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We study pocket universes which have zero cosmological constant and nontrivial boundary topology.

These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find

that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the

thin-wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility

arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a

timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also

occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results

suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino,

Susskind and Yeh, should include summation over the genus of the base space of the dual conformal

field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.
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I. INTRODUCTION

The nonperturbative definition of string theory in
asymptotically flat or anti–de Sitter (AdS) spacetimes is
now basically understood. Matrix theory [1] and AdS/CFT
correspondence [2] provide concrete nonperturbative
(holographic) formulations of quantum gravity in terms
of nongravitational gauge theories. These theories taught
us many things. For instance, the fact that formation and
evaporation of a black hole is mapped to a manifestly
unitary process in gauge theory makes us strongly believe
that information is not lost in black holes.

On the other hand, it is not yet clear how to define an
exact quantum theory for a cosmological, or inflating,
spacetime. The main source of difficulty seems to be the
fact that there is no obvious asymptotic region where
interactions are turned off.

Finding a nonperturbative framework for cosmology is
especially important because of the existence of the string
landscape [3]: string theory contains a large number of
vacua including metastable de Sitter vacua. Metastability is
an approximate concept. Even though there is strong evi-
dence for the existence of the landscape, which is obtained
from the low-energy effective theory analysis, the meaning
of these metastable vacua is not totally clear until we have
an exact theory.

In the landscape, bubbles (universes in different vacua,
or ‘‘pocket universes’’) are created by tunneling. Eternal
inflation generically occurs. Here the false vacuum inflates
so fast that bubbles of true vacuum cannot percolate and
the physical volume of the space remains dominated by the
false vacuum forever. Infinitely many bubbles are pro-
duced, and the volume inside each bubble is also infinite.

It is not known how to regulate these infinities. This is
related to the measure problem. If we can find a non-
perturbative framework, it may give some clues about
this problem.
In [4], a holographic dual description for eternal infla-

tion was proposed. The authors consider an Friedmann-
Robertson-Walker (FRW) universe with zero cosmological
constant (c.c.) created by tunneling from de Sitter space.
The tunneling is described by the Coleman–De Luccia
(CDL) instanton [5], which tells us that the FRW universe
is an open universe whose constant time slices are 3-
dimensional hyperboloids. The dual theory is a conformal
field theory (CFT) defined on S2 at the boundary (spatial
infinity) of the 3-hyperboloid (Fig. 1).
In this ‘‘FRW/CFT duality,’’ the dual theory contains 2-

dimensional gravity (the Liouville field). One may wonder
why gravity is not decoupled on the boundary, as in AdS
space where it is fixed with a boundary condition. The
reason for nondecoupling is that the FRW universe is
embedded in de Sitter space. Our boundary is alternately
regarded as the bubble wall at future infinity of de Sitter
space (see Fig. 1). In de Sitter space, fluctuations produced
at early time are stretched by inflation and cannot be
smoothed out by late-time fluctuations, so the fluctuations
at two points remain correlated after those points go out of
causal contact (see, e.g., [6]). The gravity fluctuations on
the boundary of the FRW universe are of the same origin.
Indeed, the graviton correlator computed in [4] using the
Euclidean prescription remains finite as the points ap-
proach the boundary of the FRW universe. A boundary
such as this one where gravity is not decoupled is called a
‘‘warm’’ boundary [7], as opposed to the ‘‘cold’’ boundary
of (global) AdS space. In most proposals for a holographic
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duality for inflation, such as the dS/CFT correspondence
[8] and the dS/dS correspondence [9], gravity is not
decoupled.

In addition to the above perturbative argument, bubble
collisions which are inevitable in eternal inflation [10]
indicate that the boundary geometry is fluctuating.
Consider a collision of two bubbles of the same vacuum,
for which no domain wall remains after the collision. The
bulk space will approach a smooth geometry. If the c.c. of
the vacuum is zero, a timelike observer can see the whole
space inside the bubbles eventually; the geometry contains
only one ‘‘hat’’ (future asymptotics of flat space).
However, the boundary geometry will be deformed from
a perfect sphere. It is conjectured that a bubble collision
corresponds to an instanton in the dual theory [4].

In this paper, we point out that the boundary is not only
‘‘metrically warm,’’ but is also ‘‘topologically warm.’’ A

universe with a nontrivial boundary topology can arise
from bubble collisions. We can easily imagine a ‘‘ring’’
that appears as a result of collisions of three or more
bubbles (Fig. 2). The region ‘‘in the middle’’ does not close
up if its size is larger than the horizon scale. Even though
the wall of the true vacuum moves outwards, the inflation
of de Sitter space surpasses it. A timelike observer in the
true vacuum (the ‘‘bulk’’ of the torus) can eventually see
the whole boundary, as we discuss in Sec. II. Boundaries
with general higher topologies will also be present.
Nontrivial topologies are suppressed by powers of the

nucleation rate �, compared to the spherical topology, and
may not be important observationally. However to define
the holographic theory we should include everything that a
single observer can see. This means that we should sum
over topologies of the 2-dimensional space on which the
CFT is defined.
Summation over topologies is reminiscent of string per-

turbation theory, which is an asymptotic expansion. The
string perturbation series does not converge, and important
objects, such as D-branes, cannot be seen in a perturbative
expansion. We might wonder whether a similar thing hap-
pens in the genus expansion in our dual theory. We will
estimate the growth of terms in the series by taking the sum
over bubbles, and argue that here the series converges.
We also note that bubble collisions can produce space-

times with multiple boundaries. This happens when the
bubbles form a ‘‘shell,’’ for example. If two boundaries are
accessible to a single timelike observer, it would be con-
fusing in terms of the dual theory. For the case of two
spherical boundaries, we can show that the two boundaries
are causally disconnected. It would be very interesting to
know whether this generalizes to cases with more compli-
cated topology, so that a given observer can only see a
single connected boundary.
This paper is organized as follows: In Sec. II, we explain

that a universe with nontrivial topology can be produced by
bubble collisions. We first give a general argument based
on the assumption that bubble walls turn into a wall of dust
after colliding. We then perform analytic study in the thin-
wall approximation, for the two limiting cases with torus
topology. We first consider bubbles aligned on a straight
line with equal spacing, and obtain asymptotic geometry

FIG. 2 (color online). Boundary of the true vacuum region with genus 0, 1, 2. In the middle figure, we have indicated by dotted lines
where domain walls would be if there were no collisions.

Σ Σ

FIG. 1. Bubble nucleation in de Sitter space. The thick lines
are the domain wall between true and false vacuum. The shaded
region is an open FRW universe, in which constant time slices
(dotted lines) are H3. Vacuum energy of the true vacuum is
assumed to be zero asymptotically; the FRW universe has future
asymptotics of flat space (the ‘‘hat’’). The dual CFT is defined on
the boundary � of H3, which is S2. (Note that this is the
‘‘doubled’’ Penrose diagram; the two points denoted by � are
on the same S2.)
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after collisions. We then consider a ‘‘coarse grained’’
version, in which we approximate the domain wall be-
tween the true and the false vacuum regions by a smooth
torus. In Sec. III, we show that there can be a universe with
multiple boundaries. We study the case where the true
vacuum is inside a shell-like region, and see that a singu-
larity develops inside the shell, leaving two boundaries
causally disconnected. In Sec. IV, we discuss implications
of the nontrivial boundary topology for the dual theory. We
study large order behavior of the genus expansion, and
discuss possible interpretation in the dual CFT.

II. BOUNDARY WITH NONTRIVIAL TOPOLOGY

We shall consider the simplest setting in this paper:
Gravity is coupled with a scalar field whose potential has
two minima, a false vacuum with positive c.c. and a true
vacuum with zero c.c. We consider four spacetime
dimensions.

If the space is filled with false vacuum, bubbles of true
vacuum will be nucleated with a rate � which is calculated
from the CDL instanton [5]. We are interested in diagnos-
ing the topology of the boundary between the true vacuum
and the false vacuum at conformal infinity. Before taking
true vacuum bubbles into account, conformal infinity of de
Sitter space is a 3-sphere. When a bubble of true vacuum
nucleates, it eats up a ball out of the conformal infinity of
de Sitter space. The size of the ball depends on the time of
nucleation. The boundary of the true vacuum region is the
boundary of the ball, a 2-sphere. When two bubbles of true
vacuum collide in de Sitter space the region of de Sitter
conformal infinity which is removed is simply given by
superposing the two balls from each nucleation. The ge-
ometry inside the balls may be complicated, and depends
on the physics of what happens when the walls collide.
However, the boundary between de Sitter space and the
true vacuum is simply given by superposing balls of differ-
ent sizes, one for each true vacuum bubble, and then
looking at the boundary of this region. It is possible that
the nucleated bubbles collide and form a ring (or ‘‘chain of
pearls’’; see Fig. 2) where the true vacuum is inside a torus,
or in a similar fashion anything with higher genus.

An important question is whether a single observer in-
side the true vacuum can see the entire boundary. To
answer this question, it is necessary to construct the ge-
ometry inside the true vacuum regions. As we mentioned
above, the geometry depends on the physics of what hap-
pens when the domain walls collide. We first demonstrate
the existence of a boundary of arbitrary genus, all of which
is visible to a single observer in the true vacuum region,
using a simplified ‘‘dust’’ model in Sec. II A. Then using a
somewhat more realistic ‘‘radiation shell’’ model we con-
struct the smooth solution in the simplest case, a torus, in
Sec. II B and II C. Finally in Sec. II D, we make a con-
jecture about the smooth geometry inside a boundary of
any genus based on our torus solution.

A. Chain of pearls with dust walls

For the moment, we assume that when two bubbles
collide, their domain walls annihilate into a (2þ 1) dimen-
sional wall of dust. In other words, we assume that there is
a type of ‘‘domain wall’’ with equation of state P ¼ 0
separating the two regions of true vacuum after the bubbles
collide. The resulting geometry for a single collision was
constructed in [11]. The entire true vacuum region is within
the backward light cone of a single observer. With more
collisions, as long as the resulting dust walls do not cross
each other, we can iterate the same solution and show that
the entire interior region is causally connected. The non-
trivial question is, can the dust walls stay away from each
other for the collisions necessary to make true vacuum
regions of various topologies? We will find that connected
boundaries of arbitrary topology can be constructed using
this simple procedure, but disconnected boundaries cannot
be constructed in this way.
Consider a given true vacuum bubble which collides

with several other true vacuum bubbles. We need to
know whether the dust walls from these various collisions
intersect each other. In the thin-wall approximation, the
interior of each bubble is the Milne universe out to the dust
walls, with metric

ds2 ¼ �dt2 þ t2ds2
H3 (2.1)

where ds2
H3 is the metric on 3-dimensional hyperbolic

space. The conformal boundary of H3 is a 2-sphere. This
is the boundary between de Sitter space and Minkowski
space for a single bubble.
Now consider collisions. A given collision destroys part

of the original S2 boundary. At conformal infinity, when
two true vacuum balls overlap, the part of each S2 which is
inside the other ball is destroyed. Focusing on a given
bubble, collisions punch holes in the boundary S2. These
holes are the interiors of circles, because the overlapping
S2’s intersect in a circle. The destroyed pieces of domain
wall have been converted to dust walls. Our concern is
whether these dust walls intersect.
Studying the dynamics of the dust walls gives the result

that at late time in the coordinates (2.1) the dust wall
asymptotes to the minimal surface insideH3 whose bound-
ary is the intersection circle [11]. This minimal surface is
simply an H2 with unit radius. (At earlier times, the dust
wall is not yet a minimal surface, but we are interested in
late time because the dust wall extends maximally far into
the space at t ! 1.) Now if a given bubble collides with
several other bubbles, then there are several dust walls
emanating from the intersection circles. The minimal sur-
faces (dust walls) intersect if and only if the different
intersection circles intersect each other.
So we have a simple rule for building a large class of

solutions in which the entire true vacuum region is causally
connected. Start with de Sitter conformal infinity, which is
an S3, and put down balls of true vacuum of any size in any
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location. The boundaries of the balls are S2’s, which when
they intersect generically intersect in circles. The only rule
is that the intersection circles cannot intersect each other.

(It is not obvious from our analysis here, but the dust
walls intersect if and only if the collision H2’s intersect.
When this happens black holes generically form [12], so
the analysis becomes difficult no matter what assumption
we make for the physics of the collision.)

Now what kinds of interesting boundary topologies can
be constructed in this way? It is possible to connect ge-
ometries with arbitrary connected boundary using this
construction. For example, we can construct a true vacuum
region of torus topology, as shown in Fig. 2. Since the true
vacuum regions overlap only pairwise, the intersection
circles are all well separated from each other, and our
construction works.

On the other hand, it is not possible to construct geome-
tries with disconnected boundaries using this technique.
The boundary of the true vacuum region is constructed out
of a number of S2’s which are glued together along circles.
The interiors of the circles are holes in the S2’s. Since the
circles do not intersect in this construction, it is possible to
get from one point along a given holey S2 to any other
point. Also, it is possible to move from one holey S2 to one
connected to it by moving across the gluing circle.
Therefore, the boundary of the true vacuum region is
connected.

B. Sequence of collisions

We now turn to a more detailed analysis of bubble
collisions where we make the somewhat more realistic
assumption that all energy is liberated in a shell of
radiation.

For simplicity, we would like to start with as many
symmetries as possible. A de Sitter space with one bubble
has SO(3,1) symmetry; this is inherited from the spherical
symmetry SO(4) of the Euclidean CDL instanton [5].
When there are two bubbles, the direction connecting the
centers of the bubbles singles out a preferred direction, but
there is SO(2,1) residual symmetry. When there are four or
more bubbles, there is generically no residual symmetry.
However, if nucleation sites are on the same spacelike
geodesic (the great circle of the minimal S3 ), SO(2,1)
symmetry is preserved. In addition, the circle of nucleation

points gives us a discrete subgroup of U(1), so we have
SOð2; 1Þ � Uð1Þ which contains a torus.
We will use coordinates with manifest SO(2,1) symme-

try [12,13]. De Sitter space can be written as

ds2 ¼ �fðtÞ�1dt2 þ fðtÞdz2 þ t2dH2
2 ; (2.2)

with

fðtÞ ¼ 1þ t2

l2
(2.3)

where l is the de Sitter radius (the horizon size),1 and 0 �
z � 2�l. The bubbles are nucleated at time t ¼ 0, along
the circle in the z direction. For simplicity, we assume that
the nucleation sites are evenly spaced with distance 2�z.
(We are assuming N ¼ �l=�z is an integer.) The initial
size r0 of a bubble is determined by the parameters of the
scalar potential.
The profile of bubble walls in the ðt; zÞ plane will be as

depicted in Fig. 3. In the thin-wall limit, geometry in each
bubble is flat. We parametrize flat space in such a way that
H2 factor is manifest, which is of the form (2.2) with f ¼
1. We patch it to de Sitter space on the domain wall. Since
the metric component along the wall should be continuous
across the wall, the coordinate t (which sets the scale for
the H2 metric) should have the same value when we
approach the domain wall from either side. The coordinate
z for the flat and the de Sitter side will be different. The
trajectory of the domain wall is determined by the Israel
junction condition once the equation of state for the do-
main wall is given.
Bubble collisions occur along an H2. To find the metric

after collision, we make an assumption following [12–14]:
When two bubbles collide, the bubble walls disappear
instantaneously and turn into radiation. Radiation follows

FIG. 3 (color online). Left: True vacuum (shaded region) inside a torus (The left and the right ends are identified). This configuration
is produced by bubble collisions. Right: Trajectory of domain walls in the ðt; zÞ plane. (Horizontal (z) direction is periodically
identified.) Bubble walls (solid lines) collide and emit radiation (dotted lines). A shell of radiation collides with other shells an infinite
number of times.

1The de Sitter metric (2.3) is obtained by parametrizing the
embedding coordinates in R1;4 (which satisfy �X2

0 þP
4
a¼1 X

2
a ¼ l2) as follows: Xa ¼ tHa (where a ¼ 0, 1, 2, and

�H2
0 þH2

1 þH2
2 ¼ �1), X3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ t2

p
cosðz=lÞ, X4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ t2
p

sinðz=lÞ. The configuration considered here is invariant

under SO(2,1) acting on the X0, X1, X2 space. The metric (2.3)

does not cover the whole de Sitter. To study the trajectory in the

directions other than z, it is more convenient to use global

coordinates (2.15).
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a lightlike trajectory in the ðt; zÞ space. The geometry in the
region behind the radiation differs from flat space in gen-
eral, since the radiation carries away some energy. The
metric will be of the form (2.2) with

fðtÞ ¼ 1� t1
t
: (2.4)

This is the most general zero-c.c. geometry with H2 sym-
metry; it is the hyperbolic version of the Schwarzschild
geometry. The causal structure of this metric is given in
Fig. 4. There is a timelike singularity at t ¼ 0, but as we
will see, only the t > t1 (> 0) region is relevant for us.

The parameter t1 > 0 is determined by the following
condition [12]. To make the formula simple, let us ignore
the initial size of each bubble so that the bubble walls are
moving at the speed of light. When two lightlike domain
walls collide and emit two lightlike domain walls (i.e.,
walls of radiation), spacetime is divided into four regions.
We will label them I, II, III, IV in the way depicted in
Fig. 4, and denote the function fðtÞ in those regions by fIðtÞ
and so on. At the time of the collision t ¼ t� (which is
common in all the regions), they satisfy

fIfIV ¼ fIIfIII: (2.5)

This is essentially the energy conservation condition [15].
Substituting de Sitter metric (2.3) for fI and flat metric f ¼
1 for fII and fIII, we find

fIV ¼ 1� t1
t�
¼

�
1þ t2�

l2

��1
: (2.6)

The region IV is the t � t� part of the metric (2.4), and the

above equation implies t� > t1. Thus, there is no singular-
ity in region IV.
The collision time t� is determined by the initial condi-

tion. In terms of the conformal coordinate T, defined by
T ¼ R

dt=ðlfIðtÞÞ ¼ arctanðt=lÞ, bubbles separated by a

distance 2�z collide in a time �T ¼ �z=l. If the separa-
tion at the nucleation time t ¼ 0 is small, �z � l, we can
approximate fIðtÞ � 1, and get t� � l�T ¼ �z. In this
limit, the condition (2.6) becomes

t1 ¼ t3�
l2 þ t2�

� t3�
l2
� ð�zÞ3

l2
: (2.7)

Geometry of the region IV is maximally curved at the
earliest time, t ¼ t�, where the deviation of fIVðt�Þ from 1
is

t1
t�

¼ ð�zÞ2
l2

: (2.8)

This can be made arbitrarily small by making �z=l small.
As we see from Fig. 3, a wall of radiation collides with

another one which comes from the neighboring collision.
Again, walls of radiation are emitted at the collision, and
the metric behind the radiation is changed. This process
will be repeated infinite times.
The geometry after n such collisions is obtained by

using the junction condition iteratively. Let us call fn the
function f after n-th collision (which means this fII ¼
fIII ¼ f0 and fIV ¼ f1) and write it

fn ¼ 1� tn
t
: (2.9)

Also we define t�ðnÞ to be the time of the n-th collision (the
t� above is t�ð1Þ). The condition (2.5) gives us

�
1þ tn

t�ðnþ2Þ

��
1þ tnþ2

t�ðnþ2Þ

�
¼

�
1þ tnþ1

t�ðnþ2Þ

�
2
: (2.10)

There is another condition which says that the coordinate
distance traveled by the light between n-th and nþ 1-th
collisions is equal to the one between nþ 1-th and nþ
2-th collisions:

t�ðnþ2Þ � t�ðnþ1Þ þ tn ln

�
t�ðnþ2Þ � tn
t�ðnþ1Þ � tn

�

¼ t�ðnþ1Þ � t�ðnÞ þ tn ln

�
t�ðnþ1Þ � tn
t�ðnÞ � tn

�
: (2.11)

These recursion relations simplify when the metric is
close to flat. If tn=t�ðnÞ, tn=t�ðnþ1Þ, tn=t�ðnþ2Þ are all much

smaller than 1, the leading part of (2.10) and (2.11) be-
comes

tnþ2 � tnþ1 ¼ tnþ1 � tn; (2.12)

I

IIIII

IV

FIG. 4. Left: Causal structure of the hyperbolic Schwarzschild
geometry, whose metric is given by (2.2) with (2.4). The ðt; zÞ
plane is shown; on each point, H2 is attached. There are timelike
singularities at t ¼ 0. The dotted lines are null planes at t ¼ t1.
We will only use the t > t1 region, which is the upper diamond.
Right: Collision of null domain walls. The ðt; zÞ plane is divided
into four regions.
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t�ðnþ2Þ � t�ðnþ1Þ ¼ t�ðnþ1Þ � t�ðnÞ: (2.13)

Together with our initial conditions, t0 ¼ t�ð0Þ ¼ 0, t1 ¼
ð�zÞ3=l2, and t�ð1Þ ¼ �z, these give us

tn ¼ n
ð�zÞ3
l2

; t�ðnÞ ¼ n�z: (2.14)

When �z � l, the deviation from the flat metric is always
small, tn=t�ðnÞ ¼ ð�z=lÞ2 � 1, so our approximation is

consistent.
We can compute corrections by substituting this leading

order solution into (2.10) and (2.11) and solving them
perturbatively in �z=l. The function tn=t�ðnÞ decreases at
subleading order2 as tn=t�ðnÞ � ð�z=lÞ2ð1� 2ð�z=lÞ4 lnnÞ.
The geometry asymptotically approaches flat space locally,
although the logarithmic rate of approach is slower than the
rate 1=t for the ordinary collision of two bubbles.
Numerical solutions obtained by iteration (without assum-
ing fn � 1) indeed show that the function tn=t�ðnÞ decreases
logarithmically for large n (see Fig. 5). We can also see that
the maximum value of tn=t�ðnÞ decreases as we make

�z=l ¼ �=N small, so our perturbative analysis can al-
ways work by making this control parameter small.

There is an useful physical picture for the above analy-
sis. If there is no incoming radiation, Eq. (2.9) will ap-
proach flat space locally. The leading order analysis shows
that for an observer, the radiation walls keep arriving at
equal time intervals, therefore they serve as a constant
reminder of nonflatness. The perturbative correction and
the simulation suggest that radiation walls actually arrive
at increasing time intervals, which guarantees flatness at
future infinity.

Taking the smooth (�z=l � 1) limit, we have exact
SOð2; 1Þ � Uð1Þ symmetry, the boundary of the flat region
has two noncontractible circles. In the global coordinates
for de Sitter,

ds2 ¼ �dt̂2 þ cosh2 t̂ðd�2 þ cos2�dz2 þ sin2�d�22Þ;
(2.15)

the above solution looks like the future light cone of the z
axis circle at t̂ ¼ 0, � ¼ 0. In general we can also consider
a circle at t̂ ¼ t̂0 > 0. At future infinity, the bubble wall
(radial light ray from � ¼ 0) reaches � ¼ �1 ¼
arcsinð1= cosht̂0Þ. One of the circles of the torus has radius
r2 ¼ cosht̂ sin�1. This is the circle (�2 direction) contained
in one bubble. The other circle of the torus is in the
z-direction which traverses many bubbles, and has radius
r1 ¼ cosht̂ cos�1. The asymptotic ratio of the two radii is

r2
r1

¼ tan�1 ¼ 1

sinht̂0
: (2.16)

When t̂ ¼ 0, even though r2 becomes infinite r1 remains
finite and equals to the horizon size r1 ¼ l, so their ratio is
infinite. In this subsection we have established the local
flatness at late time for this case. For t̂0 > 0, r1 also grows
to infinity. Each source of radiation (the collision H2) is
moving away from each other. This should make the
approach to flat space faster. We should be able to patch
flat space to de Sitter across a toroidal domain wall. We
will study this in the next subsection.

C. Coarse grained smooth torus

Wewill construct the smooth torus solution suggested in
the previous subsection, which is more general since it has
only Uð1Þ � Uð1Þ symmetry.
To make the symmetry manifest, we express the global

de Sitter space as

100 200 300 400 500
n

0.0434

0.0436

0.0438

0.044
1

0.088 ln  n 22

50 100 150 200
n

0.2

0.4

0.6

0.8

1
0.54 ln  n 6.09

FIG. 5 (color online). The function tn=t�ðnÞ obtained by iteration, for the collision of N bubbles. Left: tn=t�ðnÞ for N ¼ 15; Right:
tn=t�ðnÞ for N ¼ 3. The solutions are fitted by 1

a lnðnÞþb in the n > 100 and n > 50 regions, respectively.

2This expression is valid when lnn is sufficiently small. At
some point the error accumulates and this lowest order approxi-
mation breaks down.
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ds2 ¼ ðr22 � l2Þdr21 þ ðr21 � l2Þdr22 � 2r1r2dr1dr2
r21 þ r22 � l2

þ r21d�
2
1 þ r22d�

2
2; (2.17)

where r21 þ r22 � l2, and 0 � �1, �2 � 2�.3

For the interior flat space, we start from the Minkowski
space with a manifest H1,

ds2 ¼ �dt2 þ t2d�2 þ dr22 þ r22d�
2
2: (2.18)

By identifying the space under � ! �þ 2���1, and re-
defining the coordinates, ��1� ¼ �2, �t ¼ r1, we get

ds2 ¼ ��2dr21 þ dr22 þ r21d�
2
1 þ r22d�

2
2: (2.19)

The conical singularity at r1 ¼ 0 is not a problem for us;
we do not extend the solution to the infinite past, and this
singularity is in the unphysical region, as we will see
shortly.

The torus boundary between the de Sitter space and the
flat space is a (2þ 1) surface parametrized by
ðr1ð�Þ; r2ð�ÞÞ. The induced metric,

ds2ð2þ1Þ ¼ �d�2 þ r21d�
2
1 þ r22d�

2
2; (2.20)

should have the same form, when we approach the domain
wall from either side, (2.17) or (2.19).

This condition brings us to the solution

r1ð�Þ ¼ 1

�
½" sinhð�="Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p
	;

r2ð�Þ ¼ " coshð�="Þ;
(2.21)

as we explain in Appendix A.
We take the plus sign in (2.22), and consider the � � 0

part to be physical. At � ¼ 0, we have _r2 ¼ 0, and r2 takes
the minimum value r2 ¼ ". (We loosely call � ¼ 0 the
nucleation time of the torus bubble.) The parameter "
corresponds to the tension of the domain wall, and " ! 0
is the limit of the zero tension domain wall, as we will see
below.

Another parameter � controls the global time at the
nucleation. The � ! 0 limit corresponds to late nucleation,
and the � ! 1 limit corresponds to nucleation at the
minimal S3, which should correspond to the case studied
in the last subsection. The asymptotic aspect ratio of the
two circles of the torus is given by r2=r1 ¼ �. In the � !
1 limit, the ratio is infinite. r1ð�Þ is constant r1ð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p
, while r2ð�Þ grows to infinite size; this is the

situation we mentioned at the end of the last subsection.

The junction condition (see Appendix B) tells us that we
need the following (2þ 1) dimensional stress tensor on the
domain wall:

T�
� ¼ T2

2 ¼ �2
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p

l"

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
l

2�r1

�
; (2.22)

T1
1 ¼ �2

l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p

l"
: (2.23)

The ordinary domain wall, which is made from a kink of
the scalar field, has Ti

j ¼ ���i
j, where � is the tension

determined by the shape of the scalar potential. Here we
have an extra term proportional to 1=r1, but since it de-
creases as the torus grows, we should probably set

� ¼ 2
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p

l"
: (2.24)

The fact that we need nonstandard stress energy on the
domain wall is not surprising. We expect this solution to be
an effective description for a large number of spherical
bubbles collided with each other. In the exact description
(as the one in the last subsection), there is no translational
symmetry in one (r1) direction. The translational symme-
try appears after smearing over the r1 direction, but before
smearing, there would be defects which lie along the r2
direction (and are symmetric along r2). The form of the
extra terms, T�

� ¼ T1
1 , T

2
2 ¼ 0, is what we expect for such a

stringlike object wrapped along r2.

D. Boundary with higher topologies

The above analysis shows the existence of bubbles (true
vacuum region) with torus boundary. We believe bounda-
ries of any genus can appear in the radiation shell case as
well as in the dust case discussed at the beginning of this
section.
A configuration with genus 2 or larger typically involves

‘‘Y-shape’’ collisions where three bubbles collide with
another bubble in the middle. To understand the qualitative
behavior of this type of collision, wewill use intuition from
the analysis of SO(2,1) symmetric chain of collisions for
the torus case. Local geometry that results from each
collision will be roughly the one studied in Sec. II B.
Even though we do not have the symmetry now, if the
geometry is close to flat, we will be able to use Newtonian
approximation, and add the effect of each collision. In the
middle bubble of the Y-shape collision, radiation shells
will arrive more often than in the torus case (since radia-
tions come from three directions rather than two). This
may effectively shorten the interval between successive
radiation (which corresponds to t�ðnþ1Þ � t�ðnÞ in

Sec. II B). However, this does not change the fact that
further radiation shells arrive at an increasing interval,
which is enough to guarantee that locally the metric ap-
proaches Minkowski space.

3This metric is obtained by parametrizing the embedding

coordinates in R4;1 as X0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � l2

q
, X1 ¼ r1 cos�1,

X2 ¼ r1 sin�1, X3 ¼ r2 cos�2, X4 ¼ r2 sin�2. The relation of
these coordinates to the usual global time, defined by ds2 ¼
�dt̂2 þ cosh2 t̂d�2

3, is: sinht̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � l2

q
=l.
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The candidate for the asymptotic geometry of the flat
region would be the following:

ds2 ¼ �dt2 þ t2ds2
H3=�

(2.25)

where ds2
H3=�

is the metric of a 3-dimensional space ob-

tained by modding out H3 by elements of a suitable dis-
crete subgroup (the Schottky group). See, e.g., [16].
Negatively curved space with one boundary with any genus
and arbitrary value of moduli parameters can be realized
this way. For example, the torus geometry (2.18) in the last
subsection is equivalently represented4 as a quotient ofH3,

ds2 ¼ �dt2 þ t2
�
dx21 þ dx22 þ dx20

x20

�
; (2.26)

under a scale transformation xi ! 	xi with a given 	
(j	j> 1). This transformation has two fixed points, at
origin and at infinity. By further modding out the space
by transformations which have different sets of fixed points
and parameters corresponding to 	, we get a higher genus
boundary. The number of transformations applied corre-
sponds to the genus h. Any value of the moduli can be
realized by choosing the parameters of the scale trans-
formations [16]. We expect the initial condition produced
by bubble collisions to evolve into this geometry em-
bedded in de Sitter space.

The flat region constructed above is causally connected
(i.e., a timelike observer in the flat region can eventually
see the whole region). This is clear from the fact that the
whole space of an open universe with zero c.c. is causally
connected, and that taking a quotient only makes causal
contact easier.

This suggests that we should sum over the topology of
the boundary on which the holographic dual theory is
defined. We will discuss implication of the higher genus
boundaries in Sec. IV. Before that, in the next section we
mention an example of geometry which has disconnected
boundaries, which is a little confusing in terms of holo-
graphic duality.

III. MULTIPLE BOUNDARIES

Bubble collisions can also produce configurations which
have multiple boundaries. In this case, the dust wall model
in Sec. II A does not guarantee the existence of a smooth
geometry, since dust walls must cross each other to form
multiple boundaries. Actually, in Sec. III A we will show
that two spherically symmetric boundaries must be caus-
ally disconnected. Cases with higher genus are less clear
and will be discussed in Sec. III B.

A. Two spherical boundaries

It could happen that bubbles form a ‘‘shell’’ rather than a
ring (see Fig. 6). Let us assume that a large number of
bubbles are nucleated on a sphere, and approximate the
geometry with a spherically symmetric one. The space is
divided into three regions. The flat region is in a thin shell,
and it has two disconnected spherical boundaries. Let us
assume both de Sitter regions are larger than their horizon
size.
This initial condition will evolve into a geometry whose

Penrose diagram is shown in Fig. 6 [17]. From Birkhoff’s
theorem, in our spherical symmetric situation, the geome-
try of the flat region should be the Schwarzschild geometry.
The size of the two spheres (boundaries) should increase,
since they are larger than the de Sitter horizon. The junc-
tion condition tells us that the zero-c.c. space is always
‘‘inside’’ de Sitter space, i.e., the former is on the side that
the area of S2 decreases. The domain wall with such
properties has to be in the ‘‘white hole’’ region of the
Schwarzschild geometry. Patching de Sitter and
Schwarzschild geometries, we get Fig. 6.
The Schwarzschild mass is determined so that the initial

condition satisfies the junction condition. In the simplest
case where bubbles with negligible size are nucleated
along S2 which has radius R (we assume the S2 is at the
‘‘center’’ of S3 of global de Sitter), the mass will be [17]

M ¼ R3

2G‘2
: (3.1)

We can get this by studying the junction condition at the
‘‘nucleation time’’ (when the S2 domain walls have zero
radial velocity), in the limit of small tension (in this limit
the radii of the two S2’s are almost equal to R).5

FIG. 6 (color online). Left figure: True vacuum with two
spherical boundaries. True vacuum is in a (dark blue) shell,
and false vacuum fills both sides of the shell. Right figure:
Spacetime which results from this initial condition. The two
spherical domain walls (assumed to be larger than the de Sitter
horizon) expand monotonically. The flat region is described by
the Schwarzschild geometry; the two domain walls reach differ-
ent asymptotic flat regions.

4Poincaré coordinates in (2.26) are related to the coordinates in
(2.18) by x1 ¼ e�ðr2=tÞ cos�2, x2 ¼ e�ðr2=tÞ sin�2, z ¼
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r22

q
=r1. Translation of � ! �þ 2���1 corresponds to

a dilatation by 	 ¼ e2��
�1
.

5The junction condition is given, e.g., in [18]. In the ‘‘static’’
coordinates ðt; rÞ used in [18], the r coordinate (which gives the
size of S2) is timelike in the region of interest where S2 is larger
than the horizon size. The S2 at rest at the center of the global S3

corresponds to _t ¼ 0. Substituting this into their junction con-
dition, and setting the domain wall tension zero, we get (3.1).
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The two asymptotic regions are separated by horizons. A
timelike observer who reaches timelike infinity can see
only one boundary. That observer will feel like there is a
black hole in the interior. This black hole will eventually
evaporate, leaving two disconnected geometries. Each ge-
ometry has one spherical boundary. They will relax to flat
space.

The holographic dual theory is expected to describe the
region that a single observer can see. The above geometry
(at least at late time) will correspond to a perturbation in
the dual theory, similar to the one corresponding to a black
hole in an FRW universe.

B. More general cases

Bubble collisions can also produce configurations which
have multiple boundaries with higher topologies.

For example, consider two toroidal boundaries: assume
there is a torus inside a torus, and true vacuum fills the
region between the two tori. If these tori are long and thin,
they can be approximated by infinite straight tubes; de
Sitter space fills inside the inner tube and outside the outer
tube. We assume the radii of the inner and outer tubes are
both larger than the de Sitter horizon radius.

It is not obvious how this geometry evolves. The ge-
ometry of the true vacuum region will not simply be a flat
space with conical deficit, as in the case of cosmic string
(or the dimensionally reduced 2þ 1 D gravity). If we
imagine a cosmic string with tension given by the energy
of the de Sitter region (in the tube of radius R), its tension
would be 
� V0R

2 �m2
pH

2R2 >m2
p, when the de Sitter

region is larger than the horizon size R>H�1. Cosmic
string with such a large tension cannot exist, since it
corresponds to a deficit angle larger than 2�. In fact, the
problem is not purely (2þ 1) dimensional, since we have
an extra degree of freedom (the metric component along
the tube). So the geometry will not be just flat in general.
Possibly, a singularity forms in the true vacuum region, or
instability occurs and inner de Sitter meets with outer de
Sitter.

A flat region with multiple disconnected boundaries
would be confusing in terms of the holographic duality.
This would mean that CFT’s defined on each boundary are
not independent and somehow coupled. It is not clear how
to couple two CFT’s without introducing explicit coupling.
This is the issue raised in [19] for asymptotically Euclidean
AdS spaces with multiple boundaries.

We have seen that, at least for the case of a spherical
boundary, a timelike observer can see only one boundary.
So far we do not have a clear conclusion for higher genus
cases.6 This point clearly deserves further study.

IV. SUMMING OVER BOUNDARY TOPOLOGIES

The authors of [4] proposed a holographic dual descrip-
tion for a bubble with a spherical boundary. The proposal is
that the dual theory is a CFT defined on the boundary, and
that the boundary metric (the Liouville field) should be
integrated. Results in the above sections, which show the
existence of boundaries with nontrivial topology, imply
that we have to sum over the topology of the base space
on which the dual CFT is defined. This suggests that eternal
inflation is described by a kind of ‘‘string theory.’’ The CFT
has c 
 26 and is coupled to Liouville, and so it is a
‘‘supercritical’’ string theory.
How should each topology be weighted? That is, what is

the string coupling gs? Adding a handle requires a minimal
number of extra bubbles, k (which might be two or three).
It seems appropriate to identify the coupling constant as
gs � �k.
From the string theory point of view there are a number

of peculiarities in the sum over topologies. First, to nucle-
ate a torus with a modulus � corresponding to a large aspect
ratio (�2 � r2=r1) requires many bubbles to be nucleated.
This means that this region of moduli space is strongly
suppressed by a factor that looks roughly like g�2s . This is
surprising. ‘‘Pseudotachyons’’ typically appear in super-
critical strings [20,21]. They will cause an IR divergence at
�2 ! 1. Also there is no extra gs dependence in the genus
one amplitude.
From the bubble nucleation point of view it seems that

the sum over higher topologies is convergent. All configu-
rations of n connected bubbles can be thought of as a
branched polymer with n nodes. There are order expð�nÞ
such configurations (where � is a constant of order one).
So the sum over them appears to be convergent. The higher
genus contributions are a systematically small part of the
sum.
This is surprising from the string theory point of view.

There the integral over moduli space of genus h typically
goes like ð2hÞ! indicating a divergent series and character-

istic nonperturbative effects of size e�C=gs [22].
We do not have a full understanding of these differences.

We can point to one novel aspect of the ‘‘string theory’’ of
[4] which might be relevant. The central charge is argued to
be c� S where S is the ancestor de Sitter entropy [4,7].
The nucleation rate is � � expð�SÞ. So, roughly speaking,
gs � expð�cÞ. The world-sheet parameters of the string
theory are linked to the string coupling.
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APPENDIX A: DOMAIN WALL TRAJECTORY

In this appendix, we solve the Israel junction conditions
to find a solution which consists of a toroidal domain wall
separating de Sitter space from Minkowski space.

The trajectory of the domain wall rið�Þ satisfies the
following two equations:

� 1 ¼ ��2 _r21 þ _r22; (A1)

� 1 ¼ ðr22 � l2Þ _r21 þ ðr21 � l2Þ _r22 � 2r1r2 _r1 _r2
r21 þ r22 � l2

; (A2)

where the dot denotes the derivative with respect to the
proper time �.

We can combine them and use dr2=dr1 ¼ _r2= _r1 to get a
first-order differential equation

r22

�
dr2
dr1

�
2 þ 2r1r2

dr2
dr1

� ½�2r21 þ ð1þ �2Þðr22 � l2Þ	 ¼ 0:

(A3)

Solving it as a quadratic equation first, we have

r2
dr2
dr1

þ r1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �2Þðr21 þ r22 � l2Þ

q
: (A4)

Changing the variable to Q ¼ r21 þ r22, we get a simple
differential equation,

dQ

dr1
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� l2

q
; (A5)

with the solutionffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q� l2

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
ðr1 þ cÞ; (A6)

where c is an integral constant. We will take the plus sign,
since this corresponds to the case of interest where both r1
and r2 are growing.

This provides the trajectory equation for r1 and r2,�
�r1 þ 1þ �2

�
c

�
2 � r22 ¼ �

�
l2 � c2

1þ �2

�2

�
: (A7)

Together with Eq. (A1), we can see that

�r1 þ 1þ �2

�
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2

1þ �2

�2

s
sinh

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2 1þ�2

�2

q ;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2

1þ �2

�2

s
cosh

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2 1þ�2

�2

q :

(A8)

It is convenient to define

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2

1þ �2

�2

s
; (A9)

which gives us Eq. (2.22).

APPENDIX B: JUNCTION CONDITIONS

In this appendix we review the Israel junction conditions
and compute the extrinsic curvature for the case of interest,
a toroidal domain wall.
The ð2þ 1Þ dimensional stress tensor of the domain wall

is related to the jump in extrinsic curvature (see, e.g., [18]),

T�

 ¼ Trð�KÞ��


 � �K�

; (B1)

�K
� ¼ KdS

� � Kflat


�: (B2)

To calculate the extrinsic curvature, it is convenient
to write down the Gaussian normal coordinate in the
vicinity of the domain wall. Suppressing the symmetric
directions ð�1; �2Þ, we need a coordinate transformation
ðr1; r2Þ ! ð�; �Þ.7

ri ¼ rið�Þ þ við�Þ�þOð�2Þ; (B3)

where � ¼ 0 is the domain wall and ðv1; v2Þ is the unit
vector orthogonal to it.
On the flat space side, we have

v1ð�Þ ¼ _r2ð�Þ=�; v2ð�Þ ¼ _r1ð�Þ�; (B4)

and the Gaussian normal coordinate is

ds2 ¼ d�2 � f�2½ _r1 þ _v1�	2 � ½ _r2 þ _v2�	2gd�2
þ ½ri þ vi�	2d�2i : (B5)

We ignore the higher-order � terms in Eq. (B3), which will
not be needed for the calculation of the extrinsic curvature,

Kij ¼ 1

2

@gij
@�

���������¼0
: (B6)

From (B5) and (B6), we get

Kflat
�� ¼ ��2 _r1 _v1 þ _r2 _v2; Kflat

11 ¼ r1v1;

Kflat
22 ¼ r2v2:

(B7)

On the de Sitter side, the normal vector takes a different
form,

7Here (and only here) we use ri without an argument to denote
a coordinate (independent variable) ri, as opposed to rið�Þ,
which is a given function of the coordinate �. In the following,
we will abbreviate the latter as ri, since we believe its meaning is
clear from the context.
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u1ð�Þ ¼ ðr21 � l2Þ _r2 � r1r2 _r1

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � l2

q ;

u2ð�Þ ¼ � ðr22 � l2Þ _r1 � r1r2 _r2

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 � l2

q :

(B8)

From (B3) and (B5) with vi replaced by ui, we get

KdS
11 ¼ r1u1; KdS

22 ¼ r2u2; (B9)

and KdS
�� as a formidable combination of ðri; _ri; ui; _uiÞ:

KdS
�� ¼ @q11

2@r1
_r21u1 þ

@q11
2@r2

_r21u2 þ q11 _r1 _u1;

þ @q22
2@r1

_r22u1 þ
@q22
2@r2

_r22u2 þ q22 _r2 _u2;þ@q12
@r1

_r1 _r2u1

þ @q12
@r2

_r1 _r2u2 þ q12ð _u1 _r2 þ _r1 _u2Þ: (B10)

Here qij is the metric component in Eq. (2.17),

q11 ¼ r22 � l2

r21 þ r22 � l2
; q22 ¼ r21 � l2

r21 þ r22 � l2
;

q12 ¼ �r1r2
r21 þ r22 � l2

:

(B11)

Combining Eq. (2.22) with the extrinsic curvature in this
section, we have

�K�
� ¼ �K2

2 ¼ � l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p

"l
;

�K1
1 ¼ � l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � "2

p

"l

�
1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p

r1�

�
:

(B12)

The � signs correspond to those in (2.22).
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