqÞ.
Figure 4 displays the comparison between the exact

result for T2ðkÞ compared with both the Born approxima-
tion and the next to Born approximation for initial con-
ditions Eq. (3.13). Figure 5 displays the same comparison
for the initial condition Eq. (3.12). These figures confirm
the analysis presented above: the Born term is a fairly
accurate approximation in the region � & 1 and the second
order correction becomes significant at �� 1. Including
the second order correction yields a remarkably accurate
approximation in a wide range of scales 0<�< 5.
We obtain TðkÞ for large scales expanding Eq. (3.13) for

small �u

FIG. 4 (color online). Nonrelativistic, Maxwell-Boltzmann distribution. Left panel: The transfer function T2ðkÞ vs � for the exact
solution and the Born approximation. Right panel: T2ðkÞ vs � for the exact solution and the Born approximation plus second order.
Gilbert’s initial condition Eq. (3.13) was used.
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IG½�u� ¼�u!0
1� 1

2
�2u2 þOð�4u4Þ; (3.19)

and follow the same steps leading to Eq. (2.69), setting b ¼
1=2 according to Eqs. (2.63) and (3.19), and replacing � by
� in Eq. (2.69), with the result

TðkÞ ¼ 1�
�
�

�0

�
2 þOð�4Þ (3.20)

where

�0 ¼
8><
>:

ffiffiffiffi
21
8

q
¼ 1:62 . . . Gilbert initial conditions;ffiffiffiffiffiffi

126
62

q
¼ 1:42 . . . Temperature initial conditions:

(3.21)

�0 characterizes the falloff of TðkÞ. We find for a given
initial condition �0 is independent of the statistics for
thermal relics.

For WIMPs the long-wavelength approximation (3.20)
describes TðkÞ in the whole range of scales of cosmological
relevance for structure formation in the linear regime, since
for these scales � & 10�5 and the Born approximation
describes the DM density and gravitational perturbations
outstandingly well.

Although for the scales of interest for structure forma-
tion TðkÞ given by (3.20) gives the correct description, it is
illuminating to study the small scale behavior of TðkÞ.

The precise numerical solution of Eq. (3.6) shows that
TðkÞ for temperature initial conditions has a zero at � ¼
7:7 . . . as shown in Fig. 10 and is negative for � > 7:7 . . .
decreasing exponentially for � > 10 as

jTðkÞj ’ e�ð�=�MBÞxMB (3.22)

where xMB ’ 1:3 and �MB ’ 1:55 both for temperature and
Gilbert initial conditions Eqs. (2.65) and (2.66).

We draw the following important lessons from this
study:

(i) For k � kfsðteqÞ, the Born approximation gives a

simple and very accurate description of the transfer
function. It inputs the free-streaming solution in
absence of self-gravity and the mode functions asso-
ciated with the fluid description. These only input the
average squared velocity, therefore the first moment
hp2i of the distribution function. This approximate
but fairly accurate solution yields a simple tool to
understand different distribution functions and initial
conditions in generic situations.

(ii) The short wavelength region of the transfer function
k > kfsðteqÞ is remarkably well described by cor-

recting the Born approximation with the second
order term in the Fredholm solution. This correction
incorporates higher moments of the distribution
function and includes important memory effects of
gravitational clustering and corrections to the fluid
description. This approximation while just slightly
more involved than the Born term also yields a
rather simple and systematic tool to study the effects
of higher order correlations and the full structure of
the distribution function along with memory of
gravitational clustering in generic situations.

We see that the scale characterizing the suppression of
TðkÞ with � decreases with k (and �). Namely, �0 charac-
terizing the suppression for small k is larger than the
characteristic suppression scale for larger k.
Nevertheless, the numerical study shows that the character-
istic suppression scale kchar related to a characteristic di-
mensionless ratio �char by Eqs. (2.33), (2.36), (2.38), and
(3.4), namely:

kchar ¼ 1

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Maeq

q �
gd
2

�
1=3

ffiffiffiffiffiffiffiffiffiffi
Tdm

p
TCMB

�char

¼ 4:17

�
gd
2

�
1=3

�
m

100 GeV

�
1=2

�
Td

10 MeV

�
1=2 �char

pc

(3.23)

FIG. 5 (color online). Nonrelativistic, Maxwell-Boltzmann distribution. Left panel: the transfer function T2ðkÞ vs � for the exact
solution and the Born approximation. Right panel: T2ðkÞ vs � for the exact solution and the Born approximation plus second order.
Initial condition for temperature fluctuations Eq. (2.65).
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is such that in all cases considered we find �char �Oð1Þ.
Therefore, kfsðteqÞ obtained from free particle propagation

[Eqs. (2.26) and (2.27)] and given by Eqs. (2.79) and (3.5)
only differs by a factor of order one from kchar [Eq. (3.23)].

IV. WARM AND HOT DARK MATTER:
FERMIONS VS BOSONS

In this section we consider thermal relics that decoupled
in LTE while ultrarelativistic, but that have become non-
relativistic during matter domination. Their normalized
distribution function after freeze-out are given by

~f 0ðyÞ ¼ 2

3
ð3Þ
1

ey þ 1
FD; (4.1)

~f 0ðyÞ ¼ 1

2
ð3Þ
1

ey � 1
BE; y ¼ p

Td;0

; (4.2)

for FD and BE, respectively, with Td;0 being the decoupling

temperature today. We study each case separately.
It is convenient to state the following general result in

order to estimate the large momentum contribution of the
various integrals. Consider a generic integral of the formZ 1

0
FðyÞ sin½yz�dy; (4.3)

where Fð0Þ; F0ð0Þ; F00ð0Þ � � � are finite and Fð1Þ ¼ 0.
Integrating by parts consecutively we find the large z
behaviorZ 1

0
FðyÞ sin½yz�dy ¼ F½0�

z
� F00½0�

z3
þO

�
1

z5

�
: (4.4)

This result will be useful in the analysis that follows.
TðkÞ decreases in kwith a characteristic scale kchar which

depends on the initial conditions, the particle statistics and
the regime of wave numbers. kchar translates into a charac-
teristic scale �char in the dimensionless variable �. kchar is
related to �char by Eqs. (2.33), (2.36), and (2.38)

kchar ¼ 1

2
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Maeq

q �
gd
2

�
1=3 m

Tcmb

�char

¼ 0:00417�char

�
gd
2

�
1=3 m

keV
½kpc��1: (4.5)

For fermionic and bosonic thermal relics �char � Oð1Þ
because in these cases �y2 � Oð1Þ.

A. Fermions

For fermions that decoupled relativistically in LTE with
the normalized distribution function Eq. (4.1), it follows
that

�y 2 ¼
Z 1

0
y4 ~f0ðyÞdy ¼ 15


ð5Þ

ð3Þ ¼ 12:939 � � � ; (4.6)

leading from Eq. (2.79) to the free-streaming wave vector

today

kfsðteqÞ ¼ 0:002 84 � � �
�
gd
2

�
1=3 m

keV
½kpc��1: (4.7)

For the initial condition Eq. (2.65) the inhomogeneity is

IT½�u� ¼ 2

9
ð3Þ
Z 1

0

y2ey

ðey þ 1Þ2
sin½y�u�

�u
dy

¼ 4

3
ð3Þ
X1
n¼1

ð�1Þnþ1n

ðn2 þ z2Þ2
�
1� 4

3

z2

ðn2 þ z2Þ
�
;

z ¼ �u; (4.8)

whereas for the initial condition Eq. (2.66)

IG½�u� ¼ 2

3
ð3Þ
Z 1

0

y

ey þ 1

sin½y�u�
�u

dy

¼ 4

3
ð3Þ
X1
n¼1

ð�1Þnþ1n

ðn2 þ z2Þ2 ; z ¼ �u: (4.9)

Using the result Eq. (4.4) we find that for both initial
conditions the asymptotic behavior of the inhomogeneity
for �u 
 1 is given by

IG½�u� ¼�u!1 1

3
ð3Þð�uÞ4 þO
�

1

½�u�6
�
;

IT½�u� ¼�u!1� 1

9
ð3Þð�uÞ4 þO
�

1

½�u�6
�
;

(4.10)

which must be contrasted to the Maxwell-Boltzmann case
for which IG½�u� and IT½�u� Eqs. (3.12) and (3.13) decay
exponentially.
Therefore, FD statistics result in free-streaming solu-

tions in absence of self-gravity IG½�u� and IT½�u� that fall
off much slower, with a power law in time. Such a long-
range feature is also present in the kernelKðu� u0Þ. This is
unlike the Maxwell-Boltzmann case where such free-
streaming solutions Eqs. (3.12) and (3.13) fall off exponen-
tially on a time scale 1=�.
Implementing the result Eq. (4.4) we find that the kernel

Kðu� u0Þ Eq. (2.76) with the normalized FD distribution
function Eq. (4.1) falls off as

Kðu� u0Þ ¼�ðu�u0Þ!1 30
ð5Þ

2ð3Þ

�

½�ðu� u0Þ�3 FD: (4.11)

Figure 6 displays both K½z�=½6�� and z3K½z�=½6��. Again
this case must be contrasted with the Maxwell-Boltzmann
case Eq. (3.8) which decays exponentially.
Thus, whereas for � 
 1 the Maxwell-Boltzmann dis-

tribution leads to a short-range memory kernel, the FD
distribution yields a long-range kernel that keeps memory
of the initial state and the initial value of the gravitational
and density perturbations.
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For the FD case Eqs. (2.73) and (4.6) yield

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ð3Þ
5
ð5Þ

s
� ¼ 0:482 . . .�: (4.12)

We can now study the transfer function as a function of �
comparing the exact result with the Born approximation
Eq. (2.112) and the next to Born term Eq. (2.113). The
analysis presented in the previous section of the different
contributions also applies to this case.

For long wavelengths � < 1 the second order correction
S½	1; u� is much smaller than the Born term because the
kernel Kðu� u0Þ is of order �4, hence TðkÞ is dominated
by the Born term and by the free-streaming solution.

At shorter wavelengths � > 1 the kernel Kðu� u0Þ be-
gins to contribute at u > 1=� and peaks at u0 � u as
indicated by Fig. 6 but by this time both the density
perturbation and gravitational potential inside the inte-

grand have decayed substantially leading to a suppressed
contribution to the transfer function.
This analysis leads to conclude that for � < 1, TðkÞ is

dominated by the Born term while second (and higher)
order corrections become relevant for � > 1.
We have confirmed this analysis by comparing the exact

numerical solution of Gilbert’s equation with the Born
approximation and the second order correction to the trans-
fer function for both initial conditions Eqs. (4.8) and (4.9).
The results are qualitatively the same in both cases and we
present them for temperature initial conditions in Fig. 7.
The agreement between the exact result and the Born plus
second order correction is remarkable. The numerical
study confirms the analysis above, the second order con-
tribution, which includes the memory of gravitational
clustering becomes important for � > 1, namely, at small
scales, but when it begins to be appreciable, TðkÞ has been
highly suppressed. For � * 5 we find that T2ðkÞ & 10�5.
TðkÞ for large scales follows from Eq. (2.69) and

IG½�u� ¼�u!0
1� 5

2


ð5Þ

ð3Þ ð�uÞ

2 þOð½�u�4Þ;

for fermions. We find that the large scale approximation for
TðkÞ Eq. (3.20) is also valid in the FD case.
The precise numerical resolution of Eq. (3.6) for fermi-

ons shows that TðkÞ for Gilbert initial conditions
[Eq. (2.66)] and � > 4 decreases as

TðkÞ ’
�
�fg

�

�
xfg
; xfg ’ 7:6; �fg ’ 3:7; (4.13)

see Fig. 10.
The behavior of TðkÞ for temperature initial conditions

[Eq. (2.65)] is more involved as displayed in Fig. 10: we
find that TðkÞ decreases exponentially for 4<�< 15 as

FIG. 6 (color online). The kernel Kðu� u0Þ=½6�� [see
Eq. (2.76)] vs z ¼ �ðu� u0Þ for Fermionic thermal relics.

FIG. 7 (color online). Fermionic thermal relics. Left panel: T2ðkÞ vs � for the exact solution and the Born approximation. Right
panel: T2ðkÞ vs � for the exact solution and the Born approximation plus second order. Initial condition given by Eq. (4.8). Similar
agreement is found with the initial Gilbert’s conditions Eq. (4.9).
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TðkÞ ’ cfae
�ð�=�fa1Þ; cfa � 7:6; �fa1 ’ 0:89:

(4.14)

For � > 15 TðkÞ decreases faster than in Eq. (4.14), it
vanishes and becomes negative at � ’ 16:72. For � > 25
TðkÞ decreases in absolute value as power law

TðkÞ ’ �
�
�fa2

�

�
xfa
; xfa ’ 5:3; �fa2 ’ 0:96:

(4.15)

We find that the scale of suppression itself slides with
scale.

For Gilbert initial conditions, we see that the character-
istic falloff scale of TðkÞ increases with increasing k, from
�0 ’ 1:62 . . . for small k to �fg ’ 3:7 for � > 6. Instead,

for temperature initial conditions, the characteristic falloff
scale decreases with increasing k reaching values �fa ’
0:89–0:96 for � > 4. However, all of these are of the same
order �Oð1Þ which is a manifestation of a unique charac-
teristic scale �char �Oð1Þ as also found in the case of the
Maxwell-Boltzmann distribution.

Therefore, in terms of wave vector k this observation
translates into the statement that the relevant scale for
suppression of TðkÞ is kfsðteqÞ, although the functional

form of TðkÞ itself depends on scale and initial condition,
in this case varying from exponential to power law.

We anticipate that the power law behavior of the kernel
Kðu� u0Þ for fermions [Eq. (4.11)] leads to a longer
memory on the initial conditions than in the Maxwell-
Boltzmann case Eq. (3.8). For � 
 1 the range of the
Born term and that of the kernel are much longer for
fermions than for the Maxwell-Boltzmann case. Then,
both the free-streaming solution and the gravitational per-
turbation (or alternatively the density perturbation) for
small values of u0 inside the integrand in Kðu� u0Þ yield
larger contributions for FD than for Maxwell-Boltzmann.
We indeed find that jTðkÞj for thermal fermions and for a
given value of � is enhanced relative to that of the
Maxwell-Boltzmann particles (see Fig. 10).

B. Bosons

For thermal bosons that decoupled while relativistic
with the normalized distribution function Eq. (4.2) we find

�y 2 ¼ 12

ð5Þ

ð3Þ ¼ 10:352 � � � (4.16)

leading from Eq. (2.79) to the free-streaming wave vector
today

kfsðteqÞ ¼ 0:003 17 . . .

�
gd
2

�
1=3 m

keV
½kpc��1: (4.17)

For the initial condition Eq. (2.65) the inhomogeneity is

IT½�u� ¼ 1

6
ð3Þ
Z 1

0

y2ey

ðey þ 1Þ2
sin½y�u�

�u
dy

¼ 1


ð3Þ
X1
n¼1

n

ðn2 þ z2Þ2
�
1� 4

3

z2

ðn2 þ z2Þ
�
;

z ¼ �u (4.18)

and for the initial condition Eq. (2.66)

IG½�u� ¼ 1

2
ð3Þ
Z 1

0

y

ey þ 1

sin½y�u�
�u

dy

¼ 1


ð3Þ
X1
n¼1

n

ðn2 þ z2Þ2 ; z ¼ �u: (4.19)

Using the result Eq. (4.4) we find that the asymptotic
behavior of the inhomogeneity for �u 
 1 for both initial
conditions is given by

IG½�u� ¼�u!1 1

2
ð3Þð�uÞ2 þO
�

1

½�u�4
�
;

IT½�u� ¼�u!1� 1

6
ð3Þð�uÞ2 þO
�

1

½�u�4
�
:

(4.20)

This is an even slower power law falloff than in the FD case
and even much slower than the Gaussian-exponential fall-
off in the Maxwell-Boltzmann case.
Since I½�u� is the free-streaming solution in absence of

self-gravity (normalized to one at the initial time), we see
that with either initial condition the Bose-Einstein distri-
bution function leads to a much less efficient free-
streaming smoothing of the initial perturbation.
This long-range feature associated with the Bose-

Einstein distribution is also manifest in the kernel Kðu�
u0Þ. Again, using Eq. (4.4) we find that the kernel Kðu�
u0Þ Eq. (2.76) with the normalized Bose-Einstein distribu-
tion Eq. (4.2) falls off as

Kðu� u0Þ ¼�ðu�u0Þ!1 36
ð5Þ

2ð3Þ

1

u� u0
BE: (4.21)

Figure 8 displays both K½z�=ð6�Þ and zK½z�=ð6�Þ. This
falloff is even slower than in the FD and certainly much
slower than the Maxwell-Boltzmann case Eq. (3.8), with
important consequences explored below.
BE statistics, more specifically the behavior of the dis-

tribution function at small momentum, leads to a slow
falloff with a power law and long-range memory, even
much longer than the FD case because of the divergence
of the distribution function as y ! 0.
The long-range nature of the kernel brings about impor-

tant consequences: even for u� 1 the kernel is sensitive to
the region u0 � 0, therefore the initial value of the gravi-
tational potential �ðk; u� 0Þ � 1, which is the largest
value that � attains, contributes with a large measure to
the integrand. This feature in turn results in that free-
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streaming is less efficient, and a large memory of the initial
value of the gravitational potential remains. This produces
an enhancement in the transfer function as compared to the
Maxwell-Boltzmann and Fermi-Dirac cases, in which the
memory in the kernel is of much shorter range and the
initial (maximum) value of the gravitational potential does
not contribute as much to the integrand for u� 1.

This remarkable difference will be studied explicitly
below in a comparison between the three cases.

For bosons Eqs. (2.73) and (4.16) yield,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ð3Þ
4
ð5Þ

s
� ¼ 0:538 . . .�; (4.22)

and we now have all the ingredients to study the transfer
function as a function of � to compare to the previous
cases.

The analysis presented in the previous cases for the
magnitude of the contributions from the Born and second
(and higher) order remains the same. In the long-
wavelength limit � � 1 the Born term dominates, and
the second order correction is subleading of order Oð�4Þ.
For large � (small scales) just as in the Maxwell-

Boltzmann and Fermi-Dirac statistics, and quite generally,
for u� 0 the integral of the kernel yields a contribution
��4u4, therefore for large � the second order contribution
begins to be significant at u� 1=� but at this time the
gravitational potential has decayed significantly for � 

1. Although the long-range memory of the kernel main-
tains information on the initial values of the gravitational
potential, but suppressed by a power 1=�. Therefore the
second order correction becomes significant for large �
(small scales) but is also suppressed by inverse powers of
�, and hence is always perturbatively small.
It must be noticed that because of its longer range, the

second order correction for bosons is comparatively larger
to that in the Maxwell-Boltzmann and Fermi-Dirac case.
We have studied numerically the transfer function for

both initial conditions and compared the exact numerical
solution of Gilbert’s equation to the Born term and the
second order correction. Both cases are qualitatively simi-
lar. Figure 9 displays the results of the analysis in the case
of the initial conditions corresponding to temperature per-
turbations Eq. (4.18). The results for Gilbert’s initial con-
ditions Eq. (4.19) are qualitatively the same, with a
remarkable agreement between the exact numerical solu-
tion and the second order improved Born approximation.
TðkÞ for large scales follows from Eq. (2.69) and

IG½�u� ¼�u!0
1� 2


ð5Þ

ð3Þ ð�uÞ

2 þOð½�u�4Þ;

for bosons. We find that the large scale expression for TðkÞ
Eq. (3.20) is also valid in the BE case.

FIG. 9 (color online). Bosonic thermal relics. Left panel: T2ðkÞ vs � for the exact solution and the Born approximation. Right panel:
T2ðkÞ vs � for the exact solution and the Born approximation plus second order. Initial condition given by Eq. (4.18) corresponding to
temperature perturbations.

FIG. 8 (color online). The kernel Kðu� u0Þ=½6�� (full line)
[see Eq. (2.76)] and zK½z�=ð6�Þ (dashed line) vs z ¼ �ðu� u0Þ
for Bosonic thermal relics.
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The numerical solution of Eq. (3.6) for bosons shows that TðkÞ both for temperature and for Gilbert initial conditions
[Eqs. (2.65) and (2.66)] decreases as a power for � > 6

TðkÞ ’
�
�B

�

�
xB
; xB ’ 4:8; �B ’ 2:9 for temperature initial conditions;

xB ’ 4:6; �B ’ 3:2 for Gilbert initial conditions: (4.23)

Again the scale of suppression of TðkÞ increases with
increasing k, from �0 ’ 1:62 . . . for small k to �B ’
2:9–3:2 for � > 6. However, these scales are all of the
same order �Oð1Þ, evidence of a unique characteristic
scale �char � Oð1Þ. Namely, just as in the previous cases,
in terms of the wave vector k the relevant scale of suppres-
sion is kfsðteqÞ.

V. SMALL SCALES: STATISTICS AND MEMORY
OF GRAVITATIONAL CLUSTERING

The difference in statistics, namely, the distribution
function of the decoupled particles, enters in the initial
condition and in the nonlocal kernel of Gilbert’s equa-
tion (2.47). The initial conditions are determined from
the evolution of perturbations during the cosmological
stages prior to matter domination and their dependence
on the distribution function may be different from the ones
studied in the previous sections, while the kernel in
Eq. (2.47) is independent of the initial conditions.

The study above revealed a remarkable difference aris-
ing from the different distribution functions. We have
established that the free-streaming solution described by
I½�u� has very different asymptotics, falling off exponen-
tially with �u in the case of Maxwell-Boltzmann and as
power laws in the Fermi-Dirac and Bose-Einstein cases.
Furthermore, the falloff is much faster for fermions than
for bosons. Since the maximum value of u is u ¼ 1 the
asymptotic behavior in �u actually describes the region
� 
 1 or scales much smaller than the free-streaming
scale.

We have also highlighted that the different statistics lead
to an important difference in the contributions from the
kernel Kðu� u0Þ: whereas Maxwell-Boltzmann statistics
lead to a short-range memory that falls off exponentially in
ðu� u0Þ Eq. (3.8), both Fermi-Dirac and Bose-Einstein
lead to long-range memory that falls off with a power
law in ðu� u0Þ [Eqs. (4.11) and (4.21)], the smallest power,
namely, the slowest falloff corresponds to Bose-Einstein
statistics as a consequence of the infrared enhancement
(large population at small momentum).

Furthermore, we have shown in the previous sections
that the influence of the kernel Kðu� u0Þ (the second order
correction) becomes important at small scales (� > 1). The
long range of the kernel keeps memory of the early stages
of the evolution when the gravitational perturbation has its
largest amplitude, therefore the long-range nature of the
kernel leads to an enhancement of the transfer function and
the power spectrum at small scales as depicted in Fig. 10.

We can study the small scale behavior in more detail by
focusing on the time scales during which the gravitational
potential varies slowly and a Markovian approximation,
such as that discussed in Sec. is reliable. As discussed
above and explicitly shown by the numerical study, for
� 
 1 the gravitational potential decays very rapidly over
a time scale u� 1=�, then after evolves slowly until u� 1.
In order to gain deeper understanding of the dynamics
during this time scale it is convenient to implement a
Markovian approximation directly in Gilbert’s Eq. (2.47).
Upon changing variables in the integrand in Eq. (2.47)
�ðu� u0Þ 	 z, Eq. (2.47) becomes

�ðk; uÞ � 6

�2
ð1� uÞ2

Z �u

0
�½z� �ðk; u� z

�Þ
½1� ðu� z

�Þ�4
dz

¼ ð1� uÞ2I½�u�; (5.1)

where the kernel �½z� is given by Eq. (2.41).
For the Maxwell-Boltzmann case [see Eq. (3.6)] it is

more convenient to change variables to �ðu� u0Þ 	 z.
The kernel �½z� vanishes at z ¼ 0, is sharply peaked

near z� 1 and falls off exponentially for Maxwell-
Boltzmann [see Eq. (3.6)], as 1=z3 for Fermi-Dirac and
as 1=z for Bose-Einstein.
For u 
 1=� and ð1� uÞ 
 1=� the terms that multi-

ply �½z� may be expanded in a power series expansion in
z=�. This is the Markovian approximation, in which we
obtain
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Bosons Gilbert Init Cond
Bosons Adiabatic Init Cond
Fermions Gilbert Init Cond

Fermions Adiabatic Init Cond
Max-Bol Gilbert Init Cond

Max-Bol Adiabatic Init Cond

FIG. 10 (color online). Comparison of exact numerical solu-
tions of Eq. (2.47) and (2.61) for lnjTðkÞj vs � for Maxwell-
Boltzmann particles, fermion and boson thermal relics with
Gilbert and temperature initial conditions Eqs. (2.65) and (2.66).
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�ðk; uÞ�½k; u� þ 6

�3
ð1� uÞ2 d

du

�
�ðk; uÞ
ð1� uÞ4

�Z �u

0
�½z�zdz

�
�
1þO

�
z2

�2

��
¼ ð1� uÞ2I½�u�: (5.2)

The first order Eq. (5.2) has a simple exponential solution
that determines the decaying behavior of the gravitational
perturbation, where the effective decay rate of gravitational
perturbations �½k; u� is given by

�½k; u� ¼ 1� 6

�2ð1� uÞ2
Z �u

0
�½z�dz 	 1� K2

�ðtÞ
k2

:

(5.3)

The wave vectors leading to the smaller positive values of
the decay rate � are the ones that decay the least and for
which the power is the largest. This is akin to the criterion
that determines the Jeans wave vector in a fluid with
gravitational perturbations: the Jeans wave vector sepa-
rates the stable acoustic oscillations from the unstable,
growing modes corresponding to gravitational collapse.
This is also the criterion that determines the free-streaming
wave vector in Minkowski space-time [37].

For Maxwell-Boltzmann and Fermi-Dirac distribution
functions, the upper limit in the integrals can be safely
taken to infinity for �u 
 1, with the resultZ 1

0
�½z�dz ¼

Z 1

0

~f0ðyÞdy ¼
�
1

y2

�
(5.4)

Z 1

0
z�½z�dz ¼ A; (5.5)

where the (finite) constant A depends on the distribution
function and the angular brackets stand for the average

with ~f0. In these cases we find for K2
�ðtÞ [see Eqs. (2.15)

and (2.36)]

K2
�ðtÞ ¼

3

2
H2

0M

aeq

ð1� uÞ2
�
m

Td;0

�
2
�
1

y2

�

¼ 4�G�0M

�
1

~V2

�
aðtÞ ¼ K2

�ð0ÞaðtÞ: (5.6)

Remarkably, K�ðtÞ coincides with the free-streaming wave
vector found in Minkowski space-time [37],

K�ð0Þ ¼
�
4�G�0M

�
1

~V2

��
1=2

¼ 0:563

��
1

y2

��
1=2

�
gd
2

�
1=3 m

keV
½kpc��1: (5.7)

Thus, at small scales the Minkowski result is obtained,
consistently with the expectation that at short wavelengths
an adiabatic approximation to the expansion is reliable
[32,37].

The full transfer function TðkÞ cannot be obtained from
the Markovian approximation alone and the full study

presented in the previous sections is necessary. However,
it becomes clear that kfsðteqÞ is not the only relevant scale
and that there is a further scale K�ðteqÞ Eq. (5.7). The ratio
of these two expressions is

K2
�ð0Þ

k2fsð0Þ
¼ h ~V2i

�
1

~V2

�
¼

Z 1

0
y4 ~f0ðyÞdy

Z 1

0

~f0ðyÞdy

¼
�
3 Maxwell-Boltmann

4:9742 . . . Fermi-Derac
: (5.8)

Defining the small scale length today

��ðteqÞ ¼ 2�

K�ðteqÞ (5.9)

we find for WIMPs,

��ðteqÞ � 0:5 pc

�
2

gd

�
1=3

�
100GeV

m

�
1=2

�
10 MeV

Td

�
1=2

;

(5.10)

and for thermal fermions,

��ðteqÞ ¼ 939 kpc

�
2

gd

�
1=3 keV

m
FD: (5.11)

The results above are valid for both Maxwell-Boltzmann
and Fermi-Dirac statistics, in these cases the kernel �½z�
falls off fast enough to make its integral finite. This is not
the case for Bose-Einstein statistics for particles that de-
coupled in LTE while ultrarelativistic. In this case the
asymptotic behavior of �½z� / 1=z leads to an infrared
enhancement as a consequence of the long range of the
kernel. In this case we keep the upper limit in Eq. (5.3) and
carry out the integral in z, leading to [50]Z �u

0
�½z�dz ¼ 1

2
ð3Þ
Z 1

0

dy

ey � 1
½1� cosð�uyÞ�

¼�u!1 ln½�ueC�
2
ð3Þ ; (5.12)

where C ¼ 0:577 216 . . . is the Euler-Mascheroni constant
as well as in the coefficient of the derivative term in
Eq. (5.2), leading toZ �u

0
z�½z�dz ¼�u!1 �u

2
ð3Þ : (5.13)

This infrared enhancement reflects the infrared divergence
of the free-streaming wave vector in Minkowski space-
time found in Ref. [37]. The argument of the logarithm in
Eq. (5.12) clearly reveals that it is the cosmological expan-
sion that yields an infrared cutoff. Taking u� 1 [neglect-
ing terms ofOð1=�Þ] we find a sliding wave vector at small
scales for the Bose-Einstein case, namely

K�ðteqÞ ’ 0:00424 . . .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln�þ C

p �
gd
2

�
1=3 m

keV
½kpc��1 BE:

(5.14)
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The larger K�ðteqÞ leads to shorter free-streaming lengths

and to more power at small scales because free-streaming
smooths out on shorter scales. Therefore, at small scales
BE particles that decoupled while relativistic behave as
CDM. This conclusion is in agreement with the results in
Refs. [37,39] and is borne out in the numerical solution
displayed in Fig. 10.

In all cases K�ðteqÞ controls the decay of the gravita-

tional fluctuations �ðk; uÞ for small scales and long times.
The logarithmic behavior and the consequent increase of
K� yields an explanation of the enhancement at small
scales over the FD and MB cases depicted in Fig. 10.

Comparing statistics and initial conditions:
The analysis presented above clearly indicates the dif-

ferences arising from statistics and initial conditions. It
proves convenient to compare the results of the numerical
solution of Gilbert’s equations for all cases considered
parametrized by the dimensionless ratio �. This compari-
son is depicted in Fig. 10 for a wide range of �. The
differences from statistics and initial conditions are clearly
displayed in this figure, and are in complete agreement
with the analysis presented above.

For thermal relics that decoupled while relativistic, ei-
ther FD or BE, the range of scales relevant for structure
formation in which the linearized approximation is reliable
corresponds to 0<� � 6, whereas for WIMPs, the rele-
vant range of scales corresponds to � � 10�5. We have
confirmed that in the range of cosmological relevance for
all species, the second order approximation (2.111) for
TðkÞ is very accurate and indistinguishable from the exact
numerical solution in the range 0< � � 6.

As shown in Fig. 10 TðkÞ features zeroes for MB and FD
statistics for temperature initial conditions. However the
value of � for FD at which TðkÞ vanishes corresponds to a
subgalactic scale, and for MB it corresponds to a subparsec
scale, in either case well outside the regime of reliability of
the linearized approximation, hence these features are not
relevant for structure formation. Nevertheless, this figure
highlights the main aspects discussed above: for a fixed
value of � BE statistics favors the small momentum region,
leads to a longer-range memory kernel that falls off with a
power law, and yields the largest TðkÞ for a fixed value of
�, followed by FD statistics with a (slower) power law

falloff and finally the MB distribution with an exponential
falloff of the memory kernel and the smallest TðkÞ for
fixed �.

VI. CONCLUSIONS

In this article we studied the evolution of gravitational
and DM density perturbations from the collisionless
Boltzmann-Vlasov during matter domination, and ob-
tained an exact expression for the transfer function TðkÞ
for arbitrary distribution function of the decoupled DM
particle and initial conditions.
We have transformed the nonrelativistic Boltzmann-

Vlasov equation into an integro-differential equation
which features a nonlocal kernel that describes the memory
of gravitational clustering and yields corrections to the
fluid description. This formulation lends itself to a system-
atic Fredholm expansion for the evolution of DM density
and gravitational perturbations and TðkÞ, and makes ex-
plicit the influence of the distribution function on TðkÞ.
Distribution functions that favor the small momentum

region lead to longer-range kernels, a persistence of the
memory of the initial conditions and gravitational cluster-
ing resulting in an enhancement of TðkÞ at small scales.
The natural scale of suppression of TðkÞ is determined

by the free-streaming wave vector at matter-radiation

equality, kfsðteqÞ ¼
ffiffiffi
6

p
=lfsð0Þ where the comoving free-

streaming wave vector is

kfsðtÞ ¼
�
4��0MaðtÞ

hð ~pmÞ2i
�
1=2

; (6.1)

the angular brackets refer to the average with the distribu-
tion function of the decoupled particle, and lfsð0Þ is the

comoving free-streaming distance traveled by the de-
coupled particle from the time of matter-radiation equality
teq until today.

We find

kfsðteqÞ ¼
kfsð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq

p (6.2)

with

kfsð0Þ ¼
8><
>:

0:325
½10�3 pc� ðgd2 Þ1=3ð m

100 GeVÞ1=2ð Td

10 MeVÞ1=2 WIMPs

0:157ðgd2 Þ1=3ð m
keVÞ ½kpc��1 FD thermal relic

0:175ðgd2 Þ1=3ð m
keVÞ ½kpc��1 BE thermal relic

(6.3)

where gd is the number of relativistic species at
decoupling.

We provided a detailed numerical study for thermal
relics, WIMPs, and fermionic and bosonic particles that
decoupled while relativistically. The result of the numeri-

cal study of TðkÞ as a function of � ¼ ffiffiffi
2

p
k=kfsðteqÞ for the

three cases and different initial conditions is displayed in
Fig. 10.
This study reveals that the first two terms in the

Fredholm expansion yield a remarkable accurate approxi-
mation to TðkÞ in the range of scales of cosmological
relevance for structure formation. In all cases considered
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we find that the exact solution differs from the second order
approximation in less than 5% in the range 0< � & 6
corresponding to scales down to a fraction of the free-
streaming length and much less than this on large scales
for 0< � & 1.

A simple and accurate approximation to TðkÞ is given by
Eq. (2.111). The second term in this expression includes
corrections beyond the fluid approximation and higher
order moments in the Boltzmann hierarchy and describes
the memory of initial conditions and gravitational cluster-
ing. It explicitly depends on the distribution function of the
decoupled particle. Nonlocal kernels with longer range
lead to an enhancement of TðkÞ at small scales. FD and
BE thermal relics feature kernels with longer-range than
WIMPs, with BE statistics (for relics that decoupled rela-
tivistically) leading to longer range and more power at
small scales.

This behavior is clearly exhibited in Fig. 10.
For long scales k � kfsðteqÞ we find the behavior

TðkÞ ¼ 1�
�
�

�0

�
2 þ � � � (6.4)

where �0 is given by (3.21) for the initial conditions
considered here independent of the statistics for thermal
relics.

We provide fits of TðkÞ, within a wide range of (small)
scales for k > kfsðteqÞ in the intervals where it exhibits a

simple powerlike or exponential behavior for MB, FD, and
BE statistics [see Eqs. (3.22), (4.13), (4.14), (4.15), and
(4.23)].

Although we do not attempt to provide a global fit with
one function, it is clear that in the small scale region, the
functional forms of TðkÞ found in this article by exact
numerical solution of the Boltzmann-Vlasov equation (in
Gilbert’s form) are very different from the fits by Bardeen
et al. [51] often quoted in the literature.
An important consequence of this study is a distinct

imprint of the particle statistics and its distribution function
on the transfer function at small scales, � � lfsð0Þ: a

distribution function that enhances the small momentum
region yields a longer-range memory of the initial condi-
tions and gravitational clustering and an enhancement of
the transfer function at small scales as depicted in Fig. 10.
This result may prove important in the elucidation of the
small scale structure of DM halos and perhaps lead to an
explanation of the filamentary structures found in numeri-
cal simulations in Ref. [52].
The tools provided in this article to study the transfer

function for arbitrary distribution functions and general
initial conditions, in particular, the simple and remarkably
accurate approximation to TðkÞ given by Eq. (2.111) allows
a systematic and robust assessment of different DM
candidates.
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