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I calculate the first corrections to the dynamical preexponential factor of the bubble nucleation rate for a

relativistic first-order phase transition in an expanding cosmological background by estimating the effects

of the Hubble expansion rate on the critical bubbles of Langer’s statistical theory of metastability. I also

comment on possible applications and problems that arise when one considers the field theoretical

extensions of these results (the Coleman–De Luccia and Hawking-Moss instantons and decay rates).
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I. INTRODUCTION

The modern nucleation theory of first-order phase tran-
sitions is based on the results of Langer in [1] and asso-
ciated works. These were generalized to quantum field
theory [2], at finite temperature [3], and in curved space-
time [4,5]. The importance of these considerations is high-
lighted by the fact that the original inflationary models
based on a first-order cosmological phase transition [6–9]
were soon ruled out [10] and replaced by various slow-roll
models with numerous fine-tuning problems. Of related
recent interest are theories of the landscape and the multi-
verse [11,12] for which a detailed knowledge of the false
vacuum decay rate in curved space-time is of vital impor-
tance and may lead to a cosmological determination of
physical parameters such as the cosmological constant.

Langer’s original theory led to the statistical determina-
tion of the bubble nucleation rate, �, that gives the number
of critical sized metastable bubbles of the new phase
nucleated per unit volume and per unit time,

� ¼ dN

d3xdt
¼ �

�

2�
expð�F=TÞ; (1)

where � and � are kinematical and dynamical factors,
respectively. � is proportional to the physical volume of
the system, � is the growth rate of the metastable configu-
ration, and F its free energy. If � is a characteristic mass
scale of the theory, of the order of the temperature T, then
� and � are of order �3 and � respectively, giving � the
correct overall dimensionality.

In the case of a quantum field theory involving a scalar
field � and a Euclidean action functional

Sð�Þ ¼
Z

d4x

�
1

2
ð@�Þ2 þUð�Þ

�
; (2)

with a potential Uð�Þ that has a relative minimum (false
vacuum) and an absolute minimum (true vacuum), the
bubble nucleation rate or false vacuum decay rate when

the field is trapped in the false vacuum is given by [2]

� ¼ dN

d3xdt
¼ A expð�BÞ; (3)

where B ¼ S0 is the Euclidean action of the instanton that
is the solution to the Euclidean equations of motion and A
is a preexponential factor that is given by a functional
determinant ratio. If � is again a characteristic mass scale
of the theory and � the coupling constant, then S0 is of
order 1=� and A of order �4.
If the quantum field theory is considered at finite tem-

perature T that is much higher than the inverse critical
bubble radius 1=R� (generically R� is of order 1=��) then
B ¼ S3=T, where S3 is the three-dimensional action of the
dimensionally reduced instanton and A is of order T4 [3].
The question that I would like to address here is what

happens to the prefactor A when gravitational effects are
taken into account, as is the case in cosmological applica-
tions. It is generally true in flat space-time, and also when
gravitational effects are weak, that the quantity B gives an
exponentially smaller factor, hence is more important
quantitatively. One can, however, very well envision a
situation, in a landscape or multiverse scenario, where
both A and B, although still close to their flat space values,
have an intricate dependence on the model parameters such
as the cosmological constant, with the net result that the
rate � has an actual maximum at the observed values. In
fact, it is not � per se that is expected to have a peak; one is
rather interested in suitably defined quantities that measure
the rate of conversion of physical volume to the new phase
[10,13] like, for example,

pðtÞ ¼ exp

�
�

Z t

t0

dt0�ðt0Þ 4�
3

�
R�ðt0Þ
Rðt0Þ þ

Z t

t0
dt00

Vðt00Þ
Rðt00Þ

�
3
�
;

(4)

which gives the probability that an arbitrary point in space
remains in the false vacuum at time t. Here t0 is the time
that signifies the onset of the cosmological phase transi-
tion, RðtÞ is the cosmological scale factor, R�ðtÞ is the*metaxas@central.ntua.gr

PHYSICAL REVIEW D 78, 063533 (2008)

1550-7998=2008=78(6)=063533(6) 063533-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.063533


critical bubble radius at the time of nucleation, and VðtÞ is
the velocity with which the bubble wall is expanding. In
any case � is one of the main inputs necessary for the
calculation of these quantities.

The basic problem for the calculation of gravitational
effects on A is, of course, the lack of a consistent definition
of quantum gravity, so, apart from dimensional consider-
ations, very few methods have been proposed. In [14,15]
the prefactor was calculated for processes involving the
creation of topological defects, and in [16] corrections to A
were estimated with the use of the renormalization group.
Here I would like to initiate another possibility which,
although limited in scope from the outset, may be quite
useful and is in fact, in principle, important, namely the
generalization of Langer’s original work to the case of
curved space-time. Given that the results of [2,3] are the
field theoretical generalizations of the statistical theory of
[1], it is notable that the corresponding theory, of which the
work of [4,5] is supposed to be a generalization, does not
exist. The precise formulation of such a theory would
involve the generalization of thermodynamics and kinetic
theory in curved space-time and will be the subject of
future work. Here, instead, I will consider the first gravi-
tational corrections to the preexponential factor for the
previously given description of bubble nucleation in first-
order phase transitions as given in [17,18]. That is, I will be
working in an approximation where the critical bubble
radius is much smaller than the horizon size and neglecting
the gravitational backreaction, essentially assuming that
the related Hawking temperature is much smaller than
the temperature and mass scales of the system. As ex-
pected, the leading effect of the cosmological expansion
will be to increase the bubble nucleation rate and an
estimate of the corrections is given. One may compare
this with works that investigate the stability of classical
and semiclassical configurations in an expanding universe
[19–21] where similar results where found, the main dif-
ference here being that the bubble configuration considered
is already metastable.

Although the result cannot be straightforwardly ex-
tended to the case of quantum gravity, the corrections
derived suggest that a more complete treatment of the
nucleation rate is needed; it is important in first-order
inflationary models, landscape and multiverse scenarios,
and may also be of relevance in various cases of late
time and other first-order cosmological phase transitions
[22–31].

In Sec. II, which is essentially the second part of the
introduction, I describe the results of [4,5], the problems
and the relative corrections expected. In Sec. III, I calculate
the first gravitational corrections to the critical bubble
configurations of Langer’s statistical theory of metastabil-
ity as described in [17] and I discuss the results and the
approximations involved. In Sec. IV, I conclude with some
comments.

II. GRAVITATIONAL EFFECTS ON VACUUM
DECAY

One is interested in a quantum field theory of a scalar
field � in curved space-time with a metric tensor g�� and

Euclidean action

S ¼
Z ffiffiffiffiffiffiffi�g

p �
1

16�G
Rþ 1

2
g��@

��@��þUð�Þ
�
; (5)

where R is the Ricci curvature, g ¼ detg��, and for

definiteness I will consider a potential Uð�Þ that is every-
where positive and has two minima, as before, a relative
(false vacuum) and an absolute (true vacuum). I will as-
sume again that the mass scale is� and the coupling is �. If
the field is trapped in the false vacuum and the value of the
potential there is ", this will effectively be a cosmological
constant� ¼ 16�G" and space-time will be de Sitter with
a Hubble expansion rate H2 ¼ 8�G"=3. From this point
on, one makes several assumptions using the insight from
the flat space-time results described in the previous section.
First of all, one assumes that the solutions to the Euclidean
equations of motion will again describe tunneling and
determine the exponential factor, B; that is, one expects
that Euclidean quantum gravity and the associated path
integral have various features similar to the flat case.
Then � will determine the nucleation rate of bubbles of

the true vacuum, which is also de Sitter space-time, with a
smaller value of the cosmological constant. In terms of the
flat case critical bubble radius R0, which is of order 1=��,
and the horizon radius RdS ¼ 1=H, the results of [4] esti-
mateB in the thin-wall approximation as a correction to the
flat case value, B0,

B ¼ B0

½1þ ðR0=2RdSÞ2�2
(6)

and the radius of the bubble in the presence of gravity, R�,
as

R� ¼ R0

½1þ ðR0=2RdSÞ2�
; (7)

where R0 ¼ 3�=" is the bubble radius in the absence of
gravity and � is the bubble surface tension which is the
same for the bubble with gravity in the thin-wall
approximation.
It is implicit in the CDL formalism that some sort of

dilute instanton gas approximation must exist in de Sitter
space-time in order for the instanton action to exponen-
tiate; that is, one expects an approximation of the sort
R� � RdS, in which case the gravitational corrections in
(6) do not give an exponentially small correction to �, in
fact they may be comparable to gravitational corrections
that exist in the preexponential factor. The expression for B
in the opposite limiting case where gravitational effects are
important, when, for example, the bubble radius is compa-
rable to the horizon size, may also be completely different
than the Coleman–De Luccia (CDL) result, such as is the
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case in the critical Hawking-Moss (HM) solution [5]. Thus
the CDL expression has problems in its interpretation in
both limiting cases. Generally, from a strict point of view,
in the weak gravity limit where the gravitational correc-
tions in the exponent are of the same order as the preexpo-
nential factor, which has not been calculated, one may say
that the CDL expression, although natural and reducible to
the flat case result, is not complete.

Another curious coincidence arises when one ponders
the possibility of a thermal interpretation of the gravita-
tional effects, namely, when one considers the fact that de
Sitter space-time has a naturally defined Hawking tempera-
ture,

TdS ¼ H

2�
: (8)

Provided that a suitable frame is chosen, and a thermal
interpretation can be given [32,33], one may expect that,
similarly to the transition from A��4 to A� T4 in the
limit of high temperature, T � 1=R�, in the flat case, a
similar limit may apply in the gravitational case. This
would lead to the approximation A�H4 which is expected
to hold in other cases in the literature [14,15]. However, the
translation of the high temperature approximation in the
CDL case would read H � ��, and it is well known
[34,35] that, when relations like H2 > 4U00 hold, the
CDL instanton does not even exist. One then may expect
that tunneling is described by the HM solution with the
preexponential factor being approximated by H4, again
without much justification.

In view of the possible applications of these results
(cosmological phase transitions, landscape and multiverse
scenarios) one would like to have better descriptions and
quantitative estimates for �. In principle, one expects that

� ¼ dN

d3xdt
¼ ffiffiffiffiffiffiffi�g

p
Að�;�;R;�Þ expð�BÞ (9)

is the general covariant expression for the production of
bubbles of the true vacuum per unit coordinate four-
volume, where g ¼ detg��, A has dimensionality �4 and

is a function of the mass scale� of the theory, the coupling
constants �, the Ricci scalar R, and the cosmological
constant �. Also in this expression, B is a dimensionless
function of the same parameters, and the only constraint
for both A and B is that they reduce to the flat space-time
values in the limit of weak gravity. One would expect a
relation such as (9) to emerge from a saddle point evalu-
ation of a path integral and to be meaningful for the cases
where the bubble radius is much smaller than the horizon;
when they are comparable even an interpretation of (9) is
not straightforward.

It should be noted that gravitational corrections to the
preexponential factor are expected to exist and can be also
estimated in a similar approximation with an entirely
different method that applies the renormalization group
to the CDL expression [16]. As was mentioned in the

Introduction, here I will try to obtain some more insight
into this expression by calculating the first gravitational
corrections to the dynamical factor � (of dimension�) that
appears in (1), as it was calculated in [17]. The kinematical
prefactor� in (1) gives an expression of the form

ffiffiffiffiffiffiffi�g
p

�3

(times again a dimensionless factor that contains gravita-
tional corrections), and similar corrections apply in the
generalization of the free energy of a metastable system
in curved space-time. It is assumed that a thermodynamical
description of the problem can be given in the rest frame of
the fluid and the cosmological expansion can be treated as
a perturbation. This is expected to hold provided that a
characteristic reaction time, �, for the internal fluid inter-
actions is much smaller than H�1. I will also assume that
we are in the limits of the thin-wall approximation in order
to treat H as constant in the calculation, and also to
compare with the CDL results. In principle, however, the
equations can be solved self-consistently with a variableH.
In summary, the approximations that will be assumed

throughout will be that the bubble radius is much smaller
than the horizon, that one is within the limits of the thin-
wall approximation, and that relations like � � H�1 hold.
Naturally also the temperature and mass scales of the
theory are assumed much smaller than the Planck scale.
The physical situation considered is a metastable rela-

tivistic fluid in a spatial extend that is large enough in order
to feel the cosmological expansion, yet small enough in
order to treat it as a perturbation. As such, the results are
not straightforwardly generalized to quantum field theory;
they are intended, however, to provide some insight to
similar considerations. It should be stressed, also, that
what is implied is not a breakdown of the semiclassical
approximations leading to the CDL result, but an interest-
ing dependence of the preexponential factor on the cosmo-
logical expansion rate. This is expected for very small
values of the cosmological constant �, or R� � RdS. It is
suggested that the dependence of � on � (or H) is much
more intricate than what is described by (6) and the asso-
ciated expressions of [36].

III. FIRST GRAVITATIONAL CORRECTIONS TO
LANGER’S THEORY OF METASTABILITY

I will calculate the effects of cosmological expansion
described by a metric

ds2 ¼ �dt2 þ R2ðtÞ½dx2 þ dy2 þ dz2� (10)

on the critical bubble solution for a relativistic metastable
fluid given in [17] which has been used for the description
of the QCD phase transition. There the dynamical growth
rate of the bubble was described by taking into account the
dissipative effects of a fluid with an energy momentum
tensor

T�� ¼ pg�� þ ð	þ pÞu�u� þ ~T�� (11)

with
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~T�� ¼ �
ð@�u� þ @�u� þ u�u
�@�u� þ u�u

�@�u�Þ
� ð� � 2
=3Þð@�u�Þðg�� þ u�u�Þ: (12)

Here 	 and p are the fluid energy density and pressure,
respectively, and u� ¼ ð1; ~vÞ is the four-velocity for a
relativistic fluid. As an additional phenomenological input,
one needs the shear and bulk viscosities, 
 and �
respectively.

The dynamical growth rate, �, is calculated by consid-
ering a spherically symmetric, exponentially growing, per-
turbation

ð ~r; tÞ ¼ ðrÞe�t; (13)

~vð ~r; tÞ ¼ vðrÞe�t; (14)

of the also spherically symmetric metastable configuration
of a critical bubble 	 ¼ �	ðrÞ, ~v ¼ 0. When 	ð~r; tÞ ¼
�	ðrÞ þ ð~r; tÞ and the remaining equations are used in
the equations of motion, self-consistency of the solution
determines �.

As explained before, I will calculate the first gravita-
tional corrections by determining the effects of the Hubble
drag term, H ¼ _R=R, on the results of [17]. Thus, I will
assume that a natural free energy description of the prob-
lem exists in the rest frame of the fluid. Although the
considerations here are similar to works on stability of
classical and solitonic configurations in an expanding uni-
verse [19–21], it is important to realize that we are not
investigating quite the same problem; we are rather inter-
ested in the effects of cosmological expansion on the actual
flat space-time growth rate, �0, of the already unstable
(metastable) solution.

The equations of motion

r�T
�� ¼ 0 (15)

can be solved approximately in two regions: region (I)
which extends from just inside the bubble radius R� to a
few correlation lengths, �, outside the bubble surface, and
region (II) in distances r greater than the bubble radius R�
plus a few correlation lengths. The analysis of [17] shows
that the fluid velocity vðrÞ has the following behavior: it is
very close to zero from the center of the bubble up to a few
�s inside the bubble surface, then it rises abruptly until in
region (I) it starts to fall like 1=r2 and in region (II) it falls
exponentially to zero. This behavior will be modified by
the Hubble drag term, and by matching the two solutions at
r � R�þ a few �s, one obtains the corrected � ¼ �0 þ
��.

The notation is as follows: overbars will denote the
critical bubble solution, subscripts 0 will denote the flat
space-time values, subscripts I and II the respective re-
gions, and � will denote the difference of a quantity
between the equilibrium (subscript t) and the metastable
(subscript f) phase. Also, as before, � will denote the

correlation length and R� the critical bubble radius in the
presence of gravity.
One will also make use of the enthalpy density, w ¼

	þ p, and the bubble surface tension,�, in terms of which
the flat case growth rate has been calculated as [17]

�0 ¼ 4�ð� þ 4
=3Þ
ð�wÞ2R2

0

(16)

and the kinematical prefactor as

�0 ¼ 2

3
ffiffiffi
3

p
�
�

T

�
3=2

�
R0

�

�
4
Vol; (17)

where the volume of the system, Vol, is usually divided out
as in (1).
One expects these relations to carry over in the presence

of gravity, in our approximations, by replacing R0 by R�,
keeping the surface tension � approximately the same in
the thin-wall approximation, and the physical volume of
the system giving a factor of

ffiffiffiffiffiffiffi�g
p

. The cosmological

expansion, however, described by the Hubble drag term,
will give an additional contribution to the dynamical pre-
factor, that can be calculated from the equations of motion.
The � ¼ 0 equation of motion

�ðrÞ ¼ � 1

r2
d

dr
½r2 �wvðrÞ� � 3H �w (18)

gives in region (I)

vIðrÞ ¼ C

r2
þHrþH

R3�
r2

�w

wf

(19)

and the � ¼ i equation of motion can be simplified in
region (II) as

ð�þ 3HÞ �wvðrÞ ¼ ð� þ 4
=3Þ d
dr

�
1

r2
d

dr
½r2vðrÞ�

�
(20)

to give

vIIðrÞ ¼ D

�
�

r
þ 1

r2

�
e��r; (21)

where

�2 ¼ ð�þ 3HÞw
ð� þ 4
=3Þ : (22)

The solutions depend on two constants, C and D, the
matching is done for definiteness at r ¼ R� þ c�, with c a
numerical constant of order unity, and we get another
condition from the fact that, forH ¼ 0, the solution should
be consistent with the previous result (16). The final result
for the corrected � ¼ �0 þ �� is

�� ¼ �0H

ffiffiffiffiffiffi
R�
c�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�ð�wÞ

�

s �
R� þ 1

�0

��
1þ �w

wf

�
: (23)

In order to get an order-of-magnitude estimate for this
result, one can assume that for sufficiently high tempera-
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ture T, one can approximate 
, � � T3=�2, �� T3=� to
finally obtain the estimate for the corrections to the pre-
factor that arise from the dynamical growth rate:

A��3

�
T þ H

�3=2

�
: (24)

We see that the leading effect of the cosmological ex-
pansion has been, indeed, to increase the bubble nucleation

rate, and can be significant when H � �3=2T while, at the
same time, H � �, in accordance with our approxima-
tions. The surface tension was assumed unchanged in the
thin-wall approximation, the correction to the bubble ra-
dius can be estimated from (7), it is also subleading,
however, in the approximation used. It should be noted
that this result will also be modified when gravitational
corrections to �, the critical bubble radius, and surface
tension are incorporated, when one goes beyond the limits
of our approximations. In any case, even when other physi-
cal situations are considered, the corrections estimated
here also exist and can be calculated, for example, by a
self-consistent solution of equations like (18) and (20).
What is more important, and supportive of the arguments
of the previous section, however, is that the corrections
estimated here are different than what is usually assumed
as a naive, dimensional preexponential factor, for example
�4 or T4, and have an interesting dependence on � (or H).

IV. COMMENTS

The main purpose of this work has been to motivate the
suggestion that a fuller treatment of the theory of meta-
stability in curved space-time is needed, in order to supply
the Coleman–De Luccia result with possible additional
gravitational corrections that may provide valuable insight
to applications in cosmological problems.
One way to approach this problem is to attempt a gen-

eralization of Langer’s original theory of statistical meta-
stability. The main difficulties of this approach stem from
the fact that proper definitions of the thermodynamical
quantities are needed, presumably with the use of relativ-
istic kinetic theory in the expanding universe. It was im-
plicitly assumed here that such an extension can be done in
the fluid’s rest frame and the first corrections to the flat
space-time results that were presented show, indeed, the
expected increase in the bubble nucleation rate due to the
cosmological expansion. The fuller treatment of the rela-
tivistic thermodynamics of first-order phase transitions is
expected to give additional contributions to the nucleation
rate, similar to the ones presented here and generally
different than the usually assumed preexponential factor.
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