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In this paper I examine cosmological models that contain a stochastic background of nonlinear

electromagnetic radiation. I show that for Born-Infeld electrodynamics the equation of state parameter,

w ¼ P=�, remains close to 1=3 throughout the evolution of the universe if E2 ¼ B2 in the late universe to

a high degree of accuracy. Theories with electromagnetic Lagrangians of the form L ¼ � 1
4F

2 þ �F4

have recently been studied in magnetic universes, where the electric field vanishes. It was shown that the

F4 term can produce a bounce in the early universe, avoiding an initial singularity. Here I show that the

inclusion of an electric field, with E2 ’ B2 in the late universe, eliminates the bounce and the universe

begins with an initial singularity. I also examine theories with Lagrangians of the form L ¼ � 1
4F

2 �
�8=F2, which have been shown to produce a period of late time accelerated expansion in magnetic

universes. I show that, if an electric field is introduced, the accelerated phase will only occur if E2 < 3B2.

DOI: 10.1103/PhysRevD.78.063524 PACS numbers: 98.80.�k

I. INTRODUCTION

Over the last few years there has been a significant
amount of interest in cosmological models involving non-
linear electromagnetic fields [1–3]. If the early universe is
dominated by radiation governed by Maxwell’s equations
it is well known that there will be a spacelike initial
singularity in the past. However, if Maxwell’s equations
become modified in the early universe, when the electro-
magnetic field is large, it may be possible to avoid the
initial singularity. In fact, recent results [1] show that a
magnet universe can avoid the initial singularity and have a
period of late time acceleration if the electromagnetic
Lagrangian is of the form

L ¼ � 1

4
F2 þ �F4 ��8

F2
; (1)

where F2 ¼ F��F�� and � and � are constants. In these

models the universe begins in a collapsing phase and the
scale factor decreases until it reaches some minimum value
and the universe then begins to expand. Near the bounce
the electromagnetic field is large and the �F4 term in the
Lagrangian dominates. At late times the �=F2 term domi-
nates and the universe enters an accelerated expansion
phase. It has also been shown [2] that if a term proportional
to 1=F4 is added to the Lagrangian the expansion will
eventually end and the universe will begin to collapse, until
it bounces again. Thus, this model produces a cyclic mag-
netic universe.

In this paper I examine cosmological spacetimes that
contain a stochastic background of Born-Infeld radiation
with a nonvanishing hE2i. The equation of state parameter,
w ¼ P=�, is computed as a function of the scale factor and
is shown to be w ’ 1=3 throughout the history of the

universe if hE2i ’ hB2i at late times. This implies that the
nonlinear corrections to Maxwell’s equations, which ap-
pear in Born-Infeld theory, do not significantly effect the
evolution of the universe.
I also examine the early universe in theories with

L ¼ �1
4F

2 þ �F4 (2)

which, as discussed above, have a bounce at a small value
of the scale factor in magnetic universes. Here I show that
the inclusion of a stochastic electric field keeps the �F4

term small in comparison to the F2 term, if hE2i ’ hB2i at
late times. Thus, the inclusion of an electric field can
eliminate the bounce and the universe can ‘‘begin’’ from
an initial singularity.
I also show that the terms proportional to 1=F2 in the

Lagrangian, which dominate at late times, will only pro-
duce an accelerated expansion if E2 < 3B2.

II. NONLINEAR ELECTRODYNAMICS

In nonlinear electrodynamics the Maxwell Lagrangian

LM ¼ �1
4F

2 (3)

is replaced by

L ¼ LðF2; G2Þ; (4)

where F2 ¼ F��F��, G
2 ¼ F���F�� and F

��� is the dual

of F��. In this paper I will take L to be independent of G

for simplicity.
The vacuum field equations of the theory are

r�P
�� ¼ 0 (5)

and
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r�F
��� ¼ 0 (6)

where

P�� ¼ @L

@F��

: (7)

In a cosmological spacetime with

ds2 ¼ �dt2 þ aðtÞ2½dx2 þ dy2 þ dz2� (8)

the field equations can be written as

~r � ~D ¼ 0;
@

@t
ða2 ~DÞ � a ~r� ~H ¼ 0; (9)

~r � ~B ¼ 0;
@

@t
ða2 ~BÞ þ a ~r� ~E ¼ 0; (10)

where Ek ¼ a�1Fkt, Bk ¼ 1
2a

�2�klmFlm, ~D ¼ �4LF
~E,

~H ¼ �4LF
~B, F2 ¼ 2ðB2 � E2Þ and LF ¼ dL=dF2. The

factors of�4 appear so that ~D ’ ~E and ~H ’ ~B in the weak
filed limit where L ’ � 1

4F
2. The energy-momentum ten-

sor can be found by varying the action with respect to the
metric and is given by

T�� ¼ �2P��F�
� þ g��L: (11)

Born and Infeld [4] took the Lagrangian to be (settingG ¼
0)

L ¼ � 1

2b2
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2F2

p
� 1�: (12)

It is interesting to note that the action for gauge theories on
D-branes in string theory is of the Born-Infeld type [5].

III. COSMOLOGIES WITH NONLINEAR
ELECTROMAGNETIC RADIATION

In this section I will consider k ¼ 0 homogeneous and
isotropic cosmological spacetimes, with a metric given in
(8), that is filled with electromagnetic radiation. The elec-
tromagnetic field that is of cosmological interest is the
cosmic microwave background. It can be considered as a
stochastic background of short wavelength radiation (com-
pared to the curvature) that satisfies [6]

hEii ¼ hBii ¼ hEiBji ¼ 0 (13)

and

hEiEji ¼ 1
3E

2�ij; hBiBji ¼ 1
3B

2�ij; (14)

where hi denotes an average over a volume that is large
compared to the wavelength of the radiation but small
compared to the curvature of the spacetime. I will also
assume that approximations such as hfðE2Þi ’ fðhE2iÞ are
valid for functions f that appear in this paper (since hG2 ¼
0i Lagrangians that depend on G could also have been
considered). This type of approximation is used in many
papers that examine cosmologies with nonlinear electro-

magnetic radiation but is often not stated. In this paper I
will take hE2i ’ hB2i at late times, if Maxwell’s equations
are approximately valid then. For notational simplicity I
will omit the averaging brackets for the remainder of this
paper.
The energy density and pressure of the radiation can be

found from (11) using � ¼ �Tt
t and P ¼ 1

3T
k
k and are

given by

� ¼ �L� 4E2LF (15)

and

P ¼ L� 4
3ðE2 þ F2ÞLF: (16)

The behavior of D2 and B2 can be found by multiplying

the second equation in (9) by a2 ~D and the second equation

in (10) by a2 ~B and taking spatial averages to obtain

@

@t
ða4D2Þ ¼ 2a3h ~D � ð ~r� ~HÞi (17)

and

@

@t
ða4B2Þ ¼ �2a3h ~B � ð ~r� ~EÞi: (18)

Since the right-hand sides of these equations vanish I find
that

D2 ¼ D2
0

a4
and B2 ¼ B2

0

a4
; (19)

whereD0 and B0 are the present values ofD and B and a is
taken to be one today. Solving for E2, using the Born-Infeld
Lagrangian, gives

E2 ¼ D2
0

a4

�
1þ 2b2B2

0

a4

1þ 2b2D2
0

a4

�
: (20)

The equation of state parameter w defined by

w ¼ P

�
(21)

is given by

w ¼ 1

3
� 4ðL� F2LFÞ

3ðLþ 4E2LFÞ
: (22)

For theories that reduce to Maxwell’s theory in the weak
field limit

L ’ �1
4F

2½1þ ð�F2Þn�; n > 0; (23)

when �E2 � 1 and �B2 � 1. The equation of state pa-
rameter is given by

w ’ 1

3
þ 2nð�F2Þnþ1

3�ðE2 þ B2Þ ; (24)

so that w ’ 1=3, as expected. For Born-Infeld theory the
equation of state parameter is given by
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wðaÞ ¼ 1

3
�

4
3a

4½1� a4þb2ðD2
0
þB2

0
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða4þ2b2D2
0Þða4þ2b2B2

0Þ
p �

a4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða4 þ 2b2D2

0Þða4 þ 2b2B2
0Þ

q : (25)

In the early universe a ! 0 and it is easy to see thatw ! 1
3 .

Note: if B2
0 ¼ D2

0 then w ¼ 1=3 at all times. This makes

sense because B2
0 ¼ D2

0 implies that F2 ¼ 0. At late times

D2
0 ’ E2

0 ’ B2
0. Setting B2

0 ¼ D2
0 þ �, with � � D2

0, I find

that

w ’ 1

3
� a4b2�2

3D2
0ða4 þ 2b2D2

0Þ2
(26)

to lowest order in �. The equation of state parameter there-
fore decreases from w ¼ 1

3 at a ¼ 0 to a minimum value of

wmin ’ 1
3 � 1

24 ð �
D2

0

Þ2 at a4 ¼ 2b2D2
0 and then increases to

w ’ 1
3 � 1

3 ðb�D0
Þ2 at a ¼ 1. This shows that w ’ 1=3 at all

times. This can also be seen from

b2F2 ¼ 2b2�

a4 þ 2b2D2
0

; (27)

which is always small. Thus, Maxwell’s equations will
hold to a good approximation at all times and w ’ 1=3 (it
is easy to show that [7] �þ 3P � 0 in Born-Infeld theory
for all values of E2 and B2 so that a bounce cannot occur).

An interesting way of looking at the radiation is to
consider it to be composed of two interacting fluids with

�1 ¼ �4E2LF; P1 ¼ �4
3E

2LF (28)

and

�2 ¼ �L; P2 ¼ L� 4
3F

2LF: (29)

The equation of state for fluid one is P1 ¼ 1
3�1, so that it

has the same equation of state as Maxwell radiation (note
that for Maxwell’s theory and for Born-Infeld theory LF <
0 so that �1 > 0). The equation of state for the second fluid
depends on the form of the Lagrangian. If the fluids are
noninteracting the energy density of the first fluid will
satisfy �1 / a�4. However,

�1 ¼ � D2

4LF

¼ � D2
0

4a4LF

; (30)

so that the fluids are noninteracting iff LF is a constant. If
LF varies by only a small amount then very little energy
will be transferred from one fluid to the other. In Born-
Infeld theory LF ’ �1=4 since b2F2 is always small. Thus,
the two fluids are almost noninteracting. The energy den-
sities of the fluids are given by

�1 ’ E2 ’ D2
0

a4
(31)

and

�2 ’ �

2ða4 þ 2b2D2
0Þ
: (32)

Thus, j�2j � �1 and w ’ 1=3 at all times.
The equation of state for the second fluid can be found

using Eq. (29). For the Born-Infeld Lagrangian (12) the
equation of state is given by

P2 ¼ 1

3
�2

�
1� 2b2�2

1þ 2b2�2

�
: (33)

At low densities (j�2j � b�2) the equation of state is P2 ’
1
3�2 and at high densities (�2 � b�2) the equation of state

is P2 ’ � 1
3�2. The minimum value of �2 is� 1

2b2
, and the

pressure diverges as �2 approaches this value. Since
b2�2 � 1 we have P2 ’ 1

3�2 during the evolution of the

universe.
Next consider the Lagrangian

L ¼ �1
4F

2 þ �F4 (34)

which, in magnetic universes, does not have an initial
singularity for �> 0. The singularity avoiding behavior
is produced by the F4 term, which dominates at early
times. However, in universes with E2 � 0 it is not neces-
sary that F2 ¼ 2ðB2 � E2Þ is large in the early universe.

From F2 ¼ 2ðB2 � E2Þ and ~D ¼ �4LF
~E I find the follow-

ing cubic equation:

x3 þ ð2�B2 � 1Þx2 � 2�D2 ¼ 0; (35)

where x ¼ 1� �F2 and � ¼ 8�. At late times Maxwell’s
equations will hold to a good approximation and F2 ’ 0.
To see how x evolves set x ¼ 1þ �, linearize (35) and
solve for �. Using (19) it is easy to show that

� ¼ 2�ðD2
0 � B2

0Þ
ða4 þ 4�B2

0Þ
; (36)

Thus, the maximum value of � is

�max ¼ ðD2
0 � B2

0Þ
2B2

0

: (37)

SinceD2
0 � B2

0 � B2
0 we see that �max � 1. Thus, the �F4

in the Lagrangian will never dominate over the F2 term in
the Lagrangian and there will be an initial singularity.
Finally, consider situations in which the �8=F2 term in

(1) dominates. A necessary and sufficient condition for
accelerated expansion is �þ 3P< 0 (it is simpler to ex-
amine �þ 3P than w since the energy density can be
negative in this theory). Now

�þ 3P ’ � 4�8

F4
ð3B2 � E2Þ: (38)

Thus, accelerated expansion will occur iff E2 < 3B2 (note
that we cannot have E2 ¼ B2, since the energy density
would diverge).
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IV. CONCLUSION

In this paper I examined homogeneous and isotropic
cosmologies with nonlinear electromagnetic radiation.
The electromagnetic field was taken to be a stochastic
background with nonvanishing E2 and B2. I showed that,
for Born-Infeld theory, the equation of state parameterw ¼
P=� is always close to 1=3 if E2 and B2 are nearly the same
in the late universe.

I also examined cosmologies with electromagnetic
Lagrangians given by

L ¼ �1
4F

2 þ �F4 (39)

and by

L ¼ � 1

4
F2 ��8

F2
: (40)

In magnetic universes with the Lagrangian (39) the �F4

term dominates in the early universe producing a bounce.
However, the inclusion of an electric field, with E2 ’ B2 at
late times, keeps �F2 small, and these models do not have
a bounce in the early universe. At late times in magnetic
universes with the Lagrangian (40) the �8=F2 term will
dominate producing an accelerated expansion. I showed
that the universe will only experience a period of late time
acceleration if E2 < 3B2.
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