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A modified-gravity theory is considered with a four-form field strength F, a variable gravitational

coupling parameter GðFÞ, and a standard matter action. This theory provides a concrete realization of the

general vacuum variable q as the four-form amplitude F and allows for a study of its dynamics. The theory

gives a flat Friedmann-Robertson-Walker universe with rapid oscillations of the effective vacuum energy

density (cosmological ‘‘constant’’), whose amplitude drops to zero asymptotically. Extrapolating to the

present age of the Universe, the order of magnitude of the average vacuum energy density agrees with the

observed near-critical vacuum energy density of the present universe. It may even be that this type of

oscillating vacuum energy density constitutes a significant part of the so-called cold dark matter in the

standard Friedmann-Robertson-Walker framework.
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I. INTRODUCTION

In a previous article [1], we proposed to characterize a
Lorentz-invariant quantum vacuum by a nonzero con-
served relativistic ‘‘charge’’ q. This approach allowed us
to discuss the thermodynamics of the quantum vacuum, in
particular, thermodynamic properties as stability and com-
pressibility. We found that the vacuum energy density
appears in two guises.

Themicroscopic vacuum energy density is characterized
by an ultraviolet energy scale, �ðqÞ � E4

UV. For definite-
ness, we will take this energy scale EUV to be close to the

Planck energy scale EPlanck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c5=GN

p � 1:22�
1019 GeV. The macroscopic vacuum energy density is,
however, determined by a particular thermodynamic quan-
tity ~�vacðqÞ � �� qd�=dq, and it is this energy density
that contributes to the effective gravitational field equa-
tions at low energies. For a self-sustained vacuum in full
thermodynamic equilibrium and in the absence of matter,
the effective (coarse-grained) vacuum energy density
~�vacðqÞ is automatically nullified (without fine-tuning) by
the spontaneous adjustment of the vacuum variable q to its
equilibrium value q0, so that ~�vacðq0Þ ¼ 0. This implies
that the effective cosmological constant � of a perfect
quantum vacuum is strictly zero, which is consistent with
the requirement of Lorentz invariance.

The presence of thermal matter makes the vacuum state
Lorentz noninvariant and leads to a readjustment of the
variable q to a new equilibrium value, q00 ¼ q0 þ �q,
which shifts the effective vacuum energy density away
from zero, ~�vacðq0 þ �qÞ � 0. The same happens with

other types of perturbations that violate Lorentz invariance,
such as the existence of a spacetime boundary or an inter-
face. According to this approach, the present value of ~�vac
is nonzero but small because the Universe is close to
equilibrium and Lorentz-noninvariant perturbations of the
quantum vacuum are small (compared with the ultraviolet
scale, which sets the microscopic energy density �).
The situation is different for Lorentz-invariant perturba-

tions of the vacuum, such as the formation of scalar con-
densates as discussed in Ref. [1] or quark/gluon
condensates derived from quantum chromodynamics
(cf. Ref. [2]). In this case, the variable q shifts in such a
way that it completely compensates the energy density of
the perturbation and the effective cosmological constant is
again zero in the new Lorentz-invariant equilibrium
vacuum.
The possible origin of the conserved vacuum charge q in

the perfect Lorentz-invariant quantum vacuum was dis-
cussed in Ref. [1] in general terms. But a specific example
was also given in terms of a four-form field strength F
[3–8]. Here, we use this explicit realization with a four-
form field F to study the dynamics of the vacuum energy,
which describes the relaxation of the vacuum energy den-
sity ~�vac (effective cosmological ‘‘constant’’) from its natu-
ral Planck-scale value at early times to a naturally small
value at late times. In short, the present cosmological
constant is small because the Universe happens to be old.1

The results of the present article show that, for the type
of theory considered, the decay of ~�vac is accompanied by
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1An extensive but nonexhaustive list of references to research
papers and reviews on the so-called ‘‘cosmological constant
problem(s)’’ can be found in Ref. [1]. A recent review on cosmic
‘‘dark energy’’ is given in Ref. [9].
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rapid oscillations of the vacuum variable F and that the
relaxation of ~�vac mimics the behavior of cold dark matter
(CDM) in a standard Friedmann-Robertson-Walker (FRW)
universe. This suggests that part of the inferred CDM may
come from dynamic vacuum energy density and may also
give a clue to the solution of the so-called coincidence
problem [9], namely, why the approximately constant vac-
uum energy density is precisely now of the same order as
the time-dependent CDM energy density.

These results are obtained by the following steps. In
Sec. II, a modified-gravity theory with a four-form field
F is defined in terms of general functions for the micro-
scopic energy density �ðFÞ and variable gravitational cou-
pling parameter GðFÞ. In Sec. III, the dynamics of the
corresponding de Sitter universe without matter is dis-
cussed and, in Sec. IV, the dynamics of a flat FRWuniverse
with matter, using simple Ansätze for the functions �ðFÞ
and GðFÞ. In Sec. V, the approach to equilibrium in such a
FRWuniverse is studied in detail and the above-mentioned
vacuum oscillations are established. In Sec. VI, the main
results are summarized.

II. GRAVITY WITH F FIELD AND VARIABLE
GRAVITATIONAL COUPLING

Here, and in the following, the vacuum variable q is
represented by a four-form field F.2 The corresponding
action is given by a generalization of the action in which
only a quadratic function of F is used (see, e.g., Refs. [3–
8]). Such a quadratic function gives rise to a gas-like
vacuum [1]. But a gas-like vacuum cannot exist in equi-
librium without external pressure, as the equilibrium vac-
uum charge vanishes, q0 ¼ 0. A self-sustained vacuum
requires a more complicated function �ðFÞ in the action,
so that the equilibrium at zero external pressure occurs for
q0 � 0. An example of an appropriate function �ðFÞ will
be given in Sec. IVB.

The action is chosen as in Ref. [1], but with one im-
portant modification: Newton’s constant GN is replaced by
a gravitational coupling parameter G, which is taken to
depend on the state of the vacuum and thus on the vacuum
variable F. Such aGðFÞ dependence is natural and must, in
principle, occur in the quantum vacuum. Moreover, aGðFÞ
dependence allows the cosmological ‘‘constant’’ to change
with time, which is otherwise prohibited by the Bianchi
identities and energy-momentum conservation [10,11].

Specifically, the action considered takes the following
form (@ ¼ c ¼ 1):

S½A; g;  � ¼ �
Z
R4
d4x

ffiffiffiffiffiffi
jgj

q �
R

16�GðFÞ þ �ðFÞ þLMð Þ
�
;

(2.1a)

F2 � � 1

24
F����F

����; F���� � r½�A����;

(2.1b)

F���� ¼ Fe����

ffiffiffiffiffiffi
jgj

q
F���� ¼ Fe����=

ffiffiffiffiffiffi
jgj

q
;

(2.1c)

where r� denotes a covariant derivative and a square

bracket around spacetime indices complete antisymmetri-
zation. The functional dependence on g has been kept
implicit on the right-hand side of (2.1a) showing only the
dependence on F ¼ FðA; gÞ and  . The field  in (2.1a)
stands, in fact, for a generic low-energy matter field with a
scalar Lagrange density LMð Þ, which is assumed to be
without F-field dependence (this assumption can be re-
laxed later by changing the low-energy constants in LM to
F-dependent parameters). It is also assumed that a possible
constant term �M in LMð Þ has been absorbed in �ðFÞ, so
that, in the end, LMð Þ contains only  -dependent terms.
In this section, the low-energy fields are indicated by
lower-case letters, namely, g��ðxÞ and  ðxÞ, whereas the
fields originating from the microscopic theory are indi-
cated by upper-case letters, namely, AðxÞ and FðxÞ [later
also �ðxÞ]. Throughout, we use the conventions of
Ref. [10], in particular, those for the Riemann tensor and
the metric signature ð� þþþÞ.
The variation of the action (2.1a) over the three-form

gauge field A gives the generalized Maxwell equation

r�

� ffiffiffiffiffiffi
jgj

q F����

F

�
d�ðFÞ
dF

þ R

16�

dG�1ðFÞ
dF

��
¼ 0; (2.2)

and the variation over the metric g�� gives the generalized

Einstein equation

1

8�GðFÞ
�
R�� � 1

2
Rg��

�
þ 1

16�
F
dG�1ðFÞ
dF

Rg��

þ 1

8�
ðr�r�G

�1ðFÞ � g��hG
�1ðFÞÞ

� ~�ðFÞg�� þ TM
�� ¼ 0; (2.3)

where h is the invariant d’Alembertian, TM
�� the energy-

momentum tensor of the matter field  , and ~� the effective
vacuum energy density

~�ðFÞ � �ðFÞ � F
d�ðFÞ
dF

; (2.4)

whose precise form has been argued on thermodynamic
grounds in Ref. [1].
At this point two remarks may be helpful. First, observe

that the action (2.1a) is not quite the one of Brans-Dicke
theory [10,12], as the argument of GðFÞ is not a funda-

2To clarify our notation, a four-form field has components
F����ðxÞ, which can always be written as e����

ffiffiffiffiffiffiffiffiffiffiffiffijgðxÞjp
FðxÞ, in

terms of the constant Levi-Civita symbol e����, the determinant
of the metric gðxÞ � detg��ðxÞ, and a real scalar field FðxÞ.
Hence, we can simply write F if we speak about the four-form
field. However, this scalar field FðxÞ is not fundamental, as will
become clear later.
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mental scalar field but involves the inverse metric [needed
to change the covariant tensor F���� into a contravariant

tensor F���� for the definition of F �
ffiffiffiffiffiffi
F2

p
according to

(2.1b)]. This implicit metric dependence of GðFÞ explains
the origin of the second term on the left-hand side of (2.3).
Second, observe that the three-form gauge field A does not
propagate physical degrees of freedom in flat spacetime
[3,8]. Still, A has gravitational effects, both classically in
the modified-gravity theory withG ¼ GðFÞ as discussed in
the present article (see, in particular, Sec. VE) and quan-
tum mechanically already in the standard gravity theory
with G ¼ GN (giving, for example, a nonvanishing gravi-
tational trace anomaly [3]).

Using (2.1c) for F����, we obtain the Maxwell Eq. (2.2)
in the form

@�

�
d�ðFÞ
dF

þ R

16�

dG�1ðFÞ
dF

�
¼ 0: (2.5)

The solution is simply

d�ðFÞ
dF

þ R

16�

dG�1ðFÞ
dF

¼ �; (2.6)

with an integration constant �. Hence, the constant � is
seen to emerge dynamically. In a thermodynamic equilib-
rium state, this constant becomes a genuine chemical
potential corresponding to the conservation law obeyed
by the vacuum ‘‘charge’’ q � F. Indeed, the integration
constant � is, according to (2.6), thermodynamically con-
jugate to F in an equilibrium state with vanishing Ricci
scalar R.

Eliminating dG�1=dF from (2.3) by use of (2.6), the
generalized Einstein equation becomes

1

8�GðFÞ
�
R��� 1

2
Rg��

�
þ 1

8�
ðr�r�G

�1ðFÞ
� g��hG

�1ðFÞÞ � ð�ðFÞ ��FÞg��þ TM
�� ¼ 0; (2.7)

which will be used in the rest of this article, together with
(2.6).

Equations (2.6) and (2.7) can also be obtained if we use,
instead of the original action, an effective action in terms of
a Brans-Dicke-type scalar field �ðxÞ with mass dimension
2, setting �ðxÞ ! FðxÞ afterwards. Specifically, this effec-
tive action is given by

Seff½�; �; g;  � ¼ �
Z
R4
d4x

ffiffiffiffiffiffi
jgj

q �
R

16�Gð�Þ
þ ð�ð�Þ ���Þ þLMð Þ

�
: (2.8)

The potential term in (2.8) contains, different from a con-
ventional Brans-Dicke potential Vð�Þ, a linear term���
for a constant � of mass dimension 2. This linear term
reflects the fact that our effective scalar field � is not an
arbitrary field but should be a conserved quantity, for

which the constant parameter � plays the role of a chemi-
cal potential that is thermodynamically conjugate to �.
Indeed, if � in (2.8) is replaced by a four-form field F

given in terms of the three-form potential A, the resulting
�F term in the effective action does not contribute to the
equations of motion (2.2), because it is a total derivative

Z
R4
d4x

ffiffiffiffiffiffi
jgj

q
�F ¼ � �

24
e����

Z
R4
d4xF����; (2.9)

where the constant � plays the role of a Lagrange multi-
plier related to the conservation of vacuum ‘‘charge’’ F
(see also the discussion in Refs. [4,6], where � is com-
pared with the � parameter of quantum chromodynamics).
Instead of the large microscopic energy density �ðFÞ in

the original action (2.1a), the potentially smaller macro-
scopic vacuum energy density 	V � �ðFÞ ��F enters the
effective action (2.8). Precisely this macroscopic vacuum
energy density gravitates and determines the cosmological
term in the gravitational field Eq. (2.7).
Equations (2.6) and (2.7) are universal: they do not

depend on the particular origin of the vacuum field F.
The F field can be replaced by any conserved variable q,
as discussed in Ref. [1]. Observe that, for thermodynamics,
the parameter � is the quantity that is thermodynamically
conjugate to q and that, for dynamics,� plays the role of a
Lagrange multiplier. The functions �ðqÞ and GðqÞ can be
considered to be phenomenological parameters in an ef-
fective low-energy theory (see also the general discussion
in the Appendix of Ref. [13]).
Before we turn to the cosmological solutions of our

particular F theory (2.1), it may be useful to mention the
connection with so-called fðRÞ models, which have re-
cently received considerable attention (see, e.g.,
Refs. [14,15] and references therein). The latter are purely
phenomenological models, in which the linear function of
the Ricci scalar R from the Einstein-Hilbert action term is
replaced by a more general function fðRÞ. This function
fðRÞ can, in principle, be adjusted to fit the astronomical
observations and to produce a viable cosmological model.
Returning to our F theory, we can express F in terms of R
by use of (2.6) and substitute the resulting expression FðRÞ
into (2.7). This gives an equation for the metric field, which
is identical to the one of fðRÞ cosmology. (The latter result
is not altogether surprising as the metric FðRÞ model is
known to be equivalent to a Brans-Dicke model without
kinetic term [15], and the same holds for our effective
action (2.8) at the classical level.) In this way, the F theory
introduced in this section (or, more generally, q theory as
mentioned in the previous paragraph) may give a micro-
scopic justification for the phenomenological fðRÞ models
used in theoretical cosmology and may allow for a choice
between different classes of model functions fðRÞ based on
fundamental physics.
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III. DE SITTER EXPANSION

Let us, first, consider stationary solutions of the gener-
alized Maxwell-Einstein equations from the effective ac-
tion (2.8). At this moment, we are primarily interested in
the class of spatially flat, homogeneous, and isotropic
universes. In this class, only the matter-free de Sitter uni-
verse is stationary.

The de Sitter universe is characterized by a time-
independent Hubble parameter H (that is, a genuine
Hubble constant H), which allows us to regard this uni-
verse as a thermodynamic equilibrium system. Using

R�� ¼ 1

4
g��R; R ¼ �12H2; (3.1)

we get from (2.6) and (2.7) two equations for the constants
F and H:

�
d�ðFÞ
dF

��

�
¼ 3H2

4�

dG�1ðFÞ
dF

; (3.2a)

ð�ðFÞ ��FÞ ¼ 3H2

8�
G�1ðFÞ; (3.2b)

with � considered given.
Eliminating the chemical potential � from the above

equations, we find the following equation for F:

~�ðFÞ � �ðFÞ � F
d�ðFÞ
dF

¼ 3H2

8�

�
G�1ðFÞ � 2F

dG�1ðFÞ
dF

�
; (3.3)

where the functions �ðFÞ and G�1ðFÞ are assumed to be
known.

The perfect quantum vacuum corresponds to H ¼ 0 and
describes Minkowski spacetime. The corresponding equi-
librium values F ¼ F0 and� ¼ �0 in the perfect quantum
vacuum are determined from the following equations:

�ðF0Þ � F
d�ðFÞ
dF

��������F¼F0

¼ 0; �0 ¼ d�ðFÞ
dF

��������F¼F0

;

(3.4)

which are obtained from (2.6) and (2.7) by recalling that
the perfect quantum vacuum is the equilibrium vacuum in
the absence of matter and gravity fields (TM

�� ¼ R ¼ 0).

If H is nonzero but small compared with the Planck
energy scale, the H2 term on the right-hand side of (3.3)
can be considered as a perturbation. Then, the correction
�F ¼ F� F0 due to the expansion is given by

�F

F0

¼ � 3

8�

ðF0ÞH2

�
G�1ðF0Þ � 2F

dG�1ðFÞ
dF

��������F¼F0

�
;

(3.5)

where 
ðF0Þ is the vacuum compressibility introduced in
Ref. [1],


ðF0Þ �
�
F2 d

2�ðFÞ
dF2

��������F¼F0

��1
: (3.6)

Equally, the chemical potential is modified by the expan-
sion (H � 0)

� ¼ �0 þ �� ¼ d�ðFÞ
dF

��������F¼F0

� 3H2

8�GðF0ÞF0

: (3.7)

But, instead of fixing H, it is also possible to fix the
integration constant�. From (3.2), we then obtain the other
parameters as functions of �: Hð�Þ, Fð�Þ, and 	Vð�Þ �
�ð�Þ ��Fð�Þ. The cosmological constant �ð�Þ �
	Vð�Þ is zero for � ¼ �0, which corresponds to thermo-
dynamic equilibrium in the absence of external pressure
and expansion [Pexternal ¼ Pvacð�0Þ ¼ ��ð�0Þ ¼ 0].
From now on, the physical situation considered will be
the one determined by having a fixed chemical potential�.
The de Sitter universe is of interest because it is an

equilibrium system and, therefore, may serve as the final
state of a dynamic universe with matter included (see
Sec. V).

IV. DYNAMICS OF A FLAT FRW UNIVERSE

A. General equations

The discussion of this section and the next is restricted to
a spatially flat FRW universe, because of two reasons. The
first reason is that flatness is indicated by the data from
observational cosmology (cf. Refs. [9,16–20] and referen-
ces therein). The second reason is that flatness is a natural
property of the quantum vacuum in an emergent gravity
theory (cf. Ref. [1] and references therein). In addition, the
matter energy-momentum tensor for the model universe is
taken as that of a perfect fluid characterized by the energy
density 	M and isotropic pressure PM. As mentioned in the
previous section, the physics of the F field is considered to
be specified by a fixed chemical potential �.
For a spatially flat (k ¼ 0) FRW universe [10] with

expansion factor aðtÞ, the homogenous matter has, in gen-
eral, a time-dependent energy density 	MðtÞ and pressure
PMðtÞ. Equally, the scalar field entering the four-form field-
strength tensor (2.1c) is taken to be homogenous and time
dependent, F���� ¼ FðtÞjaðtÞj3e����.
With a time-dependent Hubble parameter HðtÞ �

ðda=dtÞ=a, we then have from the reduced Maxwell
Eq. (2.6)

3

8�

dG�1

dF

�
dH

dt
þ 2H2

�
¼ d�

dF
��; (4.1)

and from the Einstein Eq. (2.7)
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H2 ¼ 8�

3
G	tot �HG

dG�1

dt
; (4.2a)

2
dH

dt
þ 3H2 ¼ �8�GPtot � 2HG

dG�1

dt
�G

d2G�1

dt2
;

(4.2b)

with total energy density and pressure

	tot � 	V þ 	M; Ptot � PV þ PM; (4.3)

for the effective vacuum energy density

	VðFÞ ¼ �PVðFÞ ¼ �ðFÞ ��F: (4.4)

With definition (4.4), the reduced Maxwell Eq. (4.1) can
be written as

_	 V ¼ 3

8�

dG�1

dt
ð _H þ 2H2Þ; (4.5)

where the overdot stands for differentiation with respect to
cosmic time t. The above equations give automatically
energy conservation of matter

_	M þ 3HðPM þ 	MÞ ¼ 0; (4.6)

as should be the case for a standard matter field  (recall
thatr�TM

�� ¼ 0 follows from the invariance of SM½g��;  �
under general coordinate transformations; cf. Appendix E
of Ref. [11]).

B. Model for �ðFÞ
The equations of Sec. IVA allow us to study the devel-

opment of the Universe from very small (near-Planckian)
time scales to macroscopic time scales. Because the re-
sults do not depend very much on the details of the func-
tions �ðFÞ and GðFÞ, it is possible to choose the simplest
functions for an exploratory investigation. The only re-
quirements are that the vacuum is self-sustained [i.e.,
(3.4) has a solution with nonzero F0] and that the vacuum
is stable [i.e., the vacuum compressibility (3.6) is positive,

ðF0Þ>0].

A simple choice for the function �ðFÞ is

�ðFÞ ¼ 1

2


�
�F2

F2
0

þ F4

3F4
0

�
; (4.7)

where 
> 0 is a constant parameter (vacuum compressi-
bility) and F0 the value of F in a particular equilibrium
vacuum satisfying (3.4). The equilibrium value of the
chemical potential� in the perfect vacuum is then given by

�0 ¼ � 1

3
F0

: (4.8)

The microscopic parameters F0 and 
 are presumably
determined by the Planck energy scale, jF0j � E2

Planck and


� 1=�ðF0Þ � 1=E4
Planck. From (4.8), we then see that

j�0j � jF0j. Let us now rewrite our equations in micro-
scopic (Planckian) units by introducing appropriate dimen-

sionless variables f, y, u, k, h, and �

F ¼ fF0; y � f� 1; (4.9a)

� ¼ u


F0

; G�1ðFÞ ¼ kðfÞjF0j; (4.9b)

H ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffi

jF0j

q
; t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi

jF0j

q
; (4.9c)

where the variable y has been introduced in anticipation of
the calculations of Sec. V. The corresponding normalized
vacuum and matter energy densities are defined as follows:

	V;M ¼ rV;M



; (4.10)

and Ansatz (4.7) gives

rV ¼ 1

2

�
�f2 þ 1

3
f4
�
� uf; (4.11)

with u ¼ u0 ¼ �1=3 from (4.8).
From the Maxwell Eq. (4.1), the Friedmann Eq. (4.2a),

and the matter conservation Eq. (4.6), we finally obtain a
closed system of three ordinary differential equations
(ODEs) for the three dimensionless variables h, f, and rM

3

8�

dk

df

�
dh

d�
þ 2h2

�
¼ drV

df
; (4.12a)

3

8�

�
h
dk

df

df

d�
þ kh2

�
¼ rV þ rM; (4.12b)

drM
d�

þ 3hð1þ wMÞrM ¼ 0; (4.12c)

with matter equation-of-state (EOS) parameter wM �
PM=	M.

C. Model for GðFÞ
Next, we need an appropriate Ansatz for the function

GðFÞ or the dimensionless function gðfÞ � 1=kðfÞ in mi-
croscopic units. There are several possible types of behav-
ior for GðFÞ, but we may reason as follows.
It is possible that for F2 � F2

0 (i.e., in the gas-like

vacuum) the role of the Planck scale is played by EPðFÞ �
j�ðFÞj1=4 � jFj1=2. The gravitational coupling parameter
would then be given by

1

GðFÞ � E2
PðFÞ � jFj; jFj � jF0j: (4.13)

This equation also gives the correct estimate for GðFÞ in
the equilibrium vacuum 1=GðF0Þ � E2

PlanckðF0Þ � jF0j, ac-
cording to the estimates given a few lines below (4.8).
Thus, a simple choice for the function G�1ðFÞ is

G�1ðFÞ ¼ sjFj; kðfÞ ¼ sf; (4.14)

with f taken positive (in fact, f� 1 for F� F0) and a
single time-independent dimensionless parameter s also
taken positive.
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Assuming (4.14), the three ODEs (4.12) become

�

�
dh

d�
þ 2h2

�
¼ drV

df
; (4.15a)

�

�
h
df

d�
þ fh2

�
¼ rV þ rM; (4.15b)

drM
d�

þ 3hð1þ wMÞrM ¼ 0; (4.15c)

with rV ¼ rVðfÞ given by (4.11) and a single free parame-
ter� � 3s=8�. This dimensionless parameter� is of order
1 if the physics of F field is solely determined by the
Planck energy scale (i.e., for F2

0 � 1=
��2
0 � E4

Planck).

Anyway, the parameter� can be absorbed in h and � by the
redefinition h! h=

ffiffiffiffi
�

p
and �! �

ffiffiffiffi
�

p
. Henceforth, we set

� ¼ 1 in (4.15), so that there are no more free parameters
except for the EOS parameter wM (taken to be time inde-
pendent in the analysis of the next section).

V. EQUILIBRIUM APPROACH IN A FLAT FRW
UNIVERSE

A. Equations at the equilibrium point � ¼ �0

Equations (4.15a)–(4.15c) allow us to study the evolu-
tion of the flat FRW universe toward a stationary state, if
the initial universe was far away from equilibrium. The
final state can be either the de Sitter universe of Sec. III
with 	M ¼ 0 and 	V � 0 or the perfect quantum vacuum
(Minkowski spacetime) with H ¼ 	M ¼ 	V ¼ 0 and f ¼
1. Here, we consider the latter possibility where the system
approaches one of the two perfect quantum vacuum states
with f ¼ 1, which correspond to either F ¼ þjF0j or F ¼
�jF0j for vacuum energy density (4.7).

Such an equilibrium vacuum state can be reached only if
the chemical potential � corresponds to full equilibrium
� ¼ �0 as given by (4.8) or u ¼ u0 ¼ �1=3 in micro-
scopic units (4.9b). Since� is an integration constant, there
may be a physical reason for the special value �0. Indeed,
the starting nonequilibrium state could, in turn, be obtained
by a large perturbation of an initial equilibrium vacuum. In
this case, the integration constant would remember the
original perfect equilibrium. (The evolution toward a
de Sitter universe for � � �0 will be only briefly dis-
cussed in Sec. VD.)

In order to avoid having to consider quantum corrections
to the Einstein equation, which typically appear near the
time �� 1 (or t� tPlanck � @=EPlanck), we consider times
�� 1, where the quantum corrections can be expected to
be small. For these relatively large times, f is close to
unity, and we may focus on the deviation from equilibrium
as given by the variable y defined in (4.9a).

Taking the time derivative of (4.15b) for � ¼ 1 and
using (4.15a) and (4.15c), we obtain

€y� _yhþ 2ð1þ yÞ _h ¼ �3ð1þ wMÞrM; (5.1)

where, from now on, the overdot stands for differentiation

with respect to �. Next, eliminate the matter density rM
from Eqs. (4.15b) and (5.1), in order to obtain a system of
two equations for the two variables y and h:

€y� _yhþ 2ð1þ yÞ _h¼�3ð1þwMÞ½ _yhþ ð1þ yÞh2 � rV�:
(5.2a)

_hþ 2h2 ¼ drV
dy

; (5.2b)

where the last equation corresponds to (4.15a) for � ¼ 1.
The dimensionless vacuum energy density (4.11) for the
dimensionless equilibrium chemical potential u ¼ u0 ¼
�1=3 is given by

rV ¼ 1

2
y2 þ 2

3
y3 þ 1

6
y4; (5.3)

which obviously vanishes in the equilibrium state y ¼ 0.
In order to simplify the analysis, we, first, consider

matter with a nonzero time-independent EOS parameter

wM > 0; (5.4)

so that the matter energy density from (4.15c) can be
neglected asymptotically, as will become clear later on.

B. Vacuum oscillations

Close to equilibrium, Eqs. (5.2a) and (5.2b) can be
linearized

€yþ 2 _h ¼ 0; _h ¼ y: (5.5)

The solution of these equations describes rapid oscillations
near the equilibrium point

y ¼ y0 sin!�; h ¼ h0 � y0
!

cos!�; (5.6a)

rV ¼ 1

2
y20sin

2!�; !2 ¼ 2: (5.6b)

The (dimensionless) oscillation period of y and h is given
by

�0 ¼ 2�=! ¼ �
ffiffiffi
2

p � 4:44: (5.7)

The corresponding oscillation period of the vacuum energy
density rV is smaller by a factor 2, so that numerically this
period is given by �0=2 � 2:22. Both oscillation periods
will be manifest in the numerical results of Sec. VD.

C. Vacuum energy decay

The neglected quadratic terms in Eqs. (5.2a) and (5.2b)
provide the slow decay of the amplitudes in (5.6), namely,
the f-field oscillation amplitude y0ð�Þ, the Hubble term
h0ð�Þ, and the vacuum energy density averaged over fast
oscillations hrVi ¼ y20ð�Þ=4.
The explicit behavior is found by expanding the func-

tions yð�Þ and hð�Þ in powers of 1=� and keeping terms up
to 1=�2
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y ¼ bð�Þ
�

þ cð�Þ
�2

; h ¼ lð�Þ
�

þmð�Þ
�2

; (5.8a)

_y ¼
_b

�
þ _c� b

�2
; _h ¼

_l

�
þ _m� l

�2
; (5.8b)

€y ¼
€b

�
þ €c� 2 _b

�2
; (5.8c)

where the equality sign has been used rather freely.
Collecting the 1=� terms, we get homogeneous linear
equations for bð�Þ and lð�Þ, which are actually the same
as the linear ODEs (5.5) with y replaced by b and h
replaced by l. The solution of these equations is given by
(5.6) with the same replacements

bð�Þ ¼ b0 sin!�; lð�Þ ¼ l0 � b0
!

cos!�; !2 ¼ 2;

(5.9)

where l0 and b0 are numerical coefficients, which ulti-
mately determine the decay of hð�Þ and rVð�Þ.

In order to obtain these coefficients, we must collect the
1=�2 terms. This leads to inhomogeneous linear equations
for the functions mð�Þ and cð�Þ. The consistency of these
equations determines the coefficients l0 and b0. It suffices
to keep only the zeroth and first harmonics in the functions
mðtÞ and cðtÞ:
mð�Þ ¼ mð1Þ sin!�; cðtÞ ¼ cð0Þ þ cð1Þ cos!�: (5.10)

As a result, we obtain the following equations formð�Þ and
cð�Þ

_m� c ¼
�
l0 � 2l20 þ

1

2
b20

�
þ b0
!

ð4l0 � 1Þ cos!�;
(5.11a)

2 _mþ €c ¼
�
2l0 � 3

2
b20 � 3ð1þ wMÞ

�
l20 �

1

2
b20

��

þ b0!ðl0 þ 1Þ cos!�: (5.11b)

From the consistency of these equations for the first har-
monics of m and c, we obtain

4l0 � 1 ¼ l0 þ 1; (5.12)

which gives l0 ¼ 2=3. Similarly, we find from the zeroth
harmonic of (5.11b)

wM

�
4

3
� 3

2
b20

�
¼ 0; (5.13)

which, for wM � 0, gives b0 ¼ 2
ffiffiffi
2

p
=3 ¼ !l0.

The above results for the coefficients l0 and b0 hold for
the generic case wM > 0, as stated in (5.4). For the special
case wM ¼ 0, inspection of (4.15) shows that the same
Ansätze for yð�Þ and hð�Þ can be used, but with the follow-
ing coefficients:

l0 ¼ 2=3; b0 ¼ dM!l0; (5.14a)

dM ¼ 1þ �wM;0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð9=4ÞrM1

q
� 1Þ; (5.14b)

where a Kronecker delta has been employed in the expres-
sion for the damping factor dM and the coefficient rM1 of
the wM ¼ 0 asymptotic energy density rM � rM1=�2 has
been assumed to be less than 4=9.
Altogether, we have the following behavior of yð�Þ,

hð�Þ, and rVð�Þ for �! 1:

y� 2

3
dM

ffiffiffi
2

p
�

sin!�; (5.15a)

h� 2

3

1

�
ð1� dM cos!�Þ; (5.15b)

rV � 4

9
d2M

1

�2
sin2!�; (5.15c)

with dimensionless frequency! ¼ ffiffiffi
2

p
and damping factor

dM given by (5.14b). This asymptotic solution has some
remarkable properties (in a different context, the same
oscillatory behavior of h has been found in Ref. [21]; see
also the discussion in the last paragraph of Sec. II). First,
the solution depends rather weakly on the parameter wM of
the matter EOS, which is confirmed by the numerical
results of the next subsection. Second, the average value
of the vacuum energy density decays as hrVi / 1=�2 and
the average value of the Hubble parameter as hhi / 1=�,

while the average scale parameter increases as hað�Þi /
�2=3. Combined, the average vacuum energy density is
found to behave as hrVi / 1=a3, which is the same behav-
ior as that of CDM in a standard FRW universe, as will be
discussed further in Sec. VE.

D. Numerical results

For ultrarelativistic matter (wM ¼ 1=3), chemical poten-
tial � ¼ �0, and parameter � ¼ 1, the numerical solution
of the coupled ODEs (4.15a)–(4.15c) is given in Figs. 1 and
2. The behavior near �� 1 is only indicative, as significant
quantum corrections to the classical Einstein equation can
be expected (cf. Sec. VA). Still, the numerical results show
clearly that
(i) the equilibrium vacuum is approached asymptoti-

cally (f ! 1 for �! 1);
(ii) the FRW universe (averaged over time intervals

larger than the Planck-scale oscillation period)

does not have the expected behavior a / �1=2 for

ultrarelativistic matter but rather a / �2=3;
(iii) the same a / �2=3 behavior occurs if there is initially

nonrelativistic matter, as demonstrated by Figs. 3
and 4 for a relatively small initial energy density
and by Fig. 5 for a relatively large initial energy
density;

(iv) for a chemical potential� slightly different from the
equilibrium value�0, the vacuum decay is displayed
in Fig. 6.
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The first three items of the above list of numerical results
confirm the previous asymptotic analytic results of
Sec. VC (these asymptotic results predict, in fact, oscil-
lations between [0, 1] for the particular combinations
shown on the bottom-row panels of Figs. 1–5), while the
last item shows that, after an initial oscillating stage, the
model universe approaches a de Sitter stage (see, in par-
ticular, the middle panel of the second row of Fig. 6).

E. Effective CDM-like behavior

The main result of the previous two subsections can be
summarized as follows: the oscillating vacuum energy
density 	V½FðtÞ� and the corresponding oscillating gravi-
tational coupling parameter G½FðtÞ� conspire to give the
same Hubble expansion as pressureless matter (e.g., CDM)
in a standard FRW universe with fixed gravitational cou-
pling constant G ¼ GN. Recall that the standard behavior

FIG. 2. Same as Fig. 1 but over a longer time.

FIG. 1. Flat FRW universe with scale factor að�Þ, Hubble parameter hð�Þ � ðda=d�Þ=a, ultrarelativistic-matter energy density
	Mð�Þ, dynamic vacuum energy density 	VðFÞ controlled by the vacuum variable F ¼ Fð�Þ, and variable gravitational coupling
parameter G ¼ GðFÞ. All variables are scaled to become dimensionless and are denoted by lower-case Latin letters, for example,
rV ¼ rVðfÞ and g ¼ gðfÞ. The specific choices for rVðfÞ and gðfÞ are given by (4.11) at chemical potential u ¼ u0 ¼ �1=3 and by
(4.14), respectively. The parameters of the coupled ODEs (4.15) are chosen as ð�;wMÞ¼ ð1;1=3Þ and the boundary conditions at � ¼ 1
are ða; h; f; rMÞ ¼ ð1; 1=2; 1=2; 1=20Þ. The effective parameter �BB in the middle panel of the top row has been set to the value �3.
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of the CDM energy density is given by 	CDMðtÞ / aðtÞ�3 /
t�2, which matches the average behavior found in (5.15).

The explanation is as follows. The average values of the
rapidly oscillating vacuum energy density and vacuum
pressure act as a source for the slowly varying gravitational
field. The rapidly oscillating parts of h and y�f�1 in the
linearized Eq. (5.5) correspond to a dynamic system with
Lagrangian density 1

2ð _yÞ2� 1
2!

2y2 for a time-dependent

homogenous field y¼yðtÞ. The F (or y) field has no

explicit kinetic term in the action (2.1a), but derivatives
of F appear in the generalized Einstein Eq. (2.7) via terms
with covariant derivatives of G�1ðFÞ, which trace back to
the Einstein-Hilbert-like term R=GðFÞ in (2.1a). In a way,
the effective Lagrange density 1

2ð _yÞ2� 1
2!

2y2 can be said to

be induced by gravity. The pressure of this rapidly oscillat-
ing field y is now given by P ¼ 1

2 ð _yÞ2 � 1
2!

2y2. In turn, this

implies that the rapidly oscillating vacuum pressure is zero
on average and that the main contribution of the oscillating

FIG. 3. Flat FRW universe with nonrelativistic-matter energy density rM, dynamic vacuum energy density rVðfÞ controlled by the
dimensionless vacuum variable f, and variable gravitational coupling parameter g ¼ gðfÞ. The parameters are chosen as ðu; �;wMÞ ¼
ð�1=3; 1; 0Þ and the boundary conditions at � ¼ 1 are ða; h; f; rMÞ ¼ ð1; 1=2; 1=2; 1=200Þ. The effective parameter �BB in the middle
top-row panel has been set to the value�3. The matter effects on the oscillation amplitudes of the bottom-row panels are small, as the
damping factor dM is close to 1, namely, dM � 0:986 from (5.14b) with rM1 � 0:0125 [compare to the values of Fig. 5].

FIG. 4. Same as Fig. 3 but over a longer time.
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vacuum energy density behaves effectively as cold dark
matter.3

Observe that, while the F field itself has an EOS pa-
rameter w ¼ �1 corresponding to vacuum energy density,
the net effect of the dampened F oscillations is to mimic
the evolution of cold dark matter with w ¼ 0 in a standard
flat FRW universe. As mentioned before, this effective
EOS parameter w ¼ 0 is induced by the interaction of
the F and gravity fields.

An outstanding task is to establish the clustering prop-
erties of this type of oscillating vacuum energy density.
A priori, we may expect the same properties as CDM,
because the relevant astronomical length scales are very
much larger than the ultraviolet length scales that deter-
mine the microscopic dynamics of the vacuum energy
density. But surprises are, of course, not excluded.

F. Extrapolation to large times

In Secs. VC and VD, we have established that the
average vacuum energy density decreases quadratically
with cosmic time. This behavior follows, analytically,
from (5.15c) and, numerically, from the bottom-right pan-
els of Figs. 2, 4, and 5.

Extrapolating this evolution to the present age of the
Universe (tnow � 10 Gyr) and using jF0j ¼ s�1G�1ðF0Þ �
3=ð8�GNÞ for � � 3s=8� ¼ 1, the numerical value of the
average vacuum energy density is given by

h	VðtnowÞi � jF0j
t2now

� E2
Planck

t2now
¼

�
tPlanck
tnow

�
2
E4
Planck

� ð4� 10�3 eVÞ4
�
1010 yr

tnow

�
2
; (5.16)

for tPlanck ¼ 1=EPlanck � 5� 10�44 s. The order of magni-
tude of the above estimate is in agreement with the ob-
served vacuum energy density of the present universe,
which is close to the critical density of a standard FRW
universe (cf. Refs. [17,20] and references therein). If the
behavior found had been h	Vi / t�n for an integer n � 2,
this agreement would be lost altogether. In other words, the
dynamic behavior established in (5.15c) is quite nontrivial.
Let us expand on the previous remarks. For a standard

flat FRW universe, the total energy density is, of course,
always equal to the critical density 	c � 3H2=ð8�GNÞ.
But, here, the gravitational coupling parameter is variable,
G ¼ GðtÞ, and there are rapid oscillations, so that, for
example, hHi2 � hH2i. This explains the following result
for the case of a nonzero matter EOS parameter (wM > 0):

lim
t!1

h	Vi
3hHi2=ð8�hGiÞ ¼

1

2
; (5.17)

which is of order 1 but not exactly equal to 1. For non-
relativistic matter (wM ¼ 0), the right-hand side of (5.17) is

FIG. 5. Same as Figs. 3 and 4 but with a larger initial density of nonrelativistic matter. Specifically, the parameters are ðu; �;wMÞ ¼
ð�1=3; 1; 0Þ and the boundary conditions at � ¼ 1 are ða; h; f; rMÞ ¼ ð1; 1=2; 1=2; 1=2Þ. Plotted on the bottom row are in the left panel:
1=2þ ð1=dMÞð3=4Þð1=

ffiffiffi
2

p Þ�ðf� 1Þ, in the middle panel: ½ð3=2Þ�ðda=d�Þ=aþ dM � 1�=ð2dMÞ, and in the right panel: ð1=d2MÞ�
ð9=4Þ�2rV, for damping factor dM � 0:590 from (5.14b) with rM1 � 0:290.

3It is known that a rapidly oscillating homogeneous scalar field
in a standard FRW universe corresponds to pressureless matter
(cf. Sec. 5.4.1 of Ref. [16]), but, in our case, matter plays only a
secondary role compared with vacuum energy. Moreover, the
oscillating scalar field gives an oscillating term in hð�Þ, which is
subleading (of order 1=�2), whereas the oscillating term in
(5.15b) is already of order 1=�.
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multiplied by a further reduction factor d2M ¼ 1�
ð9=4ÞrM1, according to the results of Sec. VC.

Even though the order of magnitude of (5.16) or (5.17)
appears to be relevant to the observed universe, the 1=t2

behavior of h	Vi contradicts the current astronomical data
on ‘‘cosmic acceleration’’ [9,18,19]. A related problem is

the CDM-like expansion of the model universe, a / t2=3,
whereas big-bang nucleosynthesis requires radiation-like

expansion, a / t1=2, at least for the relevant temperature
range. Clearly, there are many other processes that inter-
vene between the very early (Planckian) phase of the
Universe and later phases such as the nucleosynthesis era
and the present epoch. An example of a relevant process
may be particle production (e.g., by parametric resonance
[16,22]), which can be expected to be effective because of
the very rapid (small-amplitude) oscillations.4 A further
possible source of modified vacuum energy behavior may
be the change of EOS parameter wM ¼ 1=3 to wM ¼ 0,
which occurs when the expanding universe leaves the
radiation-dominated epoch. Still, there is a possibility
that these and other processes are only secondary effects
and that the main mechanism of dark-energy dynamics at

the early stage is the decay of vacuum energy density by
oscillations.
Another aspect of the large-time extrapolation concerns

the variation of Newton’s ‘‘constant.’’ For the theory (2.1)
and the particular Ansatz (4.14), the gravitational coupling
parameter GðtÞ is found to relax to an equilibrium value in
the following way:

G�1ðtÞ �G�11
�
1þ c0

tUV
t

sin

�
t

tUV

��
; (5.18)

with c0 a constant of order unity, G1 a gravitational
constant presumably very close to the Cavendish-type

value for Newton’s constant GN, and tUV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jF0j=2

p
an

ultraviolet timescale of the order of the corresponding

Planckian time scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1@=c5

p
. The behavior (5.18),

shown qualitatively by the f panels in Figs. 1–6, is very
different from previous suggestions for the dynamics of
GðtÞ, including Dirac’s original suggestion G / 1=t
(cf. Sec. 16.4 of Ref. [10]). For the present universe and
the solar system in it, the gravitational coupling parameter
(5.18) would have minuscule oscillations. Combined with
the Planck-scale mass of the F degree of freedom (cf. the
discussion in Sec. VE), this would suggest that all solar-
system experimental bounds are satisfied, but, again, sur-
prises are not excluded.5

FIG. 6. Same as Figs. 3 and 4 but with a small perturbation of the dimensionless chemical potential away from the equilibrium value,
u ¼ u0 þ �u ¼ �1=3� 1=40 000, and evolved over an even longer time.

4Energy exchange between dark matter and dark energy (for
example, between cold dark matter and dynamic vacuum en-
ergy), may, in fact, be essential to explain the current epoch of
cosmic acceleration; cf. Ref. [23]. The model considered in the
present paper does not allow for energy exchange between dark
matter and dark energy, as (4.6) makes clear. However, it may be
that the effects of such an interaction can be partially incorpo-
rated in our model as a small perturbation of the chemical
potential away from the value (4.8). The resulting behavior
with exponential expansion setting in at large times (for small
negative perturbations �u) is shown in Fig. 6.

5After a first version of the present article was completed, we
became aware of earlier work on a rapidly varying gravitational
coupling parameter GðtÞ; see, e.g., Refs. [24–26] and references
therein. These articles discuss, in particular, solar-system experi-
mental bounds and the possibility that the effective density ratio
in a flat FRWuniverse may be less than unity, which corresponds
to our result (5.17) for the case of dynamic vacuum energy and
ultrarelativistic matter with h	Vi � h	Mi 	 0 asymptotically.
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VI. CONCLUSION

The considerations of the present article and its prede-
cessor [1] by no means solve the cosmological constant
problems, but may provide hints. Specifically, the new
results are

(i) a mechanism of vacuum-energy decay, which, start-
ing from a ‘‘natural’’ Planck-scale value at very early
times, leads to the correct order of magnitude (5.16)
for the present cosmological constant;

(ii) the realization from result (5.15) that a substantial
part of the inferred CDM may come from an oscil-
lating vacuum energy density;

(iii) the important role of oscillations of the vacuum
variable q (here, F), which drive the vacuum energy
density oscillations responsible for the first two
results.

Expanding on the last point, another consequence of q
oscillations is that they naturally lead to the creation of

hot (ultrarelativistic) matter from the vacuum. This effec-
tive mechanism of energy exchange between vacuum and
matter deserves further study.
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Note added in proof.—Following up on the remarks in

the last paragraph of Sec. II, we have recently shown [27]
that, close to equilibrium, the q theory of the quantum
vacuum gives rise to an effective fðRÞ model, which be-
longs to the Rþ R2=M2 class of models with a Planck-
scale mass M� EUV. We have also extended our analysis
to a quantum vacuum containing several conserved q
fields, which allows for the coexistence of different vacua.
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