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The dynamical generation of a four-dimensional classical universe from nothing but fundamental

quantum excitations at the Planck scale is a long-standing challenge to theoretical physicists. A candidate

theory of quantum gravity which achieves this goal without invoking exotic ingredients or excessive fine-

tuning is based on the nonperturbative and background-independent technique of causal dynamical

triangulations. We demonstrate in detail how in this approach a macroscopic de Sitter universe,

accompanied by small quantum fluctuations, emerges from the full gravitational path integral, and how

the effective action determining its dynamics can be reconstructed uniquely from Monte Carlo data. We

also provide evidence that it may be possible to penetrate to the sub-Planckian regime, where the Planck

length is large compared to the lattice spacing of the underlying regularization of geometry.

DOI: 10.1103/PhysRevD.78.063544 PACS numbers: 98.80.Qc, 04.60.Gw, 04.60.Nc

I. INTRODUCTION

A major unsolved problem in theoretical physics is to
reconcile the classical theory of general relativity with
quantum mechanics. Of the numerous attempts, some
have postulated new and so far unobserved ingredients,
while others have proposed radically new principles gov-
erning physics at the as yet untested Planckian energy
scale. Here we report on a much more mundane approach
using only standard quantum field theory. In a sum-over-
histories approach we will attempt to define a nonpertur-
bative quantum field theory which has as its infrared limit
ordinary classical general relativity and at the same time
has a nontrivial ultraviolet limit. From this point of view it
is in the spirit of the renormalization group approach, first
advocated long ago by Weinberg [1], and more recently
substantiated by several groups of researchers [2].
However, it has some advantages compared to the renor-
malization group approach in that it allows us to study
(numerically) certain geometric observables which are
difficult to handle analytically.

We define the path integral of quantum gravity non-
perturbatively using the lattice approach known as causal
dynamical triangulations (CDT) as a regularization. In
Sec. II we give a short description of the formalism,
providing the definitions which are needed later to describe
the measurements. CDT establishes a nonperturbative way
of performing the sum over four-geometries (for more
extensive definitions, see [3,4]). It sums over the class of
piecewise linear four-geometries which can be assembled
from four-dimensional simplicial building blocks of link
length a, such that only causal spacetime histories are

included. The continuum limit of such a lattice theory
should ideally be obtained as for QCD defined on an
ordinary fixed lattice, where for an observable OðxnÞ, xn
denoting a lattice point, one can measure the correlation
length �ðg0Þ from

� logðhOðxnÞOðymÞiÞ�jn�mj=�ðg0Þþoðjn�mjÞ: (1)

A continuum limit of the lattice theory may then exist if it
is possible to fine-tune the bare coupling constant g0 of the
theory to a critical value gc0 such that the correlation length
goes to infinity, �ðg0Þ ! 1. Knowing how �ðg0Þ diverges
for g0 ! gc0 determines how the lattice spacing a should be

taken to zero as a function of the coupling constants,
namely

�ðg0Þ ¼ 1

jg0 � gc0j�
; aðg0Þ ¼ jg0 � gc0j�: (2)

The challenge when searching for a field theory of
quantum gravity is to find a theory which behaves in this
way. The challenge is threefold: (i) to find a suitable non-
perturbative formulation of such a theory which satisfies a
minimum of reasonable requirements, (ii) to find observ-
ables which can be used to test relations like (1), and (iii) to
show that one can adjust the coupling constants of the
theory such that (2) is satisfied. Although we will focus
on (i) in what follows, let us immediately mention that (ii)
is notoriously difficult in a theory of quantum gravity,
where one is faced with a number of questions originating
in the dynamical nature of geometry. What is the meaning
of distance when integrating over all geometries? How do
we attach a meaning to local spacetime points like xn and
yn? How can we define at all local, diffeomorphism-
invariant quantities in the continuum which can then be
translated to the regularized (lattice) theory?—What we
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want to point out here is that although (i)–(iii) are standard
requirements when relating critical phenomena and
(Euclidean) quantum field theory, gravity is special and
may require a reformulation of (part of) the standard
scenario sketched above. We will return to this issue
when we discuss our results in Sec. VIII.

Our proposed nonperturbative formulation of four-
dimensional quantum gravity has a number of nice fea-
tures. First, it sums over a class of piecewise linear geome-
tries, which—as usual—are described without the use of
coordinate systems. In this way we perform the sum over
geometries directly, avoiding the cumbersome procedure
of first introducing a coordinate system and then getting rid
of the ensuing gauge redundancy, as one has to do in a
continuum calculation. Our underlying assumptions are
that (1) the class of piecewise linear geometries is in a
suitable sense dense in the set of all geometries relevant for
the path integral (probably a fairly mild assumption), and
(2) we are using a correct measure on the set of geometries.
This is a more questionable assumption since we do not
even know whether such a measure exists. Here one has to
take a pragmatic attitude in order to make progress. We
will simply examine the outcome of our construction and
try to judge whether it is promising.

Second, our scheme is background independent. No
distinguished geometry, accompanied by quantum fluctua-
tions, is put in by hand. If the CDT-regularized theory is to
be taken seriously as a potential theory of quantum gravity,
there has to be a region in the space spanned by the bare
coupling constants where the geometry of spacetime bears
some resemblance with the kind of universe we observe
around us. That is, the theory should create dynamically an
effective background geometry around which there are
(small) quantum fluctuations. This is a very nontrivial
property of the theory and one we are going to investigate
in detail in the present piece of work. New computer
simulations presented here confirm in a much more direct
way the indirect evidence for such a scenario which we
provided earlier in [5,6]. They establish the de Sitter nature
of the background spacetime, quantify the fluctuations
around it, and set a physical scale for the universes we
are dealing with. The main results of our investigation,
without the numerical details, were announced in [7] (see
also [8]).

The rest of the article is organized as follows. In Sec. II
we describe briefly the regularization method of quantum
gravity named CDT and the setup of the computer simu-
lations. In Sec. III we present the evidence for an effective
background geometry corresponding to the four-
dimensional sphere S4, i.e. Euclidean de Sitter spacetime.
Section IV deals with the reconstruction of an effective
action for the scale factor of the universe from the com-
puter data, and in Sec. V we analyze the quantum fluctua-
tions around the ‘‘classical’’ S4 solution. Section VI
contains an analysis of the geometry of the spatial slices

of our computer-generated universe. In Sec. VII we deter-
mine the physical sizes of our universes expressed in
Planck lengths and try to follow the flow of the gravita-
tional coupling constant of the effective action under a
change of the bare coupling constants of the bare classical
action used in the path integral. Finally we discuss the
results, their interpretation, and future perspectives of the
CDT-quantum gravity theory in Sec. VIII.

II. CAUSAL DYNAMICAL TRIANGULATIONS

The approach of causal dynamical triangulations stands
in the tradition of [9], which advocated that in a gravita-
tional path integral with the correct Lorentzian signature of
spacetime, one should sum over causal geometries only.
More specifically, we adopted this idea when it became
clear that attempts to formulate a Euclidean nonperturba-
tive quantum gravity theory run into trouble in spacetime
dimension d larger than 2. At the same time, such a causal
reformulation results in a path integral which relates more
closely to canonical formulations of quantum gravity.
This implies that we start from Lorentzian simplicial

spacetimes with d ¼ 4 and insist that only causally well-
behaved geometries appear in the (regularized) Lorentzian
path integral. A crucial property of our explicit construc-
tion is that each of the configurations allows for a rotation
to Euclidean signature. We rotate to a Euclidean regime in
order to perform the sum over geometries (and rotate back
again afterwards if needed). We stress here that although
the sum is performed over geometries with Euclidean
signature, it is different from what one would obtain in a
theory of quantum gravity based ab initio on Euclidean
spacetimes. The reason is that not all Euclidean geometries
with a given topology are included in the ‘‘causal’’ sum
since, in general, they have no correspondence to a causal
Lorentzian geometry.
How do we construct the class of piecewise linear ge-

ometries used in the Lorentzian path integral (see [3] for a
detailed description)? The most important assumption is
the existence of a global proper-time foliation. We assume

that the spacetime topology is that of I � �ð3Þ, where �ð3Þ
denotes an arbitrary three-dimensional manifold. In what
follows, we will, for simplicity, study the case of the

simplest spatial topology �ð3Þ ¼ S3, that of a three-sphere.
The compactness of S3 obviates the discussion of spatial
boundary conditions for the universe. The spatial geometry
at each discrete proper-time step tn is represented by a
triangulation of S3, made up of equilateral spatial tetrahe-
dra with squared side length ‘2s � a2 > 0. In general, the
number N3ðtnÞ of tetrahedra and how they are glued to-
gether to form a piecewise flat three-dimensional manifold
will vary with each time step tn. In order to obtain a four-
dimensional triangulation, the individual three-
dimensional slices must still be connected in a causal
way, preserving the S3 topology at all intermediate times
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t between tn and tnþ1.
1 This is done by connecting each

tetrahedron belonging to the triangulation at time tn to a
vertex belonging to the triangulation at time tnþ1 by means
of a four-simplex which has four timelike links of length
squared ‘2t ¼ ��‘2s , �> 0, interpolating between the ad-
jacent slices [a so-called (4,1)-simplex]. In addition, a
triangle in the triangulation at time tn can be connected
to a link in the triangulation at tnþ1 via a four-simplex with
six timelike links [a so-called (3,2)-simplex], again with
‘2t ¼ ��‘2s . Conversely, one can connect a link at tn to a
triangle at tnþ1 to create a (2,3)-simplex and a vertex at tn
to a tetrahedron at tnþ1 to create a (1,4)-simplex. One can
interpolate between subsequent triangulations of S3 at tn
and tnþ1 in many distinct ways compatible with the topol-
ogy I � S3 of the four-manifold. All these possibilities are
summed over in the CDT path integral. The explicit rota-
tion to Euclidean signature is done by performing the
rotation � ! �� in the complex lower half-plane, j�j>
7=12, such that we have ‘2t ¼ j�j‘2s (see [3] for a
discussion).

The Einstein-Hilbert action SEH has a natural geometric
implementation on piecewise linear geometries in the form
of the Regge action. This is given by the sum of the so-
called deficit angles around the two-dimensional ‘‘hinges’’
(subsimplices in the form of triangles), each multiplied by
the volume of the corresponding hinge. In view of the fact
that we are dealing with piecewise linear and not smooth
metrics, there is no unique ‘‘approximation’’ to the usual
Einstein-Hilbert action, and one could, in principle, work
with a different form of the gravitational action. We will
stick with the Regge action, which takes on a very simple
form in our case, where the piecewise linear manifold is
constructed from just two different types of building
blocks. After rotation to Euclidean signature one obtains
for the action (see [4] for details)

SEHE ¼ 1

16�2G

Z
d4x

ffiffiffi
g

p ð�Rþ 2�Þ ! SReggeE

¼ �ð�0 þ 6�ÞN0 þ �4ðNð4;1Þ
4 þ Nð3;2Þ

4 Þ
þ �ð2Nð4;1Þ

4 þ Nð3;2Þ
4 Þ; (3)

where N0 denotes the total number of vertices in the four-

dimensional triangulation and Nð4;1Þ
4 and Nð3;2Þ

4 denote the

total number of four-simplices described above, i.e. the
total number of (4,1)-simplices plus (1,4)-simplices and
the total number of (3,2)-simplices plus (2,3)-simplices,
respectively, so that the total number N4 of four-simplices

is N4 ¼ Nð4;1Þ
4 þ Nð3;2Þ

4 . The dimensionless coupling con-

stants �0 and �4 are related to the bare gravitational and
bare cosmological coupling constants, with appropriate
powers of the lattice spacing a already absorbed into �0

and �4. The asymmetry parameter � is related to the
parameter� introduced above, which describes the relative
scale between the (squared) lengths of spacelike and time-
like links. It is both convenient and natural to keep track of
this parameter in our setup, which from the outset is not
isotropic in time and space directions; see again [4] for a
detailed discussion. Since we will, in the following, work
with the path integral after Wick rotation, let us redefine
~� :¼ �� [4], which is positive in the Euclidean domain.2

For future reference, the Euclidean four-volume of our
universe for a given choice of ~� is given by

V4 ¼ C4a
4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8~�� 3

p
ffiffiffi
5

p Nð4;1Þ
4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12~�� 7

p
ffiffiffi
5

p Nð3;2Þ
4

�
; (4)

where C4 ¼
ffiffiffi
5

p
=96 is the four-volume of an equilateral

four-simplex with edge length a ¼ 1 (see [3] for details). It
is convenient to rewrite expression (4) as

V4 ¼ ~C4ð�Þa4Nð4;1Þ
4 ¼ ~C4ð�Þa4N4=ð1þ �Þ; (5)

where � is the ratio

� ¼ Nð3;2Þ
4 =Nð4;1Þ

4 ; (6)

and ~C4ð�Þa4 is a measure of the ‘‘effective four-volume’’
of an ‘‘average’’ four-simplex. In computing (3), we have
assumed that the spacetime manifold is compact without
boundaries; otherwise, appropriate boundary terms must
be added to the action.
The path integral or partition function for the CDT

version of quantum gravity is now

ZðG;�Þ ¼
Z

D½g�e�SEHE ½g� ! Zð�0; �4;�Þ

¼ X
T

1

CT
e�SEðT Þ; (7)

where the summation is over all causal triangulationsT of
the kind described above, and we have dropped the super-
script ‘‘Regge’’ on the discretized action. The factor 1=CT
is a symmetry factor, given by the order of the automor-
phism group of the triangulation T . The actual setup for
the simulations is as follows. We choose a fixed number N
of spatial slices at proper times t1, t2 ¼ t1 þ at, up to tN ¼
t1 þ ðN � 1Þat, where �t � at is the discrete lattice spac-
ing in the temporal direction and T ¼ Nat the total exten-
sion of the universe in proper time. For convenience we
identify tNþ1 with t1, in this way imposing the topology
S1 � S3 rather than I � S3. This choice does not affect
physical results, as will become clear in due course.

1This implies the absence of branching of the spatial universe
into several disconnected pieces, so-called baby universes,
which (in Lorentzian signature) would inevitably be associated
with causality violations in the form of degeneracies in the light
cone structure, as has been discussed elsewhere (see, for ex-
ample, [10]).

2The most symmetric choice is ~� ¼ 1, corresponding to
vanishing asymmetry, � ¼ 0.
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Our next task is to evaluate the nonperturbative sum in
(7), if possible, analytically. Although this can be done in
spacetime dimension d ¼ 2 ([11], and see [12] for recent
developments) and at least partially in d ¼ 3 [13,14], an
analytic solution in four dimensions is currently out of
reach. However, we are in the fortunate situation that
Zð�0; �4;�Þ can be studied quantitatively with the help
of Monte Carlo simulations. The type of algorithm needed
to update the piecewise linear geometries has been around
for a while, starting from the use of dynamical triangula-
tions in bosonic string theory (two-dimensional Euclidean
triangulations) [15–17], and was later extended to their
application in Euclidean four-dimensional quantum grav-
ity [18,19]. In [3] the algorithm was modified to accom-
modate the geometries of the CDT setup. Note that the
algorithm is such that it takes the symmetry factor CT into

account automatically.
We have performed extensive Monte Carlo simulations

of the partition function Z for a number of values of the
bare coupling constants. As reported in [4], there are
regions of the coupling constant space which do not appear
relevant for continuum physics in that they seem to suffer
from problems similar to the ones found earlier in
Euclidean quantum gravity constructed in terms of dy-
namical triangulations, which essentially led to its aban-
donment in d > 2. Namely, when the (inverse, bare)
gravitational coupling �0 is sufficiently large, the
Monte Carlo simulations exhibit a sequence in time direc-
tion of small, disconnected universes, none of them show-
ing any sign of the scaling one would expect from a
macroscopic universe. We believe that this phase of the
system is a Lorentzian version of the branched-polymer
phase of Euclidean quantum gravity. By contrast, when �
is sufficiently small the simulations reveal a universe with a
vanishing temporal extension of only a few lattice spac-
ings, ending both in the past and the future in a vertex of
very high order, connected to a large fraction of all verti-
ces. This phase is most likely related to the so-called
crumpled phase of Euclidean quantum gravity. The crucial
and new feature of the quantum superposition in terms of
causal dynamical triangulations is the appearance of a
region in coupling constant space which is different and
interesting and where continuum physics may emerge. It is
in this region that we have performed the simulations
reported in this article, and where previous work has al-
ready uncovered a number of intriguing physical results
[4–6,20].

In the Euclideanized setting the value of the cosmologi-
cal constant determines the spacetime volume V4 since the
two appear in the action as conjugate variables. We there-
fore have hV4i �G=� in a continuum notation, whereG is
the gravitational coupling constant and� the cosmological
constant. In computer simulations it is more convenient to
keep the four-volume fixed or partially fixed. We will
implement this by fixing the total number of four-simplices

of type Nð4;1Þ
4 or, equivalently, the total number N3 of

tetrahedra making up the spatial S3 triangulations at times
ti, i ¼ 1; . . . ; N,

N3 ¼
XN
i¼1

N3ðtiÞ ¼ 1

2
Nð4;1Þ

4 : (8)

We know from the simulations that in the phase of interest

hNð4;1Þ
4 i / hNð3;2Þ

4 i as the total volume is varied [4]. This
effectively implies that we only have two bare coupling
constants �0, � in (7), while we compensate by hand for
the coupling constant �4 by studying the partition function

Zð�0;�;N
ð4;1Þ
4 Þ for various Nð4;1Þ

4 . To keep track of the ratio

�ð�0;�Þ between the expectation value hNð3;2Þ
4 i and Nð4;1Þ

4 ,

which depends weakly on the coupling constants, we write
[cf. Eq. (6)]

hN4i ¼ Nð4;1Þ
4 þ hNð3;2Þ

4 i ¼ Nð4;1Þ
4 ð1þ �ð�0;�ÞÞ: (9)

For all practical purposes we can regard N4 in a
Monte Carlo simulation as fixed. The relation between
the partition function we use and the partition function
with variable four-volume is given by the Laplace trans-
formation

Zð�0; �4;�Þ ¼
Z 1

0
dN4e

��4N4Zð�0; N4;�Þ; (10)

where, strictly speaking, the integration over N4 should be
replaced by a summation over the discrete values that N4

can take.

III. THE MACROSCOPIC DE SITTER UNIVERSE

The Monte Carlo simulations referred to above will
generate a sequence of spacetime histories. An individual
spacetime history is not an observable, in the sameway as a
path xðtÞ of a particle in the quantum-mechanical path
integral is not. However, it is perfectly legitimate to talk
about the expectation value hxðtÞi as well as the fluctuations
around hxðtÞi. Both of these quantities are, in principle,
calculable in quantum mechanics.
Obviously, there are many more dynamical variables in

quantum gravity than there are in the particle case. We can
still imitate the quantum-mechanical situation by picking
out a particular one, for example, the spatial three-volume
V3ðtÞ at proper time t. We can measure its expectation value
hV3ðtÞi as well as fluctuations around it. The former gives
us information about the large-scale ‘‘shape’’ of the uni-
verse we have created in the computer. In this section, we
will describe the measurements of hV3ðtÞi, keeping a more
detailed discussion of the fluctuations to Sec. V below.
A ‘‘measurement’’ of V3ðtÞ consists of a table N3ðiÞ,

where i ¼ 1; . . . ; N denotes the number of time slices.
Recall from Sec. II that the sum over slices

P
N
i¼1 N3ðiÞ is

kept constant. The time axis has a total length of N time
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steps, whereN ¼ 80 in the actual simulations, and we have
cyclically identified time slice N þ 1 with time slice 1.

What we observe in the simulations is that for the range
of discrete volumes N4 under study, the universe does not
extend (i.e. has appreciable three-volume) over the entire
time axis, but rather is localized in a region much shorter
than 80 time slices. Outside this region the spatial exten-
sion N3ðiÞ will be minimal, consisting of the minimal
number (five) of tetrahedra needed to form a three-sphere
S3, plus occasionally a few more tetrahedra.3 This thin
‘‘stalk’’ therefore carries little four-volume, and in a given
simulation we can, for most practical purposes, consider
the total four-volume of the remainder, the extended uni-
verse, as fixed.

In order to perform a meaningful average over geome-
tries which explicitly refers to the extended part of the
universe, we have to remove the translational zero mode
which is present. During the Monte Carlo simulations the
extended universe will fluctuate in shape and its center of
mass (or, more to the point, its center of volume) will
perform a slow random walk along the time axis. Since
we are dealing with a circle (the compactified time axis),
the center of volume is not uniquely defined (it is clearly
arbitrary for a constant volume distribution), and we must
first define what we mean by such a concept. Here we take
advantage of the empirical fact that our dynamically gen-
erated universes decompose into an extended piece and a
stalk, with the latter containing less than one percent of the
total volume. We are clearly interested in a definition such
that the center of volume of a given configuration lies in the
center of the extended region. One also expects that any
sensible definition will be unique up to contributions re-
lated to the stalk and to the discreteness of the time steps. In
total this amounts to an ambiguity of the center of volume
of one lattice step in the time direction.

In analyzing the computer data we have chosen one
specific definition which is in accordance with the discus-
sion above.4 Maybe surprisingly, it turns out that the in-
herent ambiguity in the choice of a definition of the center
of volume—even if it is only of the order of one lattice

spacing—will play a role later on in our analysis of the
quantum fluctuations. For each universe used in the mea-
surements (a ‘‘path’’ in the gravitational path integral) we
will denote the center-of-volume time coordinate calcu-
lated by our algorithm by icv. From now on, when compar-
ing different universes, i.e. when performing ensemble
averages, we will redefine the temporal coordinates ac-
cording to

Nnew
3 ðiÞ ¼ N3ð1þmodðiþ icv � 1; NÞÞ; (11)

such that the center of volume is located at 0.
Having defined in this manner the center of volume

along the time direction of our spacetime configurations,
we can now perform superpositions of such configurations
and define the average hN3ðiÞi as a function of the discrete
time i. The results of measuring the average discrete spatial
size of the universe at various discrete times i are illus-
trated in Fig. 1 and can be succinctly summarized by the
formula

Ncl
3 ðiÞ :¼ hN3ðiÞi ¼ N4

2ð1þ �Þ
3

4

1

s0N
1=4
4

cos3
�

i

s0N
1=4
4

�
;

s0 � 0:59; (12)

where N3ðiÞ denotes the number of three-simplices in the
spatial slice at discretized time i, and N4 the total number
of four-simplices in the entire universe. Since we are keep-

ing Nð4;1Þ
4 fixed in the simulations and since � changes with

the choice of bare coupling constants, it is sometimes
convenient to rewrite (12) as

Ncl
3 ðiÞ ¼

1

2
Nð4;1Þ

4

3

4

1

~s0ðNð4;1Þ
4 Þ1=4 cos

3

�
i

~s0ðNð4;1Þ
4 Þ1=4

�
; (13)

where ~s0 is defined by ~s0ðNð4;1Þ
4 Þ1=4 ¼ s0N

1=4
4 . Of course,

formula (12) is only valid in the extended part of the

0

5000

10000

15000

20000

-40 -30 -20 -10 0 10 20 30 40

N
3
(i

)

i

FIG. 1. Background geometry hN3ðiÞi: Monte Carlo measure-

ments for fixed Nð4;1Þ
4 ¼ 160:000 (N4 ¼ 362:000) and best fit

(12) yield indistinguishable curves at given plot resolution. The
bars indicate the average size of quantum fluctuations.

3This kinematical constraint ensures that the triangulation
remains a simplicial manifold in which, for example, two
d-simplices are not allowed to have more than one ðd�
1Þ-simplex in common.

4Explicitly, we consider the quantity

CV ði0Þ ¼
��������

XN=2�1

i¼�N=2

ðiþ 0:5ÞN3ð1þmodði0 þ i� 1; NÞÞ
��������

where modði; NÞ is defined as the remainder, on division of i by
N, and find the value of i0 2 f1; . . . ; Ng for which CVði0Þ is
smallest. We denote this i0 by icv. If there is more than one
minimum, we choose the value which has the largest three-
volume N3ði0Þ. Let us stress that this is just one of many
definitions of icv. All other sensible definitions will, for the
type of configurations considered here, agree to within one
lattice spacing.
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universe where the spatial three-volumes are larger than
the minimal cutoff size.

The data shown in Fig. 1 have been collected at the
particular values ð�0;�Þ ¼ ð2:2; 0:6Þ of the bare coupling

constants and forN4 ¼ 362:000 (corresponding toNð4;1Þ
4 ¼

160:000). For these values of ð�0;�Þ we have verified
relation (12) for N4 ranging from 45.500 to 362.000 build-
ing blocks (45.500, 91.000, 181.000, and 362.000). After
rescaling the time and volume variables by suitable powers
of N4 according to relation (12), and plotting them in the
same way as in Fig. 1, one finds almost total agreement
between the curves for different spacetime volumes.5

Equation (12) shows that spatial volumes scale according

to N3=4
4 and time intervals according to N1=4

4 , as one would

expect for a genuinely four-dimensional spacetime. This
strongly suggests a translation of (12) to a continuum
notation. The most natural identification is given by

ffiffiffiffiffiffi
gtt

p
Vcl
3 ðtÞ ¼ V4

3

4B
cos3

�
t

B

�
; (14)

where we have made the identifications

ti
B

¼ i

s0N
1=4
4

; �ti
ffiffiffiffiffiffi
gtt

p
V3ðtiÞ ¼ 2 ~C4N3ðiÞa4; (15)

such that we have

Z
dt

ffiffiffiffiffiffi
gtt

p
V3ðtÞ ¼ V4: (16)

In (15),
ffiffiffiffiffiffi
gtt

p
is the constant proportionality factor between

the time t and genuine continuum proper time �, � ¼ ffiffiffiffiffiffi
gtt

p
t.

(The combination �ti
ffiffiffiffiffiffi
gtt

p
V3 contains ~C4, related to the

four-volume of a four-simplex rather than the three-volume
corresponding to a tetrahedron, because its time integral
must equal V4). Writing V4 ¼ 8�2R4=3, and

ffiffiffiffiffiffi
gtt

p ¼ R=B,
Eq. (14) is seen to describe a Euclidean de Sitter universe
(a four-sphere, the maximally symmetric space for a posi-
tive cosmological constant) as our searched-for, dynami-
cally generated background geometry. In the
parametrization of (14) this is the classical solution to the
action

S ¼ 1

24�G

Z
dt

ffiffiffiffiffiffi
gtt

p �
gtt _V2

3ðtÞ
V3ðtÞ þ k2V

1=3
3 ðtÞ � �V3ðtÞ

�
;

(17)

where k2 ¼ 9ð2�2Þ2=3 and � is a Lagrange multiplier, fixed
by requiring that the total four-volume be V4,R
dt

ffiffiffiffiffiffi
gtt

p
V3ðtÞ ¼ V4. Up to an overall sign, this is precisely

the Einstein-Hilbert action for the scale factor aðtÞ of a
homogeneous, isotropic universe [rewritten in terms of the
spatial three-volume V3ðtÞ ¼ 2�2aðtÞ3], although we of

course never put any such simplifying symmetry assump-
tions into the CDT model.
For a fixed, finite four-volume V4 and when applying

scaling arguments, it can be convenient to rewrite (17) in

terms of dimensionless units by introducing s ¼ t=V1=4
4

and V3ðtÞ ¼ V3=4
4 v3ðsÞ, in which case (17) becomes

S ¼ 1

24�

ffiffiffiffiffiffi
V4

p
G

Z
ds

ffiffiffiffiffiffiffi
gss

p �
gss _v2

3ðsÞ
v3ðsÞ þ k2v

1=3
3 ðsÞ

�
; (18)

now assuming that
R
ds

ffiffiffiffiffiffiffi
gss

p
v3ðsÞ ¼ 1, and with gss � gtt.

A discretized, dimensionless version of (17) is

Sdiscr ¼ k1
X
i

�ðN3ðiþ 1Þ � N3ðiÞÞ2
N3ðiÞ þ ~k2N

1=3
3 ðiÞ

�
; (19)

where ~k2 / k2. This can be seen by applying the scaling

(12), namely, N3ðiÞ ¼ N3=4
4 n3ðsiÞ and si ¼ i=N1=4

4 . With

this scaling, the action (19) becomes

Sdiscr ¼ k1
ffiffiffiffiffiffi
N4

p X
i

�s

�
1

n3ðsiÞ
�
n3ðsiþ1Þ � n3ðsiÞ

�s

�
2

þ ~k2n
1=3
3 ðsiÞ

�
; (20)

where �s ¼ 1=N1=4, and therefore has the same form as
(18). This enables us to finally conclude that the identifi-
cations (15) when used in the action (19) lead naı̈vely to the
continuum expression (17) under the identification

G ¼ a2

k1

ffiffiffiffiffiffi
~C4

q
~s20

3
ffiffiffi
6

p : (21)

In more detail, comparing the kinetic terms in (17) and
(19),

1

24�G

X
i

ðV3ðti þ �tiÞ � V3ðtiÞÞ2
�ti

ffiffiffiffiffiffiffiffi
gtiti

p
V3ðtiÞ

¼ k1
X
i

ðN3ðiþ 1Þ � N3ðiÞÞ2
N3ðiÞ ; (22)

and using Eq. (15) leads to

G ¼ a4

k1

2
ffiffiffiffiffiffi
~C4

q
24�gtitið�tiÞ2

: (23)

Equation (21) now follows from the equations

ð�tiÞ2 ¼ B2

s20
ffiffiffiffiffiffi
N4

p ; ~s20 ¼ s20
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
; (24)

V4 ¼ 8�2

3
R4 ¼

~C4

1þ �
N4a

4; gtiti ¼
R2

B2
: (25)

Next, let us comment on the universality of these results.
First, we have checked that they are not dependent on the
particular definition of time slicing we have been using, in

5By contrast, the quantum fluctuations indicated in Fig. 1 as
vertical bars are volume dependent and will become larger as the
total four-volume becomes smaller; see Sec. V below for details.
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the following sense. By construction of the piecewise
linear CDT geometries, we have at each integer time step
ti ¼ iat a spatial surface consisting of N3ðiÞ tetrahedra.
Alternatively, one can choose as reference slices for the
measurements of the spatial volume noninteger values of
time, for example, all time slices at discrete times i� 1=2,
i ¼ 1; 2; . . . . In this case the ‘‘triangulation’’ of the spatial
three-spheres consists of tetrahedra—from cutting a (4,1)-
or a (1,4)-simplex halfway—and ‘‘boxes,’’ obtained by
cutting a (2,3)- or (3,2)-simplex (the geometry of this is
worked out in [21]). We again find a relation like (12) if we
use the total number of spatial building blocks in the
intermediate slices (tetrahedraþ boxes) instead of just
the tetrahedra.

Second, we have repeated the measurements for other
values of the bare coupling constants. As long as we stay in
the phase where an extended universe is observed (called
‘‘phase C’’ in Ref. [4]), a relation like (12) remains valid.
In addition, the value of s0, defined in Eq. (12), is almost
unchanged until we get close to the phase transition lines
beyond which the extended universe disappears. Figure 2
shows the average shape hN3ðtÞi for � ¼ 0:6 and for �0

equal to 2.2 and 3.6. Only for the values of �0 around 3.6
and larger will the measured hN3ðtÞi differ significantly
from the value at 2.2. For values larger than 3.8 (at � ¼
0:6), the universe will disintegrate into a number of small
and disconnected components distributed randomly along
the time axis, and one can no longer fit the distribution
hN3ðtÞi to the formula (12). Figure 3 shows the average
shape hN3ðtÞi for �0 ¼ 2:2 and � equal to 0.2 and 0.6. Here
the value � ¼ 0:2 is close to the phase transition where the
extended universe will flatten out to a universe with a time
extension of a few lattice spacings only. Later we will show
that while s0 is almost unchanged, the constant k1 in (19),
which governs the quantum fluctuations around the mean
value hN3ðtÞi, is more sensitive to a change of the bare

coupling constants, in particular in the case where we
change �0 (while leaving � fixed).

IV. CONSTRUCTIVE EVIDENCE FOR THE
EFFECTIVE ACTION

While the functional form (12) for the three-volume fits
the data perfectly and the corresponding continuum effec-
tive action (17) reproduces the continuum version (14) of
(12), it is still of interest to check to what extent one can
reconstruct the discretized version (19) of the continuum
action (17) from the data explicitly. Stated differently, we
would like to understand whether there are other effective
actions which reproduce the data equally well. As we will
demonstrate by explicit construction in this section, there is
good evidence for the uniqueness of the action (19).
The data we have are twofold: the measurement ofN3ðiÞ,

that is, the three-volume at the discrete time step i, and the
measurement of the three-volume correlator N3ðiÞN3ðjÞ.
Having created K statistically independent configurations

NðkÞ
3 ðiÞ by Monte Carlo simulation allows us to construct

the average

�N 3ðiÞ :¼ hN3ðiÞi ffi 1

K

X
k

NðkÞ
3 ðiÞ; (26)

where the superscript in ð�ÞðkÞ denotes the result of the kth
configuration sampled, as well as the covariance matrix

Cði; jÞ ffi 1

K

X
k

ðNðkÞ
3 ðiÞ � �N3ðiÞÞðNðkÞ

3 ðjÞ � �N3ðjÞÞ: (27)

Since we have fixed the sum
P

N
i¼1 N3ðiÞ (recall that N

denotes the fixed number of time steps in a given simula-
tion), the covariance matrix has a zero mode, namely, the

constant vector eð0Þi ,
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FIG. 2. The measured average shape hN3ðiÞi of the quantum
universe at � ¼ 0:6, for �0 ¼ 2:2 (broader distribution) and

�0 ¼ 3:6 (narrower distribution), taken at Nð4;1Þ
4 ¼ 160:000.
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FIG. 3. The measured average shape hN3ðiÞi of the quantum
universe at �0 ¼ 2:2, for � ¼ 0:6 (broad distribution) and � ¼
0:2 (narrow distribution), both taken at Nð4;1Þ

4 ¼ 160:000.
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X
j

Cði; jÞeð0Þj ¼ 0; eð0Þi ¼ 1=
ffiffiffiffi
N

p 8 i: (28)

A spectral decomposition of the symmetric covariance
matrix gives

Ĉ ¼ XN�1

a¼1

�ajeðaÞiheðaÞj; (29)

where we assume the N � 1 other eigenvalues of the

covariance matrix Ĉij are different from zero. We now

define the ‘‘propagator’’ P̂ as the inverse of Ĉ on the

subspace orthogonal to the zero mode eð0Þ, that is,

P̂ ¼ XN�1

a¼1

1

�a

jeðaÞiheðaÞj ¼ ðĈþ ÂÞ�1 � Â;

Â ¼ jeð0Þiheð0Þj:
(30)

We now assume we have a discretized action which can
be expanded around the expectation value �N3ðiÞ according
to

Sdiscr½ �N þ n� ¼ Sdiscr½ �N� þ 1

2

X
i;j

niP̂ijnj þOðn3Þ: (31)

If the quadratic approximation describes the quantum fluc-
tuations around the expectation value �N well, the inverse of

P̂ will be a good approximation to the covariance matrix.
Conversely, still assuming the quadratic approximation

gives a good description of the fluctuations, the P̂ con-
structed from the covariance matrix will, to a good ap-
proximation, allow us to reconstruct the action via (31).

Simply by looking at the inverse P̂ of the measured
covariance matrix, defined as described above, we observe
that it is, to a very good approximation, small and constant
except on the diagonal and the entries neighboring the
diagonal. We can then decompose it into a ‘‘kinetic’’ and

a ‘‘potential’’ term. The kinetic part P̂kin is defined as the
matrix with nonzero elements on the diagonal and in the
neighboring entries, such that the sum of the elements in a
row or a column is always zero,

P̂ kin ¼ XN
i¼1

piX̂
ðiÞ; (32)

where the matrix X̂ðiÞ is given by

X̂ ðiÞ
jk ¼ �ij�ik þ �ðiþ1Þj�ðiþ1Þk � �ðiþ1Þj�ik � �ij�ðiþ1Þk:

(33)

Note that the range of P̂kin lies by definition in the subspace
orthogonal to the zero mode. Similarly, we define the

potential term as the projection of a diagonal matrix D̂
on the subspace orthogonal to the zero mode

P̂ pot ¼ ðÎ � ÂÞD̂ðÎ � ÂÞ ¼ XN
i¼1

uiŶ
ðiÞ: (34)

The diagonal matrix D̂ and the matrices ŶðiÞ are defined by

D̂ jk ¼ uj�jk; ŶðiÞ
jk ¼ �ij�ik �

�ij þ �ik

N
þ 1

N2
; (35)

and Î denotes the N � N unit matrix.

The matrix P̂ is obtained from the numerical data by

inverting the covariance matrix Ĉ after subtracting the zero
mode, as described above. We can now try to find the best
values of the pi’s and ui’s by a least-	2 fit6 to

tr ðP̂� ðP̂kin þ P̂potÞÞ2: (36)

Let us look at the discretized minisuperspace action (19)
which obviously has served as an inspiration for the defi-

nitions of P̂kin and P̂pot. Expanding N3ðiÞ to second order
around �N3ðiÞ, one obtains the identifications

�N 3ðiÞ ¼ 2k1
pi

; U00ð �N3ðiÞÞ ¼ �ui; (37)

where UðN3ðiÞÞ ¼ k1 ~k2N
1=3
3 ðiÞ denotes the potential term

in (19). We use the fitted coefficients pi to reconstruct
�N3ðiÞ and then compare these reconstructed values with
the averages �N3ðiÞmeasured directly. Similarly, we can use
the measured ui’s to reconstruct the second derivatives

U00ð �N3ðiÞÞ and compare them to the form �N�5=3
3 ðiÞ coming

from (19).
The reconstruction of �N3ðiÞ is illustrated in Fig. 4 for a

variety of four-volumes N4 and compared with the directly
measured expectation values �N3ðiÞ. It is seen that the
reconstruction works very well and, most importantly, the
coupling constant k1, which in this way is determined
independently for each four-volume N4, really is indepen-
dent of N4 in the range of N4’s considered, as it should be.
We will now try to extract the potential U00ð �N3ðiÞÞ from

the information contained in the matrix P̂pot. The determi-
nation ofU00ð �N3ðiÞÞ is not an easy task as can be understood
from Fig. 5, which shows the measured coefficients ui
extracted from the matrix P̂pot, and which we consider
somewhat remarkable. The interpolated curve makes an
abrupt jump by 2 orders of magnitude going from the
extended part of the universe (stretching over roughly 40

6A 	2 fit of the form (36) gives the same weight to each three-
volume N3ðiÞ. One might argue that more weight should be given
to the larger N3ðiÞ in a configuration since we are interested in
the continuum physics and not in what happens in the stalk
where N3ðiÞ is very small. We have tried various 	2 fits with
reasonable weights associated with the three-volumes N3ðiÞ. The
kinetic term, which is the dominant term, is insensitive to any
(reasonable) weight associated with N3ðiÞ. The potential term,
which will be analyzed below, is more sensitive to the choice of
the weight. However, the general power law dependence re-
ported below is again unaffected by this choice.
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time steps) to the stalk. The occurrence of this jump is
entirely dynamical; no distinction has ever been made by
hand between the stalk and the bulk.

There are at least two reasons for why it is difficult to
determine the potential numerically. First, the results are
‘‘contaminated’’ by the presence of the stalk. Since it is of
cutoff size, its dynamics is dominated by fluctuations
which likewise are of cutoff size. They will take the form
of short-time subdominant contributions in the correlator

matrix Ĉ. Unfortunately, when we invert Ĉ to obtain the

propagator P̂, the same excitations will correspond to the
largest eigenvalues and give a very large contribution.

Although the stalk contribution in the matrix Ĉ is located
away from the bulk-diagonal, it can be seen from the
appearance of the 1=N2-term in Eqs. (34) and (35) that
after the projection orthogonal to the zero mode the con-
tributions from the stalk will also affect the remainder of
the geometry in the form of fluctuations around a small
constant value. In deriving Fig. 6 we have subtracted this
constant value as best as possible. However, the fluctua-
tions of the stalk cannot be subtracted, and only good
statistics can eventually eliminate their effect on the be-
havior of the extended part of the quantum universe. The
second (and less serious) reason is that from a numerical
point of view the potential term is always subdominant to
the kinetic term for the individual spacetime histories in the
path integral. For instance, consider the simple example of
the harmonic oscillator. Its discretized action reads

S ¼ XN
i¼1

�t

��
xiþ1 � xi

�t

�
2 þ!2x2i

�
; (38)

from which we deduce that the ratio between the kinetic
and potential terms will be of order 1=�t as �t tends to
zero. This reflects the well-known fact that the kinetic term
will dominate and go to infinity in the limit as�t ! 0, with
a typical path being nowhere differentiable. The same will
be true when dealing with a more general action like (17)

and its discretized version (19), where �t scales like �t�
1=N1=4

4 . Of course, a classical solution will behave differ-

ently: there the kinetic term will be comparable to the
potential term. However, when extracting the potential
term directly from the data, as we are doing, one is con-
fronted with this issue.
The range of the discrete three-volumes N3ðiÞ in the

extended universe is from several thousand down to 5,
the kinematically allowed minimum. However, the behav-
ior for the very small values of N3ðiÞ near the edge of the
extended universe is likely to be mixed in with discretiza-
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FIG. 5. Reconstruction of the second derivative U00ð �N3ðiÞÞ
from the coefficients ui, for �0 ¼ 2:2 and � ¼ 0:6 and Nð4;1Þ

4 ¼
160:000.
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FIG. 6. The second derivative �U00ðN3Þ as measured for
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FIG. 4. The directly measured expectation values �N3ðiÞ (thick
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the measured covariance matrix Ĉ (thin black curves), for �0 ¼
2:2 and � ¼ 0:6, at various fixed volumes Nð4;1Þ

4 . The twofold

symmetry of the interpolated curves around the central symme-
try axis results from an explicit symmetrization of the collected
data.

NONPERTURBATIVE QUANTUM DE SITTER UNIVERSE PHYSICAL REVIEW D 78, 063544 (2008)

063544-9



tion effects. In order to test whether one really has a

N1=3
3 ðiÞ-term in the action, one should therefore only use

values of N3ðiÞ somewhat larger than 5. This has been done
in Fig. 6, where we have converted the coefficients ui from
functions of the discrete time steps i into functions of the
background spatial three-volume �N3ðiÞ using the identifi-
cation in (37) (the conversion factor can be read off the
relevant curve in Fig. 4). It should be emphasized that
Fig. 6 is based on data from the extended part of the
spacetime only; the variation comes entirely from the
central region between times �20 and 20 in Fig. 5, which
explains why it has been numerically demanding to extract
a good signal. The data presented in Fig. 6 were taken at a

discrete volume Nð4;1Þ
4 ¼ 160:000, and fit the form N�5=3

3

well, corresponding to a potential ~k2N
1=3
3 . There is a very

small residual constant term present in this fit, which
presumably is due to the projection onto the space orthogo-
nal to the zero mode, as already discussed earlier. In view
of the fact that its value is quite close to the noise level with
our present statistics, we have simply chosen to ignore it in
the remaining discussion.

Apart from obtaining the correct power N�5=3
3 for the

potential for a given spacetime volume N4, it is equally
important that the coefficient in front of this term be
independent of N4. This seems to be the case, as is shown
in Fig. 7, where we have plotted the measured potentials in
terms of reduced, dimensionless variables which make the
comparison between measurements for different N4’s eas-
ier.—In summary, we conclude that the data allow us to
reconstruct the action (19) with good precision.

Let us emphasize a remarkable aspect of this result. Our
starting point was the Regge action for CDT, as described

in Sec. II above. However, the effective action we have
generated dynamically by performing the nonperturbative
sum over histories is only indirectly related to this ‘‘bare’’
action. Likewise, the coupling constant k1 which appears in
front of the effective action, and which we view as related
to the gravitational coupling constantG by Eq. (21), has no
obvious direct relation to the bare coupling �0 appearing in
the Regge action (3) and in (7). Nevertheless, the leading
terms in the effective action for the scale factor are pre-
cisely the ones presented in (19). That a kinetic term with a
second-order derivative appears as a leading term in an
effective action is maybe less surprising, but it is remark-
able and very encouraging for the entire CDT-quantization
program that the kinetic term appears in precisely the

correct combination with the factor N3ðiÞ1=3 needed to
identify the leading terms with the corresponding terms
in the Einstein-Hilbert action. In other words, only if these
terms are present can we claim to have an effective field
theory which has anything to do with the standard
diffeomorphism-invariant gravitational theory in the con-
tinuum. This is neither automatic nor obvious, since our
starting point involved both a discretization and an explicit
asymmetry between space and time, and since the non-
perturbative interplay of the local geometric excitations we
are summing over in the path integral is beyond our ana-
lytic control. Nevertheless, what we have found is that at
least the leading terms in the effective action we have
derived dynamically admit an interpretation as the standard
Einstein term, thus passing a highly nontrivial consistency
test.

V. FLUCTUATIONS AROUND DE SITTER SPACE

We have shown that the action (19) gives a very good
description of the measured shape �N3ðiÞ of the extended
universe. Furthermore, we have shown that by assuming
that the three-volume fluctuations around �N3ðiÞ are suffi-
ciently small so that a quadratic approximation is valid, we
can use the measured fluctuations to reconstruct the dis-
cretized version (19) of the minisuperspace action (17),

where k1 and ~k2 are independent of the total four-volume
N4 used in the simulations. This certainly provides strong
evidence that both the minisuperspace description of the
dynamical behavior of the (expectation value of the) three-
volume, and the semiclassical quadratic truncation for the
description of the quantum fluctuations in the three-volume
are essentially correct.
In the following we will test in more detail how well the

actions (17) and (19) describe the data encoded in the

covariance matrix Ĉ. The correlation function was defined
in the previous section by

CN4
ði; i0Þ ¼ h�N3ðiÞ�N3ði0Þi;

�N3ðiÞ � N3ðiÞ � �N3ðiÞ;
(39)

where we have included an additional subscript N4 to
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FIG. 7. The dimensionless second derivative u ¼ N5=4
4 U00ðN3Þ

plotted against ��5=3, where � ¼ N3=N
3=4
4 is the dimensionless

spatial volume, for Nð4;1Þ
4 ¼ 40:000, 80.000, and 160.000, �0 ¼

2:2 and � ¼ 0:6. One expects a universal straight line near the
origin (i.e. for large volumes) if the power law UðN3Þ / N1=3 is
correct.
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emphasize that N4 is kept constant in a given simulation.
The first observation extracted from the Monte Carlo simu-
lations is that under a change in the four-volume CN4

ði; i0Þ
scales as7

CN4
ði; i0Þ ¼ N4Fði=N1=4

4 ; i0=N1=4
4 Þ; (40)

where F is a universal scaling function. This is illustrated
by Fig. 8 for the rescaled version of the diagonal part

C1=2
N4

ði; iÞ, corresponding precisely to the quantum fluctua-

tions hð�N3ðiÞÞ2i1=2 of Fig. 1. While the height of the curve

in Fig. 1 will grow as N3=4
4 , the superimposed fluctuations

will only grow as N1=2
4 . We conclude that for fixed bare

coupling constants the relative fluctuations will go to zero
in the infinite-volume limit.

From the way the factor
ffiffiffiffiffiffi
N4

p
appears as an overall scale

in Eq. (20), it is clear that to the extent a quadratic expan-
sion around the effective background geometry is valid,
one will have a scaling

h�N3ðiÞ�N3ði0Þi ¼ N3=2
4 h�n3ðtiÞ�n3ðti0 Þi ¼ N4Fðti; ti0 Þ;

(41)

where ti ¼ i=N1=4
4 . This implies that (40) provides addi-

tional evidence for the validity of the quadratic approxi-
mation and the fact that our choice of action (19), with k1
independent of N4, is indeed consistent.

To demonstrate in detail that the full function Fðt; t0Þ,
and not only its diagonal part, is described by the effective
actions (17) and (19), let us, for convenience, adopt a
continuum language and compute its expected behavior.
Expanding (17) around the classical solution according to
V3ðtÞ ¼ Vcl

3 ðtÞ þ xðtÞ, the quadratic fluctuations are given

by

hxðtÞxðt0Þi ¼
Z

DxðsÞxðtÞxðt0Þe�ð1=2Þ
RR

dsds0xðsÞMðs;s0Þxðs0Þ

¼ M�1ðt; t0Þ; (42)

where DxðsÞ is the normalized measure and the quadratic
form Mðt; t0Þ is determined by expanding the effective
action S to second order in xðtÞ,

SðV3Þ ¼ SðVcl
3 Þ þ

1

18�G

B

V4

Z
dtxðtÞĤxðtÞ: (43)

In expression (43), Ĥ denotes the Hermitian operator

Ĥ ¼ � d

dt

1

cos3ðt=BÞ
d

dt
� 4

B2cos5ðt=BÞ ; (44)

which must be diagonalized under the constraint thatR
dt

ffiffiffiffiffiffi
gtt

p
xðtÞ ¼ 0, since V4 is kept constant.

Let eðnÞðtÞ be the eigenfunctions of the quadratic form
given by (43) with the volume constraint enforced,8 or-
dered according to increasing eigenvalues �n. As we will
discuss shortly, the lowest eigenvalue is �1 ¼ 0, associated
with translational invariance in time direction, and should
be left out when we invertMðt; t0Þ, because we precisely fix
the center of volume when making our measurements. Its
dynamics is therefore not accounted for in the correlator
Cðt; t0Þ.
If this cosmological continuum model were to give the

correct description of the computer-generated universe, the
matrix

M�1ðt; t0Þ ¼ X1
n¼2

eðnÞðtÞeðnÞðt0Þ
�n

(45)

should be proportional to the measured correlator Cðt; t0Þ.
Figure 9 shows the eigenfunctions eð2ÞðtÞ and eð4ÞðtÞ (with
two and four zeros, respectively), calculated from Ĥ with
the constraint

R
dt

ffiffiffiffiffiffi
gtt

p
xðtÞ ¼ 0 imposed. Simultaneously

we show the corresponding eigenfunctions calculated from
the data, i.e. from the matrix Cðt; t0Þ, which correspond to
the (normalizable) eigenfunctions with the highest and
third-highest eigenvalues. The agreement is very good, in
particular when taking into consideration that no parameter
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FIG. 8. Analysis of the quantum fluctuations of Fig. 1: diago-
nal entries Fðt; tÞ1=2 of the universal scaling function F from

(40), for Nð4;1Þ
4 ¼ 20:000, 40.000, 80.000, and 160.000.

7We stress again that the form (40) is only valid in that part of
the universe whose spatial extension is considerably larger than
the minimal S3 constructed from 5 tetrahedra. (The spatial
volume of the stalk typically fluctuates between 5 and 15
tetrahedra.)

8One simple way to find the eigenvalues and eigenfunctions
approximately, including the constraint, is to discretize the
differential operator, imposing that the (discretized) eigenfunc-
tions vanish at the boundaries t ¼ 	B�=2, and finally adding
the constraint as a term �ðR dtxðtÞÞ2 to the action, where the
coefficient � is taken large. The differential operator then be-
comes an ordinary matrix, and eigenvalues and eigenvectors can
be found numerically. Stability with respect to subdivision and
choice of � is easily checked.
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has been adjusted in the action [we simply take B ¼
s0N

1=4
4 �t in (14) and (43), which gives B ¼ 14:47at for

N4 ¼ 362:000].
The reader may wonder why the first eigenfunction

exhibited has two zeros. As one would expect, the ground

state eigenfunction eð0ÞðtÞ of the Hamiltonian (44), corre-
sponding to the lowest eigenvalue, has no zeros, but it does
not satisfy the volume constraint

R
dt

ffiffiffiffiffiffi
gtt

p
xðtÞ ¼ 0. The

eigenfunction eð1ÞðtÞ of Ĥ with the next-lowest eigenvalue
has one zero and is given by the simple analytic function

eð1ÞðtÞ ¼ 4ffiffiffiffiffiffiffi
�B

p sin

�
t

B

�
cos2

�
t

B

�
¼ c�1 dV

cl
3 ðtÞ
dt

; (46)

where c is a constant. One realizes immediately that eð1Þ is
the translational zero mode of the classical solution Vcl

3 ðtÞ
( / cos3t=B). Since the action is invariant under time trans-
lations we have

SðVcl
3 ðtþ�tÞÞ ¼ SðVcl

3 ðtÞÞ; (47)

and since Vcl
3 ðtÞ is a solution to the classical equations of

motion we find to second order [using the definition (46)]

SðVcl
3 ðtþ �tÞÞ ¼ SðVcl

3 ðtÞÞ þ
c2ð�tÞ2
18�G

B

V4

�
Z

dteð1ÞðtÞĤeð1ÞðtÞ; (48)

consistent with eð1ÞðtÞ having zero eigenvalue.
It is clear from Fig. 9 that some of the eigenfunctions of

Ĥ (with the volume constraint imposed) agree very well
with the measured eigenfunctions. All even eigenfunctions
(those symmetric with respect to reflection about the sym-
metry axis located at the center of volume) turn out to agree

very well. The odd eigenfunctions of Ĥ agree less well
with the eigenfunctions calculated from the measured
Cðt; t0Þ. The reason seems to be that we have not managed
to eliminate the motion of the center of volume completely
from our measurements. As already mentioned above,
there is an inherent ambiguity in fixing the center of
volume, which turns out to be sufficient to reintroduce
the zero mode in the data. Suppose we had by mistake
misplaced the center of volume by a small distance �t.
This would introduce a modification
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FIG. 9. Comparison of the two highest even eigenvectors of
the covariance matrix Cðt; t0Þ measured directly (gray curves)
with the two lowest even eigenvectors of M�1ðt; t0Þ, calculated
semiclassically (black curves).
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FIG. 10 (color online). Comparison of data for the extended
part of the universe: measured Cðt; t0Þ (upper panel) versus
M�1ðt; t0Þ obtained from analytical calculation (lower panel).
The agreement is good, and would have been even better had we
included only the even modes.

AMBJØRN, GÖRLICH, JURKIEWICZ, AND LOLL PHYSICAL REVIEW D 78, 063544 (2008)

063544-12



�V3 ¼ dVcl
3 ðtÞ
dt

�t (49)

proportional to the zero mode of the potential Vcl
3 ðtÞ. It

follows that the zero mode can reenter whenever we have
an ambiguity in the position of the center of volume. In
fact, we have found that the first odd eigenfunction ex-
tracted from the data can be perfectly described by a linear

combination of eð1ÞðtÞ and eð3ÞðtÞ. It may be surprising at
first that an ambiguity of one lattice spacing can introduce
a significant mixing. However, if we translate �V3 from
Eq. (49) to ‘‘discretized’’ dimensionless units using

V3ðiÞ � N3=4
4 cosði=N1=4

4 Þ, we find that �V3 �
ffiffiffiffiffiffi
N4

p
, which

because of hð�N3ðiÞÞ2i � N4 is of the same order of mag-
nitude as the fluctuations themselves. In our case, this
apparently does affect the odd eigenfunctions.

One can also compare the data and the matrixM�1ðt; t0Þ
calculated from (45) directly. This is illustrated in Fig. 10,
where we have restricted ourselves to data from inside the
extended part of the universe. We imitate the construction
(45) for M�1, using the data to calculate the eigenfunc-

tions, rather than Ĥ. One could also have used Cðt; t0Þ
directly, but the use of the eigenfunctions makes it some-
what easier to perform the restriction to the bulk. The
agreement is again good (better than 15% at any point on
the plot), although less spectacular than in Fig. 9 because
of the contribution of the odd eigenfunctions to the data.

VI. THE GEOMETRY OF SPATIAL THREE-
SPHERES

We have shown above that our data for the spatial three-
volumes have a natural interpretation as coming from the
slicing of a four-sphere with standard geometry (the
‘‘round’’ four-sphere), with relatively small quantum fluc-
tuations superimposed. It is natural to ask to what extent
the spatial three-spheres themselves can be assigned the
standard geometry of a round three-sphere, again with
relatively small quantum fluctuations superimposed. We
have already provided evidence that the Hausdorff dimen-
sion of the spatial slices is three [4,5]. However, the
Hausdorff dimension is a very coarse measure of geometry,
and even very fractal structures can have Hausdorff dimen-
sion three.9

We have analyzed the geometry of the spatial three-
spheres as follows. Each spatial slice at integer proper
time i is a triangulation, consisting of a certain number
N3 of tetrahedra, glued together pairwise such that the
resulting topology is that of a three-sphere. We now choose
an arbitrary tetrahedron as the origin of measurements and
subsequently decompose the S3 into (thick) shells of tetra-

hedra characterized by their distance r from this origin,
where the distance r is defined as the minimal number of
tetrahedra one has to cross when moving from the shell to
the origin via neighboring tetrahedra. We call the number
of tetrahedra in the shell at distance r the area Aðr; N3Þ of
the shell. In order to compute the expectation value of this
quantity, we have to repeat the measurements in a way that
averages over different triangulations of S4, over different
spatial slices within the S4’s, and over different locations of
the point of origin within those slices. In this manner we
can test whether hAðr; N3Þi behaves like a regular three-
sphere (with only small fluctuations superimposed), with r
viewed as the geodesic distance. If this was the case, one
would expect a functional dependence of the form

hAðr; N3Þi / N2=3
3 sin2

�
r

cN1=3
3

�
; (50)

with c a constant.
Figure 11 summarizes the results of our measurements.

Since we are not interested in very small N3’s where no
continuum scaling is expected, we have restricted our-
selves to spatial slices close to the center of volume as
defined above, where N3 is largest. The first thing to note
about Fig. 11 is that the data from spatial slices at different
distances from the center of volume fall to good accuracy
on a common, universal curve. Next, we observe that
relation (50) is reasonably well satisfied, except for the
measurements at large radii r, which exhibit a tail not
described by formula (50). This signals the presence of
large fluctuations in the geometry (the shape) of the spatial
slices to the effect that we cannot simply view them—in
the sense of expectation values—as classical spheres of
constant positive curvature with fixed radius proportional

to N1=3, superimposed by small quantum fluctuations. In
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FIG. 11. Testing relation (50) for the bare coupling constants

�0 ¼ 2:2 and � ¼ 0:6, at four-volume Nð4;1Þ
4 ¼ 160:000. Data

have been collected for spatial slices at various distances close to
the center of volume.

9To illustrate the point, the Hausdorff dimension of the com-
plex plane (with standard geometry) is of course equal to two,
but the same is true for the highly fractal structure of so-called
branched polymers or planar trees embedded in the plane.
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fact, there is already evidence that the geometry, when
defined with respect to the geodesic distance r, has certain
fractal properties [4]. This can be substantiated and quan-
tified by measuring the topology of a typical spherical shell
at a distance r from a chosen origin in more detail. At
sufficiently large radius r one finds that the topology is no
longer that of a single two-sphere, but branches out into a
number of disconnected pieces, most likely by effectively
creating a number of spatial ‘‘baby universes.’’ It is well
known how to study the distribution of such baby universes
[22,23], and we believe that these methods will yield a
quantitative description of the observed slower falloff for
large r. Details of this picture, including a study of the
temporal dynamics of such spatial baby universes, will be
published elsewhere.

VII. THE SIZE OF THE UNIVERSE AND THE
FLOW OF G

Let us now return to Eq. (21),

G ¼ a2

k1

ffiffiffiffiffiffi
~C4

q
~s20

3
ffiffiffi
6

p ; (51)

which relates the parameter k1 extracted from the
Monte Carlo simulations to Newton’s constant in units of
the cutoff a, G=a2. For the bare coupling constants
ð�0;�Þ ¼ ð2:2; 0:6Þ we have high-statistics measurements
for N4 ranging from 45.500 to 362.000 four-simplices

(equivalently, Nð4;1Þ
4 ranging from 20.000 to 160.000 four-

simplices). The choice of � determines the asymmetry
parameter �, and the choice of ð�0;�Þ determines the ratio

� between Nð3;2Þ
4 and Nð4;1Þ

4 . This in turn determines the

‘‘effective’’ four-volume ~C4 of an average four-simplex,
which also appears in (51). The number ~s0 in (51) is
determined directly from the time extension Tuniv of the
extended universe according to

Tuniv ¼ �~s0ðNð4;1Þ
4 Þ1=4: (52)

Finally, from our measurements we have determined k1 ¼
0:038. Taking everything together according to (51), we

obtain G � 0:23a2, or ‘Pl � 0:48a, where ‘Pl ¼
ffiffiffiffi
G

p
is the

Planck length.
From the identification of the volume of the four-sphere,

V4 ¼ 8�2R4=3 ¼ ~C4N
ð4;1Þ
4 a4, we obtain that R ¼ 3:1a. In

other words, the linear size �R of the quantum de Sitter
universes studied here lies in the range of 12–21 Planck
lengths for N4 in the range mentioned above and for the
bare coupling constants chosen as ð�0;�Þ ¼ ð2:2; 0:6Þ.10

Our dynamically generated universes are therefore not
very big, and the quantum fluctuations around their aver-
age shape are large as is apparent from Fig. 1. It is rather
surprising that the semiclassical minisuperspace formula-
tion is applicable for universes of such a small size, a fact
that should be welcome news to anyone performing semi-
classical calculations to describe the behavior of the early
universe. However, in a certain sense our lattices are still
coarse compared to the Planck scale ‘Pl because the Planck
length is roughly half a lattice spacing. If we are after a
theory of quantum gravity valid on all scales, we are, in
particular, interested in uncovering phenomena associated
with Planck-scale physics. In order to collect data free
from unphysical short-distance lattice artifacts at this scale,
we would ideally like to work with a lattice spacing much
smaller than the Planck length, while still being able to set
by hand the physical volume of the universe studied on the
computer.
The way to achieve this, under the assumption that the

coupling constant G of formula (51) is indeed a true
measure of the gravitational coupling constant, is as fol-
lows. We are free to vary the discrete four-volume N4 and
the bare coupling constants ð�0;�Þ of the Regge action
(see [4] for further details on the latter). Assuming for the
moment that the semiclassical minisuperspace action is
valid, the effective coupling constant k1 in front of it will
be a function of the bare coupling constants ð�0;�Þ, and
can, in principle, be determined as described above for the
case ð�0;�Þ ¼ ð2:2; 0:6Þ. If we adjusted the bare coupling
constants such that in the limit as N4 ! 1 both

V4 � N4a
4 and G� a2=k1ð�0;�Þ (53)

remained constant [i.e. k1ð�0;�Þ � 1=
ffiffiffiffiffiffi
N4

p
], we would

eventually reach a region where the Planck length was
significantly smaller than the lattice spacing a, in which
event the lattice could be used to approximate spacetime
structures of Planckian size and we could initiate a genuine
study of the sub-Planckian regime. Since we have no
control over the effective coupling constant k1, the first
obvious question which arises is whether we can at all
adjust the bare coupling constants in such a way that at
large scales we still see a four-dimensional universe, with
k1 going to zero at the same time. The answer seems to be
in the affirmative, as we will go on to explain.
Figure 12 shows the results of extracting k1 for a range

of bare coupling constants for which we still observe an
extended universe. In the top figure � ¼ 0:6 is kept con-
stant while �0 is varied. For �0 sufficiently large we
eventually reach a point where a phase transition takes
place (the point in the square in the bottom right-hand
corner is the measurement closest to the transition we
have looked at). For even larger values of �0, beyond this
transition, the universe disintegrates into a number of small
universes, in a CDT analogue of the branched-polymer

10Small deviations from the corresponding numbers quoted in
[7] have their origin in the more careful (and correct) treatment
of the various four-volumes N4, N

ð4;1Þ
4 , and Nð3;2Þ

4 in the present
work.
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phase of Euclidean quantum gravity. The plot shows that
the effective coupling constant k1 becomes smaller and
possibly goes to zero as the phase transition point is
approached, although our current data do not yet allow
us to conclude that k1 does indeed vanish at the transition
point.

Conversely, the bottom panel of Fig. 12 shows the effect
of varying � while keeping �0 ¼ 2:2 fixed. As � is de-
creased towards 0, we eventually hit another phase tran-
sition, separating the physical phase of extended universes
from the CDT equivalent of the crumpled phase of
Euclidean quantum gravity, where the entire universe
will be concentrated within a few time steps, as already
mentioned in Sec. III above. (The point closest to the
transition where we have taken measurements is the one

in the bottom left-hand corner.) Also, when approaching
this phase transition the effective coupling constant k1 goes
to 0, leading to the tentative conclusion that k1 ! 0 along
the entire phase boundary.
However, to extract the coupling constant G from (51)

we not only have to take into account the change in k1, but
also that in ~s0 [the width of the distribution N3ðiÞ] and in

the effective four-volume ~C4 as a function of the bare
coupling constants. Combining these changes, we arrive
at a slightly different picture. Approaching the boundary
where spacetime collapses in time direction (by lowering
�), the gravitational coupling constant G decreases, de-
spite the fact that 1=k1 increases. This is a consequence of
~s0 decreasing considerably, as can be seen from Fig. 3. On
the other hand, when (by increasing �0) we approach the
region where the universe breaks up into several indepen-
dent components, the effective gravitational coupling con-
stant G increases, more or less like 1=k1, where the
behavior of k1 is shown in Fig. 12 (top panel). This implies

that the Planck length ‘Pl ¼
ffiffiffiffi
G

p
increases from approxi-

mately 0:48a to 0:83a when �0 changes from 2.2 to 3.6.
Most likely we can make it even bigger in terms of Planck
units by moving closer to the phase boundary.
On the basis of these arguments, it seems likely that the

nonperturbative CDT formulation of quantum gravity does
allow us to penetrate into the sub-Planckian regime and
probe the physics there explicitly. Work in this direction is
currently ongoing. One interesting issue under investiga-
tion is whether and to what extent the simple minisuper-
space description remains valid as we go to shorter scales.
We have already seen deviations from classicality at short
scales when measuring the spectral dimension [4,20], and
one would expect them to be related to additional terms in
the effective action (17) and/or a nontrivial scaling behav-
ior of k1. This raises the interesting possibility of being
able to test explicitly the scaling violations of G predicted
by renormalization group methods in the context of asymp-
totic safety [2].

VIII. DISCUSSION

The CDTmodel of quantum gravity is extremely simple.
It is the path integral over the class of causal geometries
with a global time foliation. In order to perform the sum-
mation explicitly, we introduce a grid of piecewise linear
geometries, much in the same way as when defining the
path integral in quantum mechanics. Next, we rotate each
of these geometries to Euclidean signature and use as a
bare action the Einstein-Hilbert action11 in Regge form.
That is all.
The resulting superposition exhibits a nontrivial scaling

behavior as a function of the four-volume, and we observe
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FIG. 12. The measured effective coupling constant k1 as a
function of the bare �0 (top panel, � ¼ 0:6 fixed) and the
asymmetry � (bottom panel, �0 ¼ 2:2 fixed). The marked point
near the middle of the data points sampled is the point ð�0;�Þ ¼
ð2:2; 0:6Þ where most measurements in the remainder of the
paper were taken. The other marked points are those closest to
the two phase transitions, to the ‘‘branched-polymer phase’’ (top
panel) and the ‘‘crumpled phase’’ (bottom panel).

11Of course, the full, effective action, including measure con-
tributions, will contain all higher-derivative terms.
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the appearance of a well-defined average geometry, that of
de Sitter space, the maximally symmetric solution to the
classical Einstein equations in the presence of a positive
cosmological constant. We are definitely in a quantum
regime, since the fluctuations of the three-volume around
de Sitter space are sizable, as can be seen in Fig. 1. Both the
average geometry and the quantum fluctuations are well
described in terms of the minisuperspace action (17). A key
feature to appreciate is that, unlike in standard (quantum-)
cosmological treatments, this description is the outcome of
a nonperturbative evaluation of the full path integral, with
everything but the scale factor [equivalently, V3ðtÞ]
summed over. Measuring the correlations of the quantum
fluctuations in the computer simulations for a particular
choice of bare coupling constants enabled us to determine
the continuum gravitational coupling constant G as G �
0:42a2, thereby introducing an absolute physical length
scale into the dimensionless lattice setting. Within measur-
ing accuracy, our de Sitter universes (with volumes lying in
the range of 6.000–47.000 ‘4Pl) are seen to behave perfectly
semiclassically with regard to their large-scale properties.

We have also indicated how we may be able to penetrate
into the sub-Planckian regime by suitably changing the
bare coupling constants. By ‘‘sub-Planckian regime’’ we
mean that the lattice spacing a is (much) smaller than the
Planck length. While we have not yet analyzed this region
in detail, we expect to eventually observe a breakdown of
the semiclassical approximation. This will hopefully allow
us to make contact with attempts to use renormalization
group techniques in the continuum and the concept of
asymptotic safety to study scaling violations in quantum
gravity [2].

On the basis of the results presented here, two major
issues suggest themselves for further research. First, we
need to establish the relation of our effective gravitational
coupling constant G with a more conventional gravita-
tional coupling constant, defined directly in terms of cou-
pling matter to gravity. In the present work, we have
defined G as the coupling constant in front of the effective
action, but it would be desirable to verify directly that a
gravitational coupling defined via the coupling to matter
agrees with our G. In principle, it is easy to couple matter
to our model, but it is less straightforward to define in a
simple way a setup for extracting the semiclassical effect
of gravity on the matter sector. Attempts in this direction
were already undertaken in the ‘‘old’’ Euclidean approach
[24,25], and it is possible that similar ideas can be used in
CDT-quantum gravity. Work on this is in progress.

The second issue concerns the precise nature of the
‘‘continuum limit.’’ Recall our discussion in the
Introduction about this in a conventional lattice-theoretic
setting. The continuum limit is usually linked to a diver-
gent correlation length at a critical point. It is unclear
whether such a scenario is realized in our case. In general,
it is rather unclear how one could define at all the concept

of a divergent length related to correlators in quantum
gravity, since one is integrating over all geometries, and
it is the geometries which dynamically give rise to the
notion of ‘‘length.’’
This has been studied in detail in two-dimensional

(Euclidean) quantum gravity coupled to matter with central
charge c 
 1 [26]. It led to the conclusion that one could
associate the critical behavior of the matter fields (i.e.
approaching the critical point of the Ising model) with a
divergent correlation length, although the matter correla-
tors themselves had to be defined as nonlocal objects due to
the requirement of diffeomorphism invariance. On the
other hand, the two-dimensional studies do not give us a
clue of how to treat the gravitational sector itself, since
they do not possess gravitational field-theoretic degrees of
freedom. What happens in the two-dimensional lattice
models which can be solved analytically is that the only
fine-tuning needed to approach the continuum limit is an
additive renormalization of the cosmological constant (for
fixed matter couplings). Thus, fixing the two-dimensional
spacetime volume N2 (the number of triangles), such that
the cosmological constant plays no role, there are no
further coupling constants to adjust and the continuum
limit is automatically obtained by the assignment V2 ¼
N2a

2 and taking N2 ! 1. This situation can also occur in
special circumstances in ordinary lattice field theory. A
term like

X
i

c1ð
iþ1 �
iÞ2 þ c2ð
iþ1 þ
i�1 � 2
iÞ2 (54)

(or a higher-dimensional generalization) will also go to the
continuum free field theory simply by increasing the lattice
size and using the identification Vd ¼ Ldad (L denoting
the linear size of the lattice in lattice units), the higher-
derivative term being subdominant in the limit. It is not
obvious that in quantum gravity one can obtain a contin-
uum quantum field theory without fine-tuning in a similar
way, because the action in this case is multiplied by a
dimensionful coupling constant. Nevertheless, it is cer-
tainly remarkable that the infrared limit of our effective
action apparently reproduces—within the cosmological
setting—the Einstein-Hilbert action, which is the unique
diffeomorphism-invariant generalization of the ordinary
kinetic term, containing at most second derivatives of the
metric. A major question is whether and how far our theory
can be pushed towards an ultraviolet limit. We have in-
dicated how to obtain such a limit by varying the bare
coupling constants of the theory, but the investigation of
the limit a ! 0 with fixed G has only just begun.
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