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We explore the dynamics of cosmological models with two coupled dark components with energy

densities �A and �B and constant equation of state (EOS) parameters wA and wB. We assume that the

coupling is of the form Q ¼ Hqð�A; �BÞ, so that the dynamics of the two components turns out to be scale

independent, i.e. does not depend explicitly on the Hubble scalarH. With this assumption, we focus on the

general linear coupling q ¼ qo þ qA�A þ qB�B, which may be seen as arising from any qð�A; �BÞ at late
time and leads in general to an effective cosmological constant. In the second part of the paper we consider

observational constraints on the form of the coupling from SN Ia data, assuming that one of the

components is cold dark matter (CDM), i.e. wB ¼ 0, while for the other the EOS parameter can either

have a standard (wA >�1) or phantom (wA <�1) value. We find that the constant part of the coupling

function is unconstrained by SN Ia data and, among typical linear coupling functions, the one proportional

to the dark energy density �A is preferred in the strong coupling regime, jqAj> 1. Models with phantom

wA favor a positive coupling function, increasing �A. In models with standard wA, not only a negative

coupling function is allowed, transferring energy to CDM, but the uncoupled subcase falls at the border of

the likelihood.
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I. INTRODUCTION

The overall density of the observed Universe, the growth
of structures and their clustering properties cannot be ex-
plained by known forms of matter and energy [1,2]. In ad-
dition, cosmic microwave background (CMB) anisotropy
observations show that the total density is close to critical,
so that the gap between known and unknown cannot be
accounted for by curvature [3,4]. Finally, observations of
type Ia Supernovae (SNe) [5–7], baryon acoustic oscilla-
tions [8,9], and integrated Sachs-Wolfe effect [10,11] tell
us that the Universe’s expansion is currently accelerating.
To explain these facts cosmologists need to assume the
existence of a dark sector in the theory [12], whose general
properties have then to be tested against observations, i.e.
with parameters that have to be deduced from indirect evi-
dence. One possibility is that the dark sector is accounted
for, partly or in full, by a modified gravity theory,1 while a
more conventional approach is to assume that gravity is
well described by general relativity, with the dark sector
made up of an unusual energy-momentum tensor.

In the currently prevailing scenario, the dark sector con-
sists of two distinct contributions. One component, cold
dark matter (CDM), accounts for about one-third of the
critical density [14] and is needed to explain the growth of

inhomogeneities that we observe up to very large scales, as
well as a host of other cosmological observations which
goes from galactic scales, to clusters of galaxies, to redshift
surveys. The other contribution, dubbed dark energy, ac-
counts for the remaining two-thirds of the critical density,
and is needed to explain the observed late time acceleration
of the Universe’s expansion [6,7]. CDM can be modeled as
a pressureless perfect fluid, representing unknown heavy
particles, collisionless and cold, i.e. with negligible veloc-
ity dispersion. In its simplest form, dark energy consists of
vacuum energy density, i.e. a cosmological constant �.
Taken together, � and CDM make up for the so-called
concordance �CDM model [15,16]. This simple model
fits observations reasonably well, but lacks a sound expla-
nation in terms of fundamental physics, and a number of
alternatives have been proposed. In general, dark energy
can be modeled as a perfect fluid with an equation of state
(EOS from now on) that violates the strong energy condi-
tion [17], such that it can dominate at late times and have
sufficiently negative pressure to account for the observed
accelerated expansion. Scalar fields can also be formally
represented as perfect fluids (see e.g. [18] and references
therein). In a more exotic version, dubbed phantom energy
[19,20], the EOS also violates the null energy condition
[17], leading to the growth in time of the energy density
with the cosmic expansion. Finally, another rather radical
alternative to �CDM is to assume a single unified dark
matter (UDM), able to mimic the essential features of
�CDM that are necessary to build a viable cosmology.
For example, in [21] we have considered observational
constraints on a UDM model with an ‘‘affine’’ EOS, i.e.
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such that the pressure satisfies the affine relation P ¼ Po þ
�� with the energy density [22,23]. This model is a one
parameter (�) generalization of �CDM, with the latter
recovered for � ¼ 0. There is no need to assume a priori
a � term in the Einstein equations, because the EOS P ¼
Po þ �� leads to an effective cosmological constant
with �� ¼ �8�GPo=½3H2

oð1þ �Þ�. The problem is thus
shifted from justifying a � term in Einstein equations to
that of justifying the assumed EOS: a possible justification
of this affine model can be given in terms of scalar fields,
either of quintessence or k-essence type [24]. This type of
model escapes typical constrains on many UDM models
[25] (but cf. e.g. [26]) because, for a given homogeneous
isotropic background expansion, it allows multiple phe-
nomenological choices for the speed of sound of the per-
turbations [27].

In models of the dark sector consisting of two compo-
nents, dark matter and dark energy are usually assumed to
interact only through gravity, but they might exhibit other
interactions without violating observational constraints
[28]. Exploiting this degeneracy, here we depart from
the standard scenario, and assume a cosmological model
where the dark sector is made up of two coupled dark
components, each described as a perfect fluid with its
own constant EOS parameter w. This choice allows for
the possibility that the observed evolution of the Universe,
although reasonably well explained by the �CDM model,
is actually due to the dynamics of two rather general
coupled components, possibly alleviating the so-called
‘‘coincidence problem,’’ �� � �CDM, typical of the stan-
dard model [12].

In this paper, our first aim is to characterize the dynam-
ics of our cosmological model with the two general cou-
pled components, taking into account general forms of
interaction, parametrized in terms of a late-time function
Q linear in the energy densities, Eqs. (5) and (6). To this
end we will use standard dynamical system techniques
[29,30], which are now rather common in the analysis
of cosmological models, see e.g. [22,23,31–38]. To our
knowledge, such an exhaustive analysis has not been car-
ried out yet, although several subcases have been consid-
ered [38–44]. In our study, we restrict ourselves to the
evolution of a homogeneous, isotropic cosmological back-
ground, leaving aside the question of what the effects of
coupling could be in anisotropic models [23], or when gen-
eral perturbations are present [45,46]. It is however worth
noticing that, thanks to the particular form of coupling we
choose, our analysis of the dynamics of the two compo-
nents is valid in any theory of gravity, because it is based
only on the conservation equations, and not on specific
field equations.

Second, as a way to gain some physical insight on the
likelihood of some specific coupling models, we also ex-
plore the constraints on the predicted luminosity distance
modulus derived from type Ia Supernovae observations,

using a Monte Carlo Markov chain (MCMC) approach.
Needless to say, this is not intended as a full-fledged cos-
mological parameter estimation for these models, but only
as a first exploration of the parameter space to rule out
those models which are manifestly in contrast with obser-
vations. This analysis requires the use of the Friedmann
equation, hence general relativity is assumed as the valid
theory of gravity.
The paper is organized as follows. In Sec. II we study the

general dynamics and solve the equations for the evolution
of the coupled dark components; in Sec. III we focus on
the cosmological effects of changing the parameters of the
coupling term; in Sec. IV we derive constraints from the
observation of type Ia SNe on some specific subclasses of
models; finally, in Sec. V, we present the main conclusions
of our work.

II. DYNAMICS OF DARK COMPONENTS

A. Linear scale-free coupling

In general relativity, assuming a flat Robertson-Walker
universe, the dynamics is subject to the Friedmann
constraint

H2 ¼ 8�G

3
�T; (1)

where �T is the total energy density of the various compo-
nents. Besides baryons and radiation, �T includes any other
component contributing to the dark sector, i.e. that part of
the total energy-momentum tensor that in the context of
general relativity is needed to explain the observed Uni-
verse, in particular, the cosmic microwave background
(CMB) [3,4], structure formation [1,2] and the late time
acceleration of the expansion [5–11]. The dynamics itself
is described by the evolution of the Hubble expansion
scalar H ¼ _a=a, given by the Raychaudhuri equation

_H ¼ �H2 � 4�G

3
ð1þ 3wTÞ�T: (2)

This is coupled to the evolution equations for the energy
density of each of the matter components contributing to
�T . Since _H þH2 ¼ €a=a, with aðtÞ the usual metric scale-
factor (which we assume normalized to its present value),
acceleration is achieved whenever wT ¼ PT=�T <�1=3,
as it is well known.
The standard �CDM model assumes two dark compo-

nents: the pressureless CDM, with wDM ¼ 0, and the cos-
mological constant � with w� ¼ �1. CDM is needed to
fill the gap between the baryon abundance and the amount
of matter that is needed to explain the rotation curve of
galaxies and structure formation in general, as well as to
allow for a vanishing curvature model. In the context of
general relativity, and under the Robertson-Walker homo-
genous and isotropic assumption (see e.g. [47] for alter-
natives), a cosmological constant� is the simplest possible
form of dark energy (DE) needed to generate the observed
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low redshift acceleration. While this simple scenario is
preferred from the point of view of model comparison
and selection [21], because of the low number of pa-
rameters, from a theoretical perspective is oversimplified,
and it is worth exploring alternatives, even if purely
phenomenological.

Here we shall consider two general coupled dark com-
ponents with energy densities �A and �B. Since we want to
introduce a rather general type of coupling, focusing our
analysis on its effects, we shall assume the simplest pos-
sible form for the EOS of these two dark components, i.e.
we will assume that the EOS parameters wA and wB are
constant. On the other hand, we shall not a priori restrict
our study to the subclass of models where one of the two
components represents CDM with, for instance, wB ¼ 0.

Because of the presence of the coupling, the two dark
components satisfy the balance equations

_� A þ 3Hð1þ wAÞ�A ¼ Q; (3)

_� B þ 3Hð1þ wBÞ�B ¼ �Q: (4)

Even assuming the linear form for the coupling Q given in
(5) and (6) below, this model allows us to explore a large
number of alternatives. Here we will focus on models for
the homogeneous and isotropic background expansion,
assuming that for those models that will fit current obser-
vational data it might always be possible to construct an
appropriate perturbative scheme allowing for structure for-
mation, for instance by assuming a vanishing effective
speed of sound in one component.

The coupled dark components �A and �B could be in
principle be taken to represent DE only, i.e. they could be
two extra dark components contributing to �T in (1), in
addition to CDM. Leaving aside this possibility, and ignor-
ing baryons and radiation as we will do in this section, the
sum of Eqs. (3) and (4) gives the conservation equation for
�T ¼ �B þ �A. A positive coupling termQ corresponds to
a transfer of energy from �B to �A, and vice versa, but in
general Q does not need to have a definite sign.

An interaction term between two components has been
considered several times in literature, starting from
Wetterich [48,49] and Wands et al. [31,37] in scalar field
models, and has been analyzed by Amendola in dark
energy models [50–53], and, for example, recently in
[38–43,54,55].

The coupling term Q can take any possible form Q ¼
QðH;�A; �B; tÞ. Here we shall consider the case of an
autonomous (t independent) coupling with a factorized H
dependence

Q ¼ 3
2Hqð�A; �BÞ: (5)

As we shall see below, with this assumption the effects of
the coupling on the dynamics of �A and �B become effec-
tively independent from the evolution of the Hubble scale
H. For this reason, we may call this a ‘‘scale-independent’’

coupling. Furthermore, with the decoupling of the dynam-
ics of the two dark components from that ofH, the analysis
of the next section is valid in any theory of gravity, because
it is based on the conservation equations only: we do not
need to use (1) and (2), i.e. the field equations of general
relativity. Finally, we note that any coupling of this type
can be approximated at late times by a linear expansion:

q ¼ q0 þ qA�A þ qB�B; (6)

where qA, qB are dimensionless coupling constants, and q0
is a constant coupling term with dimensions of an energy
density.2 In the following we shall analyze the dynam-
ics arising from this general linear scale-independent
coupling. Obvious subcases are q / �T (q0 ¼ 0, qA ¼
qB); q / �A (q0 ¼ 0, qB ¼ 0); etc. We will come back
to this in more detail in the next section. Linear cou-
plings have been frequently analyzed in literature
([38,39,41,42,49,50,56,57]) both for mathematical sim-
plicity, because they retain the linearity of system (3) and
(4) with no coupling, and because they can arise from
string theory or Brans-Dicke-like Lagrangians after a con-
formal transformation of the metric.

B. Analysis of the scale-free linear dynamics

1. The linear dynamical system

In order to proceed with the analysis of the dynamics of
the dark components, let us change variables, using the
total density �T ¼ �B þ �A and the difference � ¼ �B �
�A. We also set

wþ ¼ ðwB þ wAÞ=2; w� ¼ ðwB � wAÞ=2; (7)

qþ ¼ ðqB þ qAÞ=2; q� ¼ ðqB � qAÞ=2: (8)

One reason for this choice is that ultimately the evolution
of �T is the one that governs the general expansion law
through (1) and (2). In addition, thanks to the particular
form of the coupling (5) and assuming H > 0, the dynam-
ics can be made explicitly scale independent, eliminating
H by adoptingN ¼ lnðaÞ, the e-folding, as the independent
variable. Then, denoting with a prime the derivative with
respect to N, the system (3) and (4) is transformed into

�0
T þ 3�Tð1þ wþÞ þ 3w�� ¼ 0; (9)

�0 þ 3�ð1þ wþÞ þ 3w��T ¼ �3ðqþ�T þ q��þ q0Þ:
(10)

An effective EOS parameter weff is implicitly defined from
Eq. (9): when w� ¼ 0 the two EOS coincide giving rise to
a constantweff ¼ wþ ¼ wA and �T scales accordingly, as a
standard barotropic perfect fluid, but in general

2Strictly speaking, an expansion about today would lead to
q ¼ q̂0 þ q̂Að�A � �A0Þ þ q̂Bð�B � �B0Þ, but constants can al-
ways be redefined in order to put the coupling q in the form (6).
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weff ¼ wþ þ w�
�

�T

(11)

changes with time. Notice that we can also define, using
(5) and (6) in (3), effective EOS parameters for the two
components:

wAeff ¼ wA � q0 þ qB�B

2�A

� qA
2
; (12)

wBeff ¼ wB þ q0 þ qA�A

2�B

þ qB
2
: (13)

From now on we will characterize the cosmological evo-
lution of any of the energy densities as standard/phantom
behavior. As mentioned in the introduction, standard/
phantom, respectively, correspond to an energy density
which is either a decreasing or an increasing function of
time (the scale factor or the e-folding N). The phantom
behavior arises in the presence of coupling from an effec-
tive EOS parameter <� 1, which corresponds to the
violation of the null energy condition [17] for that given
energy density. Thus, it follows from (11)–(13) that we can
have a phantom behavior in the total energy density �T as
well as in one or both of the single components �A and �B,
and that in principle the effective EOS parameter of each of
these can pass through the �1 value, from phantom to
standard or vice versa. On the other hand, we will also refer
to constant parameters such as wA and wB as having a
standard/phantom value, respectively wA >�1 or wA <
�1, because the corresponding fluid would evolve in that
way in the case of no coupling.

We will also refer to an affine evolution. As said in the
introduction, for an uncoupled component with energy
density � this arises from an affine EOS of the form P ¼
Po þ ��. Inserted in the energy conservation equation this
leads to

� ¼ �� þ �0Ma
�3ð1þ�Þ: (14)

Therefore, starting from the Friedmann equations (1) and
(2) with no cosmological constant term, the affine EOS and
energy conservation lead to an effective cosmological con-
stant �� plus an effective matterlike component with con-
stant EOS parameter � (a barotropic perfect fluid) and
today’s density �0M (cf. [21–24] for a detailed analysis
of the cosmological dynamics arising in this case). As we
will see, it turns out that there are solutions of the system
(9) and (10) that evolve according to (14).

In order to proceed with the analysis of Eqs. (9) and (10)
using standard dynamical system techniques [29], it is con-
venient to write it as

X 0 ¼ JXþC; (15)

where the phase-space state vector X and the con-
stant C are

X ¼ �T

�

� �
; C ¼ 0

�3q0

� �
; (16)

and the matrix of coefficients J is given by

J ¼ �3ð1þ wþÞ �3w�
�3ðw� þ qþÞ �3ð1þ wþ þ q�Þ

� �
: (17)

Fixed points, if they exist, are solutionsX� of the equation
JX� þC ¼ 0 and, given that the system (15) is linear, J is
also the Jacobian of the system at these fixed points. These
fixed points correspond to constant values of �T and � and
in turn of �A and �B, that is to the emergence of an
effective cosmological constant (when �T � 0, see below).
Every constant form of energy is indeed alike the cosmo-
logical constant �, and plays exactly the same cosmologi-
cal role: when dominates the evolution of the background,
it drives an exponentially accelerated expansion, with an
effective EOS parameter close to �1. Therefore, in this
section we will focus on the analysis of these fixed points.
Notice that—unlike the case with no coupling—there

is no a priori guarantee from the equations above that �A

and/or �B, as well as �T , will always be non-negative.
However, one has to keep in mind that �T must be non-
negative because of the Friedmann constraint (1). This
means that if �T is vanishing for some value of N (a),
then at that point the assumption H > 0, on the basis of
which Eq. (15) is derived, is violated, and the solutions of
(15) no longer correspond to solutions of the original
coupled system of Eqs. (2)–(4).

2. Fixed points and stability analysis

Even if system (15) is linear, many different possibilities
arise from the fact that it depends on five parameters.3

There are two main cases, which we are now going to
unfold.
Case 1: detðJÞ � 0. In this case J�1 exists and there is a

unique fixed point X� ¼ �J�1C. This can either be the
origin in phase space, i.e. �T� ¼ �� ¼ 0, when q0 ¼ 0
(C ¼ 0), or else this fixed point represents an effective
cosmological constant, with �T� ¼ ��, �� ¼ ��, respec-
tively, given by

�� ¼ 9
w�q0
detðJÞ ; (18)

�� ¼ �9
ð1þ wþÞq0

detðJÞ ; (19)

where

3Only four of them are independent: one can always rewrite
Eqs. (9) and (10) renormalizing the parameters to any of them,
but we do not want to assume that any of wþ, w�, qþ, q�, q0 is
non-null. In particular, the value of q0 is irrelevant to the
existence of the fixed points according to the eigenvalues of J,
but physically its value is relevant, because it determines the
effective cosmological constant (18).
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detðJÞ ¼ 9½ð1þ wþÞð1þ wþ þ q�Þ � w�ðw� þ qþÞ�;
(20)

with corresponding values for �A� and �B�.
In order to analyze the stability properties of system (15)

at this fixed point, we now consider the eigenvalues of J.
Given that detðJÞ � 0, there are two nonzero eigenvalues,
given by

�� ¼ trðJÞ
2

� ffiffiffiffi
D

p
; (21)

where

tr ðJÞ ¼ �3½2ð1þ wþÞ þ q��; (22)

D ¼
�
trðJÞ
2

�
2 � detðJÞ ¼ (23)

¼ 9

��
q�
2

�
2 þ w�ðqþ þ w�Þ

�
; (24)

and the value of the discriminant D determines the three
possible Jordan canonical forms of J. These three possible
cases, to be further clarified in the next subsection, corre-
spond toD> 0,D ¼ 0,D< 0, and are summarized below,
with their subcases.

Case 1a: real distinct eigenvalues (D> 0). There are
three subcases: (i) �� < �þ < 0, the fixed point is a stable
node and both dark components have a standard behavior,
with decreasing energy densities; (ii) �þ > �� > 0, the
fixed point is an unstable node and both dark components
have a phantom behavior, with increasing energy densities;
(iii) �þ > 0> ��, which requires detðJÞ< 0; the fixed
point is a saddle and both dark components have a first
standard phase with decreasing energy density followed
by a phantom phase. The connection between the phan-
tom behavior and sign of the eigenvalues will be rendered
evident in the next section, see Eq. (28) and related
comments.

Case 1b: real equal eigenvalues (D ¼ 0). In this case
�þ ¼ �� ¼ �0 and the fixed point is an improper node,
either stable (both dark components are standard) or un-
stable (both dark components are phantom). In both cases

the two dark components, as well as �T and�, follow a sort
of affine evolution, with a modification term, see Eq. (29).
Case 1c: complex eigenvalues (D< 0). There are three

subcases: (i) if trðJÞ ¼ 0 the fixed point is a center; (ii) if
trðJÞ> 0 the fixed point is an unstable spiral; (iii) if trðJÞ<
0 the fixed point is a stable spiral. This last case is the most
interesting, with �T converging to an effective cosmologi-
cal constant via a series of oscillations. Notice that this
case has to be dealt with with care, as in the past �T ¼ 0
(H ¼ 0) at some point, and the time reversal of system (9)
and (10) should be considered prior to that.
Case 2: detðJÞ ¼ 0. In this case if q0 � 0 (C � 0) the

system of linear equations JX� þC ¼ 0 is in general
inconsistent and there are no fixed points. Alternatively,
if q0 ¼ 0 (C ¼ 0) there is an infinite number of fixed
points, each of them representing a possible asymptotic
state depending on the initial conditions. This infinite num-
ber of fixed points is represented by a straight line in phase
space, corresponding to a conserved quantity for system
(15). It turns out that there are three possible combinations
of the four parameters wþ, w�, qþ, q�, that give detðJÞ ¼
0 and they are shown in Table I, classified as cases 2a, 2b
and 2c. For case 2b, �T� ¼ 0 always, and either also �� ¼
0 and then both �A� ¼ �B� ¼ 0, or�� � 0 and then �A� ¼
��B� ¼ ��=2, so that one of the two is negative. Being the
energy densities either null or negative, we can conclude
that case 2b corresponds to a nonphysical situation. Cases
2a and 2c are more interesting, and are summarized in
Table II. In both cases, each fixed point on the line repre-
sents an effective cosmological constant. In particular, case
2a corresponds to wA ¼ wB ¼ �1, i.e. two cosmological
constantlike components whose energy densities scale in a
different way because of the coupling. In addition, it turns
out that for this very peculiar case q0 can be nonzero.
Regarding the stability analysis, in case 2 detðJÞ ¼ 0

implies that one of the eigenvalues is null, namely, �� ¼ 0
if trðJÞ> 0 (and vice versa) (cf. Eqs. (21) and (23)). This
implies that the total energy density, as well as the single
dark components and �, follow the affine evolution (14);
we will comment further on this below Eq. (28). In this
case, the nonzero eigenvalue ��=þ for each subcase is

given in Table I. Table II gives instead the values the fixed
points and the conditions for positive effective cosmologi-
cal constants.

TABLE I. The three possible combinations of parameters giving detðJÞ ¼ 0, cf. Eq. (20).
When detðJÞ ¼ 0, one of the eigenvalues (21) vanishes, giving a constant mode, and the other is
given for each case in the third column here. Thus �T follows the affine evolutions (14), i.e. there
is a constant mode and a power law (in the scale factor a) mode, like that of a barotropic fluid; �,
�A and �B also have a constant mode and the same power law mode.

Case Parameters �þ=�
2a w� ¼ 0, wþ ¼ �1, 8 qþ, 8 q� �3q�
2b w� ¼ 0, q� ¼ �ð1þ wþÞ, 8 wþ, 8 qþ �3ð1þ wþÞ
2c qþ ¼ ð1þwþÞð1þwþþq�Þ�w2�

w�
, w� � 0, 8 wþ, 8 q� �3½2ð1þ wþÞ þ q��
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Each of these fixed points is characterized by �� / ��,
which is equivalent to �B� / �A�. Explicitly, for case 2a
the energy densities are related by �B� ¼ ��A�qA=qB,
while for case 2c �B� ¼ ��A�ð1þ wAÞ=ð1þ wBÞ. Note
that the same proportionality law holds for the fixed point
of case 1 (cf. Eq. (18) and (19)). This behavior mimics that
of scaling solutions [31,37], whose phase space typically
admits fixed points where the contributions of the two
fluids to the total energy density are constant (we will
come back on this in Sec. III). It is easy to verify that at
all these fixed points the effective EOS parameter (11) has
the value weff ¼ �1.

C. An equivalent equation and its solutions

While the classification of the various possible phase
portraits of system (9) and (10) is best given by the repre-
sentation (15) used in the previous section, given that this is
a linear system it is useful to consider the equivalent sec-
ond order linear equation with constant coefficients, and its
solutions. This helps interpreting the formalism of Sec. II B
from a cosmological point of view. For this reason, we
shall focus on the cases of main interest.

First, notice that if w� ¼ 0 then (9) decouples and
implies

�T ¼ �ca
�3ð1þwþÞ; (25)

with �c an integration constant, so that the total energy
density can either be standard or phantom. Equation (10)
can then be integrated, giving

� ¼ �0a
�3ð1þwþþq�Þ þ �ca

�3ð1þwþÞ þ �� (26)

where �0 is an integration constant, �c / �c and �� / q0.
This case is of limited interest, because in general the two
components will have a negative energy density in the past
or in the future.

Assuming now w� � 0, we obtain from (9) and (10) a
single equation for the total energy density

�00
T � trðJÞ�0

T þ detðJÞ�T ¼ 9w�q0; (27)

with trðJÞ and detðJÞ, respectively, given by Eqs. (20) and
(22). It is noticeable that—when detðJÞ � 0—this equation
admits a constant particular solution corresponding to the
constant source term, given by the fixed point (18). Equa-
tion (18) with detðJÞ � 0 is exactly this constant particular
solution, which is the effective cosmological constant term,
and it vanishes if q0 ¼ 0.

When the eigenvalues (21) of the characteristic polyno-
mial of Eq. (27) are distinct, the general solution can be
written as

�T ¼ �Tþa�3ð1þ�þÞ þ �T�a�3ð1þ��Þ þ ��: (28)

When the eigenvalues are equal, �þ ¼ �� ¼ �0, we have
the special case 1b of the previous section and, denoting
T ¼ trðJÞ, we obtain

�T ¼ ½�T1 þ �T2 lnðaÞ�aT=2 þ ��: (29)

Given that this evolution law is similar to the affine one,
Eq. (14), except for the lnðaÞ correction term, and that the
fixed point of this case 1b is an improper node, we can refer
to this as an improper affine evolution. Here �Tþ, �T� and
�T1, �T2 are integration constants related to the present
values of the energy densities �A and �B of the two dark
components; they are not independent in a flat universe, but
related by imposing that the total energy density has the
critical value at present. The effective cosmological con-
stant �� is given by (18). In both cases (28) and (29) the
expansion of the universe is governed by this total energy
density that enters the Friedmann equations (1) and (2).
The parameters �� are related to the eigenvalues �� by

�� ¼ �3ð1þ ��Þ. That is, �� ¼ �0 �
ffiffiffiffi
D

p
=3, with

�0 ¼ wþ þ q�=2 ¼ �trðJÞ=6� 1 and D given by
Eq. (23). The case (29) arises from D ¼ 0, with �0 ¼
�3ð1þ �0Þ ¼ trðJÞ=2.
It is interesting to note the role of the parameters �� in

(28), assuming they are real. For a barotropic perfect fluid

with constant EOS parameter w one has � / a�3ð1þwÞ.
Hence, �� simply represent two constant effective EOS
parameters that drive the evolution of the total energy
density (28). In other words, the simple coupling (5) and
(6) of the two dark components with constantwA andwB in
general produces a total energy density (28) equivalent to
that of two uncoupled fluids with constant EOS parameters
��, plus the effective cosmological constant ��.

4

TABLE II. For cases 2a and 2c, the fixed points and the conditions for positive effective cosmological constants, separated and
combined, in both cases subject to the condition �� > 0. For case 2a we have assumed q0 ¼ 0, although this is not a necessary
condition. For case 2c we have defined R ¼ ð1þ wþÞ=w�.

Case Fixed points �A� > 0 �B� > 0 �A� > 0, �B� > 0

2a �� ¼ � q�
qþ

�� qþ >�q� qþ < q� �� > 0 and �1< qþ=q� < 0, or �� < 0 and 0< qþ=q� < 1

2c �� ¼ � ��

R R >�1 R < 1 �� > 0 and �1< R< 0, or �� < 0 and 0<R< 1

4Mathematically, this is easily understood in terms of the
dynamical system formalism of the previous section: because
the system (15) is linear, it can be globally (in phase space)
written in Jordan normal form [29]. When the eigenvalues (21)
�� are real and distinct this Jordan form is diagonal, i.e. the
dynamical system separates into two normal modes, physically
corresponding to two new effective uncoupled fluids with con-
stant EOS parameters ��.
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Apart from the asymptotic effective cosmological con-
stant �� arising when q0 � 0 and w� � 0 (case 1 of the
previous section), it is also possible to have asymptotic
effective cosmological constants when detðJÞ ¼ 0 (case 2
of the previous section) if q0 ¼ 0, corresponding to the
vanishing of one of the eigenvalues (21), i.e. ��=þ ¼ 0 and
to �þ=� ¼ �1. There are three cases, given in Table I,

each with the corresponding nonvanishing eigenvalue. In
these cases �T ,�, �A and �B have the affine behavior (14).
Hence the acceleration is guaranteed by the component of
the total energy density for which an effective EOS pa-
rameter �þ=� assumes value �1. These fixed points seem

less interesting however, because even when the nonzero
eigenvalue is negative they are not general attractors of the
dynamics (since the other eigenvalue is null): there is a
different asymptotic nonzero value of �T for each possible
initial condition.

We have already commented above on case 1b, giving
(29). We now consider the two other subcases of case 1 of
the previous section from the point of view of the solution
(28). In both cases �, �A and �B evolve with the scale
factor as �T in (28), i.e. they are all linear combinations

of the two normal modes of the system, a�3ð1þ�þÞ and

a�3ð1þ��Þ, plus a constant term.
Case 1a. When both eigenvalues are real and distinct �T

scales as it would if we were considering two decoupled
components with EOS parameters �þ and ��, plus a
cosmological constant. If detðJÞ< 0 the fixed point is a
saddle, i.e. unstable, with �þ > 0 and correspondingly
�� <�1. Consequently �T scales as a mixture of a
standard component and a phantom component. When
detðJÞ> 0 either both �þ=� >�1, or vice versa, with

corresponding standard/phantom behavior.

Case 1c. If �� are complex conjugates, then �� ¼
�0 � i

ffiffiffiffiffiffiffijDjp
=3 and the total energy density can be writ-

ten as

�T ¼ a�3ð1þ�0Þfð�T� � �TþÞ sin½
ffiffiffiffiffiffiffi
jDj

p
lnðaÞ�

þ ð�T� þ �TþÞ cos½
ffiffiffiffiffiffiffi
jDj

p
lnðaÞ�g þ �� (30)

containing an oscillating function that modulates the power
law scaling.

We will now investigate the dynamics of the density
parameters. In Sec. IV we will present a MCMC analysis
with SNe data.

III. ANALYSIS OF SPECIFIC COUPLINGS

A. Dynamics of density parameters

Introducing an interaction between two fluids can lead to
interesting solutions for the energy densities, like attractor
points in the phase space where the contributions of the two
fluids to the total energy density are constants. In these
points the value of the normalized energy densities de-
pends only on the parameters of the model and, since

they are attractors, they are reached from a wide range of
initial conditions, thereby alleviating the coincidence prob-
lem. These are usually called ‘‘scaling solutions’’ [31,37]
and are characterized by constant fractions of the energy
density parameters, namely, �A;B ¼ �A;B=ð3H2Þ (in units

8�G ¼ 1, c ¼ 1).
In order to analyze the dynamics of the system, let us

define the new variables:

x ¼ �A

3H2
; y ¼ �B

3H2
; z ¼ ��

3H2
; (31)

where together with the coupled fluids we also include
radiation to include the era when it is the dominating
component, when initial conditions are usually set. Note
that x ¼ �A, y ¼ �B and �� are constrained by xþ yþ
�� ¼ 1; z is the energy density parameter of the total

effective cosmological constant, and we neglect the bary-
ons contribution, which is always subdominant. The sys-
tem (3) and (4) then becomes

x0 ¼ �x

�
3ð1þ wþ � w�Þ þ 2

H0

H

�

þ 3

2

�
ðqþ � q�Þxþ ðqþ þ q�Þyþ detðJÞ

9w�
z

�
; (32)

y0 ¼ �y

�
3ð1þ wþ þ w�Þ þ 2

H0

H

�

� 3

�
ðqþ � q�Þxþ ðqþ þ q�Þyþ detðJÞ

9w�
z

�
; (33)

z0 ¼ �2z
H0

H
; (34)

where

H0

H
¼ �1� 1

2
½xð1þ 3ðwþ � w�ÞÞ þ yð1þ 3ðwþ þ w�ÞÞ

þ 2ð1� x� yÞ� (35)

is a rewriting of the Raychaudhuri equation (2) for the
Hubble expansion scalar.
The fixed points, namely, the points satisfying x0 ¼ y0 ¼

z0 ¼ 0, are presented in Table III, labeled by capital letters,
together with the corresponding eigenvalues. To the best of
our knowledge, this is the first complete analysis of the dy-
namics of a three-component cosmological system where
two of the barotropic fluids are coupled via a general linear
coupling function of the form (6). The effective EOS
parameters at each of the fixed points weff ¼ ptot=�tot are
also listed, where �tot ¼ �A þ �B þ �� and therefore

weff ¼ ðwþ � w�Þxþ ðwþ þ w�Þyþ��=3.

All the fixed points shown in Table III exist for w� � 0,
when the EOS parameters of the two fluids are the differ-
ent. As aforementioned, the only physically reasonable
fixed point for system (9) and (10) corresponding to w� ¼
0 is case 2a, where detðJÞ ¼ 0.
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The fixed point A corresponds to the radiation domi-
nated era, while B, C and D represent epochs that are
dominated by the two fluids. In particular, at the fixed point
D the constant energy densities of x and y (�A� and �B�)
cause the accelerated expansion with weff ¼ �1. From the
expression for x and y at this latter fixed point it is easy to
see that y ¼ �xð1þ wAÞ=ð1þ wBÞ, which is exactly the
proportionality that holds for case 1 and case 2c, as dis-
cussed at the end of Sec. II B: this point is characterized by
the final domination of an effective cosmological constant,
either driven by q0 (case 1, see Fig. 2) or not (case 2c, see
Fig. 3). In the first case whenever j��j< 1 D is always an
attractor, while in the second case it is not because one of
the eigenvalues is null. Notice that its existence is com-
pletely independent on qþ and q�. Whenever the system
settles into the fixed points B or C the role of �þ and �� is
exactly that of effective EOS parameters (see Table III)
which allows for phantom line crossing at late time (see
Fig. 1), i.e. line for which the effective total EOS parameter
is weff ¼ �1.

In the following we will examine in more detail three
special classes of the coupling function and in Sec. IV we
will make a first comparison of the models to the data using
MCMC applied to type Ia SNe distance modulus.

B. I. qþ ¼ q�
Imposing qþ ¼ q� is equivalent to choosing qA ¼ 0

and qB ¼ q; therefore among the range of possible cou-
plings represented by (6) we are restricting ourselves to
the class of models where Q=H is proportional solely to
the energy density of one fluid (in our case e.g. �B), and
it reads

Q

H
¼ 3

2
ðq�B þ q0Þ: (36)

This assumption also includes models with qþ ¼ �q�
since the coefficients qA and qB can be either negative or
positive. In this case the dynamics is the same as for qþ ¼
q�, the roles of x and y being simply interchanged. Wewill
refer to this subclass of models as model I.

In this model
ffiffiffiffi
D

p
is automatically real, since D ¼

9ðq=2þ wB � wAÞ2=4; as a consequence the scaling func-
tion (28) always drives a power law expansion, with �þ ¼
q=2þ wB and �� ¼ wA if �0 > 0 (i.e. ðwB þ wA þ
q=2Þ> 0), vice versa if �0 < 0. Hence the total fluid

ends up as if it was made up of: (i) a component scaling
as the original fluid �A with no coupling, (ii) a second
component characterized by a new EOS parameter and
(iii) an effective cosmological constant term ��. More-
over a pure affine behavior (14), or its improper modifica-
tion (29), is obtained in three cases: (i) q ¼ �2ðwB � wAÞ,
which gives (29); (ii) q ¼ �2ð1þ wBÞ, that corresponds to
�þ=� ¼ �1 (even for �� ¼ 0, i.e. q0 ¼ 0, an effective

cosmological constant is generated); (iii) wA ¼ �1, where
one of the two fluids is ab initio a constant term. Notice

however that generally, because �þ ¼ �� þ 2
ffiffiffiffi
D

p
=3,

models with �þ ¼ �1 and �� >�1 are not feasible. In
particular, the �CDM evolution is exactly recovered in
case (ii) for wA ¼ 0, that is if one of the fluids is dust;
in case (iii) for qB ¼ �2wB.
The fixed point D is characterized by the domination of

the constant part of the total energy density ��; along it,
the values of x and y are both positive only if either wA or
wB have phantom values, i.e. wA <�1 or wB <�1. This
statement holds true also for models II and III. However, if
wA <�1 D is no longer an attractor, as �y ¼ �3ð1þ wAÞ
is greater than zero. On the other hand wB <�1 requires
q >�2ð1þ wBÞ to let the fixed point be an attractor: in
this case q is positive. A strong and positive q corresponds
to a transfer of energy from �A to the other fluid withwB <
�1. Therefore in order to fall at late time into the cosmo-
logical constant dominated era a fluid with a phantom EOS
parameter wB must absorb energy from the other nonphan-
tom fluid. It is worth stressing that the effective cosmo-
logical constant, i.e. q0, is somewhat redundant whenever
the fixed point D is not an attractor (see Fig. 1). In Fig. 1 an
example of this dynamics of the background is shown; the
effective cosmological constant is not noticeable, since,
after the evolution on the saddle point B, the system is
trapped in the attractor point C.

C. II. q� ¼ 0

If q� ¼ 0 the resulting coupling function Q=H is line-
arly dependent on the sum of the energy densities of the
two fluids, approximately equivalent to the total energy
density (these models have been examined, for example, in
[40,58]) and is as follows

Q

H
¼ 3

2
ðq�T þ q0Þ: (37)

TABLE III. Fixed points of system (32)–(34), the corresponding effective EOS and eigenvalues, where F� ¼ 9q2�=2� 3q�ð1�ffiffiffiffi
D

p � 3wþÞ þ 9qþw� þ 9w2� � ð1� 2
ffiffiffiffi
D

p � 3wþÞð�1þ 3wþÞ.
Points x y z weff �x �y �z

A 0 0 0 1
3 4 1� 3�þ 1� 3��

B � q��2w�þ2
ffiffiffi
D

p
=3

4w�
ðq��2w�þ2

ffiffiffi
D

p
=3Þðqþþ2w�þ2

ffiffiffi
D

p
=3Þ

4w�ðqþþq�Þ 0 �þ 3ð1þ �þÞ � 1�3ð�þ�2��þq�Þþ
ffiffiffiffiffi
Fþ

p
2 � 1�3ð�þ�2��þq�Þ�

ffiffiffiffiffi
Fþ

p
2

C � q��2w��2
ffiffiffi
D

p
=3

4w�
ðq��2w��2

ffiffiffi
D

p
=3Þðqþþ2w��2

ffiffiffi
D

p
=3Þ

4w�ðqþþq�Þ 0 �� 3ð1þ ��Þ � 1�3ð���2�þþq�Þþ
ffiffiffiffiffi
F�

p
2 � 1�3ð���2�þþq�Þ�

ffiffiffiffiffi
F�

p
2

D 1þw�þwþ
2w�

� 1�w�þwþ
2w�

1 �1 �4 �3ð1þ �þÞ �3ð1þ ��Þ
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With this assumption qA ¼ qB ¼ qþ ¼ q and �� ¼
wþ � ffiffiffiffi

D
p

=3 where D ¼ 9ðwB � wAÞð2qþ wB � wAÞ=4.
If q is positive these effective EOS are real for wB > wA

or wB � wA � 2q, while if q is negative the same relations
hold but with opposite inequality signs. We will label this
model II.

In this model the affine evolution is recovered for
wB ¼ ðqwA þ 2wA þ 2Þ=ðq� 2wA � 2Þ, corresponding to
�� ¼ �1. In this case, which is indeed case 2c of Sec. II,
an effective cosmological constant arises even for �� ¼ 0.

Again, because �þ ¼ �� þ 2
ffiffiffiffi
D

p
, models with �þ ¼ �1

and �� >�1 are not feasible. From a cosmological point
of view this means that a matterlike evolution cannot be
generated together with a cosmological constant. The

�CDM limit is achieved if wA ¼ ð�1þ q� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p Þ=2
and wB ¼ �1� wA. The evolution of the energy densities
for a special choice of the parameters is illustrated in

Fig. 2: the effective cosmological constant (18) arises at
late time, driving the acceleration, and �� is caused by a
nonzero q0 (�� � 0).

D. III. qþ ¼ 0

The subgroup of models with qþ ¼ 0 (from now on
model III) includes the couplings that are proportional to
the difference of the energy densities � (for example
recently analyzed in [59]). With this assumption q� ¼
qB ¼ �qA ¼ q and the discriminant D ¼ 9ðq2 þ ðwB �
wAÞ2Þ=4 is always positive, so that oscillating solutions
(30) are never permitted. The coupling function reads

Q

H
¼ 3

2
ðq�þ q0Þ: (38)

As before, the affine expansion (14) may only be gener-
ated if one of the two effective EOS parameters assumes
the value of the EOS of a cosmological constant, that is,
either �þ ¼ �1 or �� ¼ �1. In particular if �þ ¼ �1,
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FIG. 2 (color online). Upper panel: evolutions for the energy
density parameters for a model with q� ¼ 0 and qþ ¼ �0:5; for
comparison, the dashed lines are the values of x and y at the fixed
points B (thin short-dashed lines) and D (thick long-dashed
lines). For this model the parameters are �0A ¼ �� ¼ 0:5,
wA ¼ �1:1, wB ¼ 0:2. Lower panel: effective EOS for the
same model; for comparison, we plot the EOS parameter of
the fixed point B, �þ ¼ �0:14.
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FIG. 1 (color online). Upper panel: evolutions of the energy
density parameters�A (thin solid line), �B (dotted line) and��

(thick solid line) for a model with qþ ¼ q� ¼ 0:25; for com-
parison, the dashed lines are the values of x and y at the fixed
points B (thin short-dashed lines) and C (thick long-dashed
lines). For this model the parameters are �0A ¼ �� ¼ 0:5,
wA ¼ 0, wB ¼ �1:5, �þ ¼ 0 and �� ¼ �1:25. Lower panel:
the total effective EOS parameter for the same model: weff

evolves from the value 1=3 in the radiation dominated era,
approaches the value 0 in the matter dominated era and then
asymptotically evolves toward a constant phantom value, in this
case �� ¼ �1:25.
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�� ¼ �1� 2
ffiffiffiffi
D

p
=3 is always phantom. In this case none

of the terms in Eq. (28) can play the role of matter. On the
other hand if �� ¼ �1 (corresponding to wA ¼ ð�1�
q� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p Þ=2), �þ ¼ �1þ 2

ffiffiffiffi
D

p
=3 is always greater

than �1, i.e. always standard. An example of this dynam-
ics is shown in Fig. 3, where the effective cosmological
constant (18) arises at late time with no need of q0, driving
the acceleration (case 2c). Then typically for wB ¼ �q�
wA � 1 we have that �þ ¼ 0 and the �CDM model is
recovered.

IV. MARKOV CHAINS WITH SUPERNOVAE

A. Methods

Given the large number of parameters, the task of find-
ing the minimum �2 and mapping its distribution in the
entire parameter space can be computationally expensive.
To this end we adopt a MCMC. In this work we only want
to test our models as a description of the homogenous
isotropic background expansion (regardless of perturba-

tions), hence supernovae are ideal for this purpose. We
use the 192 type Ia SNe distance modulus data set provided
in [60]. In particular we want to see wether supernovae can
qualitatively distinguish different kind of couplings, in-
cluded what we called model I, II and III.
Type Ia SNe light curves allow a determination of an

extinction-corrected distance moduli,

�0 ¼ m�M ¼ 5 logðdL=MpcÞ þ 25 (39)

where dL ¼ ðL=4�FÞ1=2 ¼ ð1þ zÞRz
0 dz

0=Hðz0Þ is the lu-
minosity distance. We compare our theoretical predictions
to the values of �0 with H2 ¼ 8�G=3ð�A þ �B þ �� þ
�bÞ, where we account also for the baryon energy density
�b. We fix the value of the dimensionless Hubble constant
to be h ¼ 0:72 [61] and the baryon energy density at pres-
ent �bh

2 ¼ 0:022 29 according to [3]. The smaller the
EOS parameter of a single fluid, the later the domination
era can be for this fluid. Hence, counting the role of �� as
effective EOS parameters, whenever �� > 0 a baryonic
era might emerge at recent time. The absolute distance
modulus M is intrinsically affected by uncertainty; there-
fore we treat it as a nuisance parameter and marginalize
over it.
The parameters that are representative of the

models are f�0A;��; qA; qB; wA; wBg, or otherwise
f�0A;��; qþ; q�; wþ; w�g and, as functions of these, the
two effective EOS introduced in Eq. (28): �þ and ��. For
the ensuing analysis it is worth reminding the reader of our
classification of models: (I) model with a coupling function
proportional to only one of the two energy densities;
(II) model with a coupling function proportional to the
sum of the energy densities; (III) model with a coupling
function proportional to the difference of the energy
densities.
We shall now focus our analysis on the case wB ¼ 0, i.e.

�B would represent standard CDM if it was not for the
coupling with the DE component.

B. Results: CDM-DE coupled models

The first result we obtain is that �� is completely
unconstrained, independently of which model we consider.
This means that SNe are not sensitive to the constant term
of the coupling. As we have seen in Sec. II the dynamics of
the system can easily generate the acceleration settling on
fixed points D, where weff ¼ �1, even for �� ¼ 0 (see
Fig. 3), or B and C, where the total energy density can also
exhibit phantom evolutions.
In Figs. 4 and 5 we present MCMC chains in a two-

dimensional diagram ½qþ; q�� (½qA; qB� on the right-hand
side). As said above, we consider a model where one of the
two fluid represents a CDM component, i.e. wB ¼ 0, a
reasonable assumption considering all the other cosmo-
logical probes pointing towards the existence of a form
of cold dark matter (see e.g. [2]), and we let wA assume
three different values that characterize �A as a DE compo-
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FIG. 3 (color online). Upper panel: evolutions for the energy
density parameters for a model with qþ ¼ 0 and q� ¼ �0:18;
for comparison, the dashed lines are the values of x and y at the
fixed point B (thin short-dashed lines) and D (thick long-dashed
lines). For this model the parameters are: �0A ¼ 0:5, �� ¼ 0,
wA ¼ �0:9, wB ¼ 0. (dust). The EOS parameters at B are �þ ¼
�0:08 and �� ¼ �1. Lower panel: effective EOS for the same
model.
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nent (phantomlike behavior is shown in the top panels,
cosmological constantlike in the second row panels and
nonphantom model in the bottom panels).

Note that the case where wA ¼ 0 and �B is DE can be
easily derived from the previous one, corresponding in the
diagram to a reflection with respect to the line qB ¼ �qA.
In fact, interchanging the two EoS and swapping the roles
of the two energy densities, and applying the transforma-
tion (qA ! �qB, qB ! �qA, i.e. qþ ! �qþ, q� ! q�),
one recovers the aforementioned model.

In addition, the straight lines corresponding to models I,
II and III are drawn, and diagrams of Fig. 5 are derived
from the same choice of parameters as in Fig. 4 except for
�� � 0 (it is by eye easily verifiable that there is no
dependence on ��). Finally, the short-dashed curves rep-
resent the improper affine evolution (29), while the short-
dashed straight line represents affine models (14) with
�þ=� ¼ �1 (case 2c).

As a first step we derived the unidimensional likelihood
for f�0A; qþ; q�g. The best fits of the energy density pa-
rameter for the three class of models presented in Figs. 4
and 5 are, respectively, �0A ¼ 0:63, 0.65, 0.76 with an
error of 2	 ¼ 0:1; these best fits do not change including

��. In the diagrams�0A is therefore fixed to these best fit
values. It is worth stressing that here we are not just ana-
lyzing the typical models considered in literature (namely,
I, II and III) but the results incorporate all the possible
linear couplings, and, we might say, all the possible ex-
pansions at recent times of a generic coupling function Q
(Eq. (5)). Hence we are not interested in deriving con-
straints on single parameters, a route that might be hard
to follow with SN Ia in view of the high number of pa-
rameters and their degeneracies. We instead want to see
what kind of linear couplings are preferred by the data and
provide a qualitative way to distinguish the type and the
direction of the interaction.
The first noticeable thing in the ½qA; qB� diagram is that

the points lie almost on a horizontal branch of the diagram,
close to the line representing model I, in particular, with
Q / �A. So if we allow the interaction term to be strong
and move out of the weak coupling regime (i.e. jqA;Bj> 1),
the most ‘‘frequent’’ linear coupling function emerging
from the chains is the one proportional to the DE density
(�A). In addition, strong couplings are favored for positive
values of qA (see Figs. 4 and 5): the energy is transferred
from dark matter to DE. Increasing the value of wA, that is

FIG. 4 (color online). Coupling diagrams with two-dimensional likelihood for models with �� ¼ 0. Apart from the short-dashed
line that represents an affine evolution with �þ=� ¼ �1, all the other lines are labeled with the corresponding type of cou-

pling function (e.g. the solid line on the left side diagrams represents a coupling function Q / �B (model I), while on the right side
diagrams it represents Q / �T (model II)). The energy density parameter at present is fixed at its best fit value, respectively, �0A ¼
0:63, 0.65, 0.76.
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moving from phantomlike values towards quintessencelike
ones (going downwards in the right-hand side column of
Fig. 4), this horizontal branch tends to negative values of
qB. Models with a phantom wA show an increasing energy
density with the scale factor, a, while for a DE model
characterized by wA >�1 the energy density is diluted
with the universe expansion: this second kind of model
requires a lower transfer of energy from CDM to DE. Apart
from a small spot in the origin of the axis (weak couplings),
the coupling or type II does not seem to be favored by SN
data, the effect increasing with higher values of wA, i.e. for
nonphantom values. Another evidence that arises from
diagrams Figs. 4 and 5 is that for nonphantom values of
wA the uncoupled case (namely, ½qA; qB� ¼ ½0; 0�) falls
almost outside the border of the likelihood.

Since today �0B ’ �0A we can say that the sign of the
coupling function (Q ’ qA�0A þ qB�0B) changes along
the straight line qB ¼ �qA (long-dashed line): above this
line the exchange term reverses the energy transfer from
CDM to DE (i.e. positive Q), while below it is the oppo-
site (negative Q). Again, the higher wA is, the bigger is
the number of points that we can find below this line.
Therefore for DE components with wA <�1 an exchange

of energy from DE to CDM is less probable, independently
of the type of linear coupling. This reflects the fact that an
increasing energy density (characteristic of phantom be-
havior) favors more and more absorbing and positive DE
couplings at present, while nonphantom values of wA seem
to need a negative exchange term, most of all for weak
couplings, to explain supernovae data. It is worth stressing
that eventually the likelihood seems to exclude the un-
coupled case.
The connection between where the points lie in the dia-

grams, i.e. the region favored by the likelihood, and where
the cosmological background evolution is affine is an
interesting issue; this directly connects coupled DE models
to an effective evolution of the total energy density that is
completely equivalent to a cosmological constant plus a
component with constant EOS parameter �, Eq. (14). If
one looks at the left side diagrams of Fig. 5, a short-dashed
curve and a short-dashed straight line are drawn on them.
The former corresponds to the improper affine evolution

(29), obtained for q� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4w�ðqþ þ w�Þ
p

. Hence the
only affine models are those that correspond to the straight
line for which �þ=� ¼ �1 (for the model with wA ¼ �1
this coincides with the line representing model II, the only

FIG. 5 (color online). Coupling diagrams with two-dimensional likelihood for models with �� ¼ 0:7. All the lines are labeled with
the corresponding type of coupling function (e.g. the solid line on the left side diagrams represents a coupling function Q / �B (model
I), while on the right side diagrams it represents Q / �T (model II)). The short-dashed line represents affine evolution with �þ=� ¼
�1 and the short-dashed curve represents affine evolution with �þ ¼ ��. The energy density parameter at present is fixed at its best fit
value, respectively, �0A ¼ 0:63, 0.65, 0.76.
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possibility to recover the affine evolution with no cou-
pling). For a DE model with a phantom wA the affine
evolution coexisting with a nonzero�� is somewhat ruled
out and, among the models indicated in the last section, is
more compatible with a coupling function proportional to
�A (DE, model I) and possibly to � (model III). For DE
models with wA >�1 the situation is different: the data
seem to favor an affine evolution generated in models with
a coupling function proportional to �B (matter, model I)
and again model III. In addition, for DE models with
standard wA an improper affine evolution together with a
nonvanishing q0 (��) is allowed, in a region where the
coupling function shifts towards negative sign, thus repre-
senting a transfer of energy from DE to CDM.

V. CONCLUSIONS

We have analyzed the dynamics of two coupled dark
components represented by two barotropic perfect fluids
characterized by constant EOS parameters wA and wB. We
have assumed a flat, homogeneous and isotropic cosmol-
ogy and a general linear coupling between the two baro-
tropic perfect fluids. This scale-independent coupling takes
a linear form proportional to the single energy densities
plus a constant term: any coupling of this type can ap-
proximate at late time a more general coupling function.
We have studied the stability of the system and shown that
an effective cosmological constant can arise both from the
constant part q0 of the function Q and from an effective
cosmological constantlike EOS. We have also examined
the dynamics of the energy density parameters, and eval-
uated the fixed points and the corresponding eigenvalues,
for the most general form of linear coupling. We have then
restricted the analysis to some specific linear couplings
previously considered in the literature (model I, II, III).
Since we are restricting to the background expansion and
we have modeled the coupling function as a late time first
order Taylor expansion, a comparison with distance modu-

lus from SN Ia data appeared as our natural step further.
We have presented a MCMC analysis for a model with
dark matter plus DE using the data set provided in [60].
Considering two representative specific values of the DE
parameterwA, one standard (wA >�1) and the other phan-
tom (wA <�1), we have condensed our results in coupling
diagrams, where the points arising from the MCMC chains
are drawn together with lines for models I, II and III and for
the improper affine (29) and affine (14) evolutions, the
latter including the �CDM model as a subcase. Cou-
plings proportional to the DE density seem favored, mostly
for strong couplings jqAj> 1. The total sign of the ex-
change term sets the direction of the interaction: models
with phantomwA definitely prefer positive coupling, i.e. an
energy transfer from dark matter to DE. On the other hand,
models with nonphantom wA not only allow for negative
Q, but forces the uncoupled model to fall at the border of
the likelihood. For further and stronger constraints more
complementary data are required, like CMB spectra or
matter power spectra. These observables necessitate an
accurate relativistic perturbation analysis which is neither
obvious nor uniquely defined in phenomenological cou-
pled models as those considered here. Moreover, simplified
observables that make no use of perturbation analysis, like
the CMB shift parameter, can be strongly model dependent
and, although straightforward, should not be used in mod-
els where the evolution, even just that of the unperturbed
background, detaches significantly from that of the�CDM
model. These extended investigations can only be settled
with future work.
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[2] S. Khalil and C. Muñoz, Contemp. Phys. 43, 51 (2002).
[3] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377

(2007).
[4] J. Dunkley et al., arXiv:0803.586.
[5] A. G. Riess et al., Astron. J. 116, 1009

(1998).
[6] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[7] A. G. Riess et al., Astrophys. J. 659, 98 (2007).
[8] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).
[9] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A.

Peacock, A. C. Pope, and A. S. Szalay, Mon. Not. R.

Astron. Soc. 381, 1053 (2007).

[10] D. Pietrobon, A. Balbi, and D. Marinucci, Phys. Rev. D

74, 043524 (2006).
[11] T. Giannantonio, R. Scranton, R. G. Crittenden, R. C.

Nichol, S. P. Boughn, A. D. Myers, and G. T. Richards,

Phys. Rev. D 77, 123520 (2008).
[12] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).
[13] R. Durrer and R. Maartens, Gen. Relativ. Gravit. 40, 301

(2008).
[14] W. J. Percival et al., Astrophys. J. 657, 51 (2007).
[15] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175

(2003).
[16] M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).
[17] M. Visser, Science 276, 88 (1997).

LATE UNIVERSE DYNAMICS WITH SCALE-INDEPENDENT . . . PHYSICAL REVIEW D 78, 063527 (2008)

063527-13



[18] M. Bruni, G. F. R. Ellis, and P. K. S. Dunsby, Classical
Quantum Gravity 9, 921 (1992).

[19] R. R. Caldwell, Phys. Lett. B 545, 23 (2002).
[20] R. R. Caldwell, M. Kamionkowski, and N.N. Weinberg,

Phys. Rev. Lett. 91, 071301 (2003).
[21] A. Balbi, M. Bruni, and C. Quercellini, Phys. Rev. D 76,

103519 (2007).
[22] K. N. Ananda and M. Bruni, Phys. Rev. D 74, 023523

(2006).
[23] K. N. Ananda and M. Bruni, Phys. Rev. D 74, 023524

(2006).
[24] C. Quercellini, M. Bruni, and A. Balbi, Classical Quantum

Gravity 24, 5413 (2007).
[25] H. B. Sandvik, M. Tegmark, X. Wang, and M. Zaldarriaga,

Phys. Rev. D 69, 063005 (2004).
[26] V. Gorini, A.Y. Kamenshchik, U. Moschella, O. F.

Piattella, and A.A. Starobinsky, arXiv:0711.4242v2.
[27] D. Pietrobon, A. Balbi, M. Bruni, and C. Quercellini

(unpublished).
[28] M. Kunz, arXiv:astro-ph/0702615.
[29] D. K. Arrowsmith and C.M. Place, Dynamical Systems:

Differential Equations, Maps, and Chaotic Behaviour
(Chapman and Hall, London, 1992).

[30] J. Wainwright and G. F. R. Ellis, Dynamical Systems in
Cosmology (Cambridge University Press, Cambridge,
England, 1997).

[31] D. Wands, E. J. Copeland, and A. R. Liddle, in Texas/
PASCOS ’92: Relativistic Astrophysics and Particle
Cosmology, edited by C.W. Akerlof and M.A.
Srednicki, New York Academy Sciences Annals
Vol. 688 (New York Academy Sciences, New York,
1993), pp. 647–652.

[32] M. Bruni, Phys. Rev. D 47, 738 (1993).
[33] L. Amendola, D. Bellisai, and F. Occhionero, Phys. Rev. D

47, 4267 (1993).
[34] M. Bruni and K. Piotrkowska, Mon. Not. R. Astron. Soc.

270, 630 (1994).
[35] M. Bruni, S. Matarrese, and O. Pantano, Astrophys. J. 445,

958 (1995).
[36] M. Bruni, S. Matarrese, and O. Pantano, Phys. Rev. Lett.

74, 1916 (1995).
[37] E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D

57, 4686 (1998).
[38] C. G. Boehmer, G. Caldera-Cabral, R. Lazkoz, and R.

Maartens, Phys. Rev. D 78, 023505 (2008).
[39] E. Majerotto, D. Sapone, and L. Amendola, arXiv:astro-

ph/0410543.
[40] G. Olivares, F. Atrio-Barandela, and D. Pavón, Phys. Rev.

D 74, 043521 (2006).
[41] Z.-K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D 76,

023508 (2007).
[42] M. Quartin, M.O. Calvao, S. E. Joras, R. R. R. Reis, and I.

Waga, J. Cosmol. Astropart. Phys. 05 (2008) 007.
[43] V. Pettorino and C. Baccigalupi, Phys. Rev. D 77, 103003

(2008).
[44] J. D. Barrow and T. Clifton, Phys. Rev. D 73, 103520

(2006).
[45] J. Valiviita, E. Majerotto, and R. Maartens, arXiv:

0804.232.
[46] P. K. S. Dunsby, M. Bruni, and G. F. R. Ellis, Astrophys. J.

395, 54 (1992).
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