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There has been much recent discussion, and some confusion, regarding the use of existing observational

data to estimate the likelihood that next-generation cosmic microwave background (CMB) polarization

experiments might detect a nonzero tensor signal, possibly associated with inflation. We examine this

issue in detail here in two different ways: (1) first we explore the effect of choice of different parameter

priors on the estimation of the tensor-to-scalar ratio r and other parameters describing inflation, and (2) we

examine the Bayesian complexity in order to determine how effectively existing data can constrain

inflationary parameters. We demonstrate that existing data are not strong enough to render full inflationary

parameter estimates in a parametrization- and prior-independent way and that the predicted tensor signal

is particularly sensitive to different priors. For parametrizations where the Bayesian complexity is

comparable to the number of free parameters we find that a flat prior on the scale of inflation (which

is to be distinguished from a flat prior on the tensor-to-scalar ratio) leads us to infer a larger, and in fact

slightly nonzero tensor contribution at 68% confidence level. However, no detection is claimed. Our

results demonstrate that all that is statistically relevant at the current time is the (slightly enhanced) upper

bound on r, and we stress that the data remain consistent with r ¼ 0.
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I. INTRODUCTION

Shortly after its introduction [1–6], inflation was found
to produce a nearly flat Gaussian spectrum of adiabatic
density perturbations that could have been the seeds of
observed structure in the Universe [7–13]. The simplest
model of inflation is that of a slowly rolling scalar field
[14–16], which naturally produces a close to flat primordial
spectrum. While the available observations are remarkably
consistent with such a spectrum, unfortunately one can
obtain virtually any scalar spectrum by simply adjusting
the shape of the inflaton potential at early times, and
therefore present results are strongly suggestive, but not
yet unimpeachable evidence that inflation actually
occurred.

There are other more generic predictions of inflation that
could be subject to testing, however. For example, a single
rolling scalar field during inflation produces perturbations
that are very close to Gaussian. A detection of significant
primordial non-Gaussianity in the cosmic microwave
background (CMB) could rule out simple slow-roll infla-
tion [17]. A second possibility is the fact that inflation
generally produces a spectrum of tensor perturbations,

which could, among other effects, produce an observable
B-mode polarization in the CMB [18,19], albeit plagued by
uncertainties [20,21]. Note that tensor perturbations are not
the only source of B-mode polarization [22–25], and non-
inflationary transitions can also produce a similar back-
ground [26,27]. Nevertheless, observation of both the
scalar spectrum and the tensor spectrum could at least
test the predictions of slow-roll (SR) inflation, through
the consistency relation

nT ¼ �r=8; �T ¼ nT½nT � nS þ 1�; etc:; (1)

where nT is the tilt of the tensor spectrum, r is the ratio of
the amplitudes of the tensor and scalar spectra, �T is the
running of the tensor spectrum, and nS is the tilt of the
scalar spectrum. A tensor spectrum has not been detected
so far, and many future experiments have been proposed
to search for a gravitational waves signal from inflation
[28–37].
With only observations that constrain the scalar spec-

trum, one might hope to gain some information on the
inflaton potential [38–40]. However the plethora of differ-
ent models of inflation make such a task difficult.
Nevertheless, obtaining any information one can on the
potential using the observed scalar perturbations could give
information about the possibility of observing tensor per-
turbations. In Ref. [41] the following relation between the
change in value of the scalar field � and the tensor-to-
scalar ratio r, holding deep inside the slow-roll approxi-
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mation, was pointed out,
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where N is the number of e-folds the Universe grows
during the change �� of the scalar field. That is, when
focusing on only a small part of the potential, and not
necessarily on the whole duration of inflation, �N can
correspond to a number much smaller than the total num-
ber of e-folds of inflation, N � 60–70. Hence, relation (2)
relates the flatness of the potential to the relative amplitude
of tensor perturbations. Throughout this work we use
Gm2

P ¼ @ ¼ c ¼ 1.
As the only current probe of the mechanism of inflation

is the observed spectrum of density perturbations in the
Universe, Refs. [42–47] concentrated on reconstructing the
inflaton potential only in the observational range. It was
found in Ref. [46] that in the observational range naturally
��<mP and �N � 22. This bound on �N comes from
the condition that the smallest observable modes actually
freeze in [47]. The bound on �� can then be understood
from Eq. (2) as the data prefer models with r smaller than
at most 0.4 (depending on the data used).

The reconstruction of the inflation potential gave a weak
upper limit on r, fully consistent with r ¼ 0. More re-
cently, however, at least one group has claimed that recent
data imply a nonzero lower limit on r [48].

Obviously it is important to clarify this situation, espe-
cially when the results would have such great significance,
and when a dedicated satellite mission to probe for pri-
mordial Bmodes associated with a nonzero tensor signal is
being considered.

In cases such as this, it is useful to take a Bayesian
approach and to consider how effective the data really
are at constraining parameters. Thus, one must consider
not merely a posteriori probability estimations, but also the
effect of prior assumptions (see [49] for some discussion of
this issue). If the results depend crucially on the latter, then
the parameter estimates one derives from the data must be
taken with a grain of salt.

The purpose of this paper is to explicitly explore pre-
cisely this question at the current time, in order to help
solidify expectations for future measurements of this im-
portant and fundamental quantity arising from inflation.
Specifically we first explore to what extent the priors one
assumes in the analysis affect the expected value of r.

One might argue that with little knowledge of the rele-
vant physics, it is perhaps pointless to argue strongly on
behalf of one set of priors or another at this point. It does
make sense, however, to examine how robust the conclu-
sions one draws are, under different prior assumptions.
(See also work to appear by Vaudrevange and colleagues
[50,51].) This work focuses on the effect of taking a flat
prior on the Hubble factor during inflation, and its deriva-
tives with respect to the scalar field value �. We will show

that a change of parametrization, but not of physical model,
in this case can lead to significantly different bounds on
parameters, some of which may mildly hint at a larger
value of r as well.
In this regard we note that in Ref. [48], a lower bound on

the tensor-to-scalar ratio has been found which one might
be tempted to ascribe to a choice of prior. An important
difference between their result and ours however is that
their lower bound on the tensor-to-scalar ratio is caused by
a theoretical prior: the models they allow can only be
consistent with today’s observed scalar amplitude and tilt
if the tensor-to-scalar ratio is significant. In the present
work however, the prior on allowed models is as broad as
possible, a priori not ruling out any combination of infla-
tionary parameters.
Next, in order to explore the general significance of any

derived lower bound on r based on a choice of priors, we
examine the Bayesian complexity parameter associated
with the current data. This gives a very useful tool to
explore how many free parameters the data can usefully
constrain. As we demonstrate, for many inflationary pa-
rametrizations, the data are currently simply not powerful
enough to add information beyond the prior, for all the
parameters, explaining the prior-dependence of estimates
of r that we have found. Thus, we argue that existing data
at best provide a rough upper bound on r, rather than
providing a robust estimate of its posterior probability
distribution.
In Sec. II we discuss the relation between different flat

priors, and explain how to translate posterior probability
densities from one prior to another. In Sec. III we apply a
flat prior on the value of the Hubble parameter and its
derivatives during inflation, fit it to the data, and discuss the
results for both prior dependence and Bayesian complexity.
We conclude in Sec. IV.

II. PRIORS AND POSTERIORS

When faced with the problem of estimating parameters
from data, Bayesian inference enjoys a great popularity
among cosmologists (see [52] for a recent review). An
essential ingredient of any Bayesian inference is the prior
distribution, which encodes our knowledge about these
parameters before any data are taken. With a suitable basis
of parameter space fxig chosen, it is often tacitly assumed
that the prior is flat—signifying our lack of information
about this parameter in the absence of data. In other words,
the prior probability of an interval �xi to contain the true
value of the xi is taken to be constant over the entire
domain of definition of parameter space.
However, while in some problems there is a naturally

preferred basis of parameter space, this need not always be
the case, and an alternative, equally well motivated pa-
rametrization fyig may exist. It is straightforward to show
that generally, a prior in basis fxig does not correspond to
the same prior in basis fyig. Labeling a prior A on fxig by
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�ðAÞ
x , the corresponding prior on fyig is given by

Z
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Z
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x

��������
dxi
dyj

��������dny � 1

Vy

Z
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y dny;

(3)

�ðAÞ
y ð ~yÞ / �ðAÞ

x ð ~xð ~yÞÞ
��������
dxi
dyj

��������; (4)

where Vy ¼
R
dny. Hence a flat, noninformative prior in

one basis does not necessarily equal a noninformative prior
in another, making the choice of basis equivalent to the
choice of prior, and by consequence, extending its influ-
ence to the posterior and the inferred parameter constraints,
unless the data become informative enough. This problem
was identified in [53–55] in the context of isocurvature
models; here we will argue that inflationary parameters,
including estimates of the tensor-to-scalar ratio, can also be
affected.

A. Importance sampling

If from earlier analyses one knows that the bounds on
parameters in set fxig have Gaussian-like shapes, and the
sets fxig and fyig are nonlinearly related, one can expect
that correlations between parameters in set fyig are of
nontrivial shape. In that case a Metropolis-Hastings algo-
rithm, which is what we will use later on, will have
difficulty exploring parameter space properly within an
acceptable amount of time. A solution to this problem is
importance sampling, which is the act of picking points
according to one posterior distribution, but transforming
the chance of accepting the point to another posterior
distribution. In this way the algorithm walks through pa-
rameter space according to directions in the ‘‘easier-to-
explore’’ fxig-space, but performing the statistics as if
working in fyig-space. The resulting chains will be distrib-
uted according to the prior chosen in fyig-space. Let A
denote statistics with a flat prior on fxig, and let B denote
statistics with a flat prior on fyig. In the Metropolis-
Hastings algorithm, the chance of accepting a proposed
step is directly related to the ratio of its posterior and the
posterior of the previous point. Hence a constant multi-
plicative factor in the posterior is irrelevant, and we can
neglect the volume term in Eq. (4). By consequence, any
constant prior corresponds to a flat prior, such that the
conversion to be done is

�ðBÞ
y ð ~yÞ ¼

��������
dyi
dxj

���������ðAÞ
y ð ~yÞ ¼ constant; (5)

P ðBÞð ~yð ~xÞÞ ¼
��������
dyi
dxj

��������P ðAÞð ~xÞ: (6)

There are two distinct places in the analysis in which the
correction for the prior can be applied. One option, which
we shall refer to as post-sampling, is to take the converged

chains of an analysis performed under prior (A), and multi-
ply the weight of each point in the chain by the Jacobian as
in Eq. (6).
The advantage is that one can post-process readily avail-

able chains to present a new prior, which takes practically
no time. A possible drawback is that the chains, that
converged for an analysis under prior A, may have too
few (or no) points in the regions of parameter space im-
portant under prior B.
The second option is explicit importance sampling of the

second distribution, in which one, during the Monte-Carlo
process, transforms the posterior of a point to reflect the
correct prior, by applying Eq. (6) before the decision about
acceptance of the point is taken. The advantage is that the
convergence statistics will now be performed for the cor-
rect probability density, hence important regions will have
enough points in the chains. A drawback is that the analysis
has to be performed from scratch, which can be time
consuming.

B. Cosmological parameters

When constraining the parameters of �CDM cosmolo-
gies, it is a popular choice to take flat priors on
f�ch

2;�bh
2; �; �g (the dark matter density, the baryon

density, the optical depth to reionization, and the ratio of
sound horizon to angular diameter distance at decoupling,
respectively) and for the primordial power spectrum a flat
prior on either flnAS; nS; �Sg (the amplitude, tilt, and run-
ning of the spectrum) or flnAS; �ig, with f�ig some basis of
slow-roll (SR) parameters. In the SR-basis of Hubble-flow
parameters, the dynamics of inflation are hidden in these
parameters by

AS ¼ 4H4�
H02� m4

P

; (7)

� ¼ m2
P

4�

�
H0�
H�

�
2
; (8)

H� ¼ m2
P

2

ffiffiffiffiffiffiffiffiffiffiffiffi
�AS�

p
; (9)

where HInf ¼ H�, � denotes evaluation at the pivot scale,
and 0 denotes derivation with respect to the field value of
the inflaton. This means that in all these analyses the
posterior distribution of the derived parameter HInf is
obtained with a nonflat prior.

In Fig. 1 we show the Jacobian j dxidyj
j ¼ 4H02� m6

P

H6�
relating

the coordinate transformation between sets

fxig �
�
ln

4H4�
H02� m4

P

;

�
H0�
H�

�
2
m2

P;
H00�
H�

m2
P;
H000� H0�
H2�

m4
P

�
(10)

fyig �
�
H�
mP

; H0�; H00�mP; H
000� m2

P

�
; (11)
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corresponding up to a constant to the ratio �ðAÞ
y =�ðAÞ

x . A flat
prior on set fyig (prior B) favors high values of H� when
compared to a flat prior on set fxig (prior A).

Once the data come into play, the amplitude AS will
essentially be fixed. Since AS / H2�=�, higher values of H�
will need to be offset by higher values of �. In the slow-roll
regime, � is related to the tensor-to-scalar ratio r by

r ’ 16� ¼ 4m2
P

�

�
H0

H

�
2
; (12)

and hence we can expect prior B to prefer a larger tensor
contribution, compared to prior A. Equation (12) also
shows that a flat prior on � roughly corresponds to a flat
prior on r.

III. FLAT PRIOR ON HInf

In order to probe the scale of inflation, we numerically
integrate the perturbation equations of the inflaton in a
background described by a Taylor-expansion of Hð�Þ, as
discussed in [45,46], and constrain the free parameters
using temperature and polarization data from the 5 yr
data release of the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite (WMAP5) [56], as well as the
power spectrum of luminous red galaxies from the Sloan
Digital Sky Survey (SDSS-LRG) [57]. The parameter es-
timation is done using the Metropolis-Hastings algorithm,
employing a modified version of the publicly available
code COSMOHC [58] together with our own module for
inflationary perturbations (which is available for download
at http://wwwlapp.in2p3.fr/valkenbu/inflationH/). The pa-
rameters describing the model are either f�ch

2;�bh
2;

�; �g þ fxig or f�ch
2;�bh

2; �; �g þ fyig. We include the
calculation of tensor perturbations.
As a consequence of this exact numerical treatment of

perturbations, we automatically impose a consistent infla-
tionary prior (in the following this is referred to as ‘‘infla-
tionary consistency’’). By numerically integrating the
perturbation equations until the actual freeze-in of all
modes, this method requires inflation to occur over the
observable range, which constrains parameters more
strongly than a naive application of the SR-approximation.
As pointed out in Ref. [47], a naive implementation of the
SR-approximation allows for inconsistent models, for
which small scale modes actually do not freeze in, even
though the approximation provides a spectrum. We make
no prior assumption on the total length of inflation other
than the length needed to produce the observed power
spectrum of perturbations. That is, we remain conservative
about the mechanism of inflation during the unobserved
epoch, between horizon exit of the smallest observable
modes and the end of inflation.
As a consistency check we performed both described

methods, post-sampling and importance sampling. In
Fig. 2 we show the one dimensional marginalized posterior
distributions of the four cosmological parameters describ-
ing the physics after inflation, comparing the analyses with
prior A, the post-sampled chains from prior A to prior B,
and the chains with prior B (importance sampled). The
post-sampled and importance sampled analyses com-
pletely agree, which shows that the chains that converged

FIG. 2 (color online). The marginalized posterior distributions
of cold dark matter density (�ch

2), the baryon density (�bh
2),

the ratio of sound horizon to angular diameter distance at
decoupling (�) and the optical depth to reionization (�), under
prior A (dashed line), post-sampled from prior A to prior B
(dotted line) and under prior B (solid line). The post-sampled
distributions are hardly visible as they practically completely
agree with the importance sampled distributions.
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FIG. 1. The Jacobian j dxidyj
j for the coordinate transformation

from set fxig to set fyig. It is clear that a flat prior on set fxig
strongly favors small values for H� compared to a flat prior on

set fyig, as �ðAÞ
y � �ðAÞ

x j dxidyj
j.
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under prior A have enough samples in the typical set of the
posterior distribution under prior B. As should be expected,
the four parameters shown in Fig. 2 are not affected by the
change in prior. In Fig. 3 we show the posterior distribu-
tions of parameters describing the inflationary evolution.
The main change is in the posterior of the parameter

ðH0
H Þ2m2

P, which has a higher preferred value under prior B

than under prior A. This result is in agreement with the
expected effect, illustrated in Fig. 1.

The scale of inflation and the tensor-to-scalar ratio are
shown in Fig. 4. Both parameters, which are related, have a
higher preferred value under prior B.

For illustration, in Fig. 4, we also show a post-sampled
distribution with a flat prior on flnH�; H0�; H00� ; H000� g. Also
this prior gives a higher value for H� and r than prior A
does. Note that under both prior A and prior B, we find a
lower r than the combined analysis of the WMAP 3 yr data
and SDSS-LRG in Ref. [57], which is due to our infla-
tionary prior: integrating the modes until actual freeze-in,
means demanding inflation for about 22 e-folds, which
forces the inflaton potential to be relatively smooth. The
smoothness of the potential pushes � down and thereby
also r. Likewise the scalar tilt nS is pushed toward unity, as
is shown in Fig. 5 where the two dimensional parameter
correlations are shown for two illustrative cases, HInf ver-
sus @�H, and r versus nS. The former illustrates the non-

linear correlation between the parameters HInf and @�H in

the data. The curved shape of the posterior probability
contour indicates that it would take a Metropolis-
Hastings sampler a long time to random-walk from one

lobe to another if steps are only to be taken in either
horizontal or vertical direction, or a linear combination
of both, in the plane of this plot. By using importance
sampling, steps are taken in correlated directions, signifi-
cantly speeding up the process. The latter shows both the
effect of the inflationary prior, present in both analyses, and
the effect of going from prior A to prior B. In both analyses
the value of � is relatively close to zero, however it is larger
under prior B.
It is interesting to note that we also find an apparent

lower bound on the scale of inflation, even for a flat prior
on H�. In fact, this phenomenon is related to our choice of
prior on � (orH0�, under prior B). Let us illustrate the effect
in the example of prior A. The dislike of the data for a large
tensor contribution leads to an upper bound on � due to

FIG. 3 (color online). The marginalized posterior distributions
of the parameters describing the evolution of the Universe during
inflation, for the same analyses as in Fig. 2. Again the post-
sampled distribution (dotted line) is hardly visible due to its good
agreement with the importance sampled distribution (solid line).
The main change under the transformation of priors is seen in the
posterior of ðH0

H Þ2m2
P, in agreement with the prediction in Fig. 1.

0 0.5 1 1.5

x 10
−5H

Inf
 / m

P

0 0.1 0.2 0.3 0.4
r

FIG. 4 (color online). The marginalized posterior distributions
for the scale of inflation HInf and the scalar-to-tensor ratio r
under prior A (dashed line), under prior B (solid line), post-
sampled to a Jeffreys prior on H� (dotted line) and under a flat

prior on fAs; ln�;
H00�
H�

m2
P;

H000� H0�
H2�

m4
Pg (dashed line close to zero for

both figures). Prior B corresponds to a flat prior on HInf , whereas
prior A roughly corresponds to a flat prior on r, as explained in
the text. Prior B pushes both HInf and r up in value. Also shown
is the mean likelihood over each (8� 1)-dimensional parameter
space for all values of H and r (dashed-dotted line).

FIG. 5 (color online). Two dimensional marginalized posterior
distributions for two illustrative cases, comparing prior A
(dashed line), prior B (solid line) and a noninflationary analysis,
probing the four cosmological parameters plus the set
flnAS; nS; �S; rg describing the primordial spectrum (dotted
line). All inner contours correspond to 68% CL bounds, all outer
contours correspond to 95% CL bounds. Left: the curved corre-
lation shape between @�HInf and HInf illustrates the need for

importance sampling when taking a flat prior on these parame-
ters. Right: both r and nS are pushed up by prior B.
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Eq. (12). In order to reproduce the observed amplitude of
fluctuations, AS �H2�=� implies also an upper bound on
H�. However, as a consequence of the flat prior on �,
extremely small values of �, while certainly allowed by
the data, are assigned an exponentially suppressed proba-
bility, with a preference for � of the order of magnitude of
its upper bound. Since AS �H2�=�, we also have a sup-
pression of small values of H�, with a peak slightly below
the upper bound. If we instead take the prior to be flat on
the logarithm of � (i.e., a Jeffreys prior on �), we do not see
such a suppression. However, the results for the Jeffreys
prior on � must be interpreted with care as they are highly
dependent on the lower bound. For numerical reasons we
took a lower bound of ln� >�57. Had we taken an even
smaller lower bound, the lines would be even closer to
zero. A similar result can be anticipated for a flat prior on
lnH0� in the fyig parametrization. That this dependence on
the lower bound does not occur under the Jeffreys prior on
H but a flat prior on H0 is explained by the same reasoning
as the apparent lower bound on H.

In addition to the posteriors, Fig. 4 shows the mean
likelihood over each (8� 1)-dimensional parameter space
for all values of H and r. This is a prior-independent
quantity with no probabilistic information (i.e., it is not a
probability density). It serves as an approximation for the
profile likelihood. The profile likelihood is the best fit that
can be achieved given a certain parameter value. The
discrepancy between the mean likelihood and the various
posteriors indicates that the various lower bounds in the
posteriors are results of either volume effects in the process
of marginalization, the choice of prior, or a combination of
both. The mean likelihood shows that a good fit can even
be achieved for very small values of r and HInf . In fact the
best fit we found lies at r ¼ 4� 10�2 and HInf ¼
4� 10�6mP. This certainly does not coincide with the
peaks of the posteriors found for priors A and B.

In Fig. 5 we also compare derived parameters from the
different analyses with the bounds obtained on these pa-
rameters when using no inflationary prior and simply fit-
ting a primordial power spectrum,

PðkÞ ¼ AS

�
k

k�

�
nS�1þð1=2Þ�S lnðk=k�Þþ���

; (13)

and a consistent tensor spectrum, described by r and con-
sistency relations between the tensor spectral tilt (nT) and
the scalar parameters, to the same data. Calculating
fHInf ; H

0
Infg from fAS; nS; �S; rg is done using the relations

given in Ref. [45]. The curved shape of the correlation
between H0

Inf and HInf reflects the need for importance

sampling. The 95% confidence level (CL) contours under
prior A correspond to the 95% CL contours from the
spectral fit for small values of H0

Inf , whereas the 95% CL

contours under prior B correspond to the spectral fit for
large values of H0

Inf . An important conclusion to draw here

is that both priors A and B allow most of parameter space

that is allowed by the spectral fit, which has no inflationary
prior.
In the nS-r-plane, prior A clearly pushes r down with

respect to merely performing a spectral fit because of the
demand that inflation lasts long enough to produce the full
observed spectrum under a flat prior on virtually the same
parameters, whereas prior B pushes r up, in spite of the
same condition on the duration of inflation.
In the absence of clearly favored theoretical models, the

beauty of various priors is, alas, largely in the eye of the
beholder. Nevertheless we emphasize that both priors A
and B do not exceed the spectral limits but do probe
practically the whole range allowed without the require-
ment of persistent inflation. More interestingly, the 68%
CL contour for prior B actually yields a nonzero lower
bound for r. Marginalized over all parameters, the poste-
rior of r gives, at 68% CL, 0:061< r < 0:243, however at
95% CL r is still consistent with zero. While this may hint
at a nonzero amplitude of tensor modes, our analysis
underscores the prior model dependence of this result
and thus we do not put much stake in it here. Neverthe-
less, it does suggest that future polarization searches for
tensor modes may have a better chance of detection than
otherwise suggested.

Bayesian complexity

When selecting models and priors, a quantity that can
distinguish between models is the Bayesian evidence,
which rewards both the predictivity and the conciseness
of a model, and gives preference to the model with the best
balance between the two characteristics. When the
Bayesian evidence cannot distinguish between two mod-
els, a secondary quantity to make the comparison is the
Bayesian complexity [59,60],

C b � �2 � �2ð�̂Þ; (14)

where the effective �2 is defined as �2 lnL, with the

likelihood L, and �̂ denotes the best fit point, and the
overline denotes the mean over the posterior. The
Bayesian complexity measures the information gain
when going from the prior to the posterior, and can be
interpreted as a measure of the number of parameters the
data can constrain in a model, or conversely the number of
parameters a model effectively needs to fit the data. Along
the same lines, if the Bayesian complexity is smaller than
the actual number of free parameters of a model, this could
be taken as a sign that the model contains ‘‘unnecessary’’
degrees of freedom, i.e., parameters on which we do not
gain information from the data.
Note that the Bayesian complexity itself contains no

information about the goodness of fit of a model, or the
evidence of one model over another, but gives an additional
measure on the number of parameters in a model that is
justified by the data. Without an evidence calculation, the
complexity can still be useful for telling whether parame-
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ters are mostly bounded by either the data or the prior. In
this work we are interested in the question which priors
(with the same underlying model) constrain parameters
beyond the constraining power of the data, and which
priors allow the data to give information on parameters.

The Bayesian evidence cannot be reliably calculated
from the Markov-chain Monte Carlo (MCMC) chains ob-
tained doing the parameter estimation, as these chains have
a lack of information on the tails of the parameter distri-
butions. An elaborate analysis would be necessary, e.g.
using nested sampling [61]. The Bayesian complexity,
however, can be readily calculated from the chains. In
Table I, we show the Bayesian complexity for the same
model under the different priors.

For prior A we find a complexity of 6:98� 0:03, for
eight free parameters. This indicates that the data do not
give any information on one of the free parameters. Most

likely this is due to
H000� H0�
H2�

m4
P which is more tightly con-

strained by imposing inflationary consistency than by the
data, as explained in Ref. [47]. Compared to prior A,
prior B has more volume in regions constrained by the
data, increasing the amount of information gained and
pushing up the complexity to 7:80� 0:03. Compared to

that, in the fAs; ln�;
H00�
H�

m2
P;

H000� H0�
H2�

m4
Pg basis the opposite

happens, as � is pushed much closer to zero, such that
the data give no new information on this parameter, de-
creasing the complexity. For the ‘‘phenomenological’’ pa-
rameter set fAS; nS; �S; rg with flat priors, no inflationary
consistency is imposed. Therefore, in this basis, �S has no
theoretical prior constraints and can be constrained by the
data.

An increase in the complexities under prior B and the
phenomenological prior compared to prior A should not be
taken to mean that these prior choices are superior. Indeed,
in all cases the complexity value is less than 8, which is the
number of inflationary parameters under consideration.
Rather, we take this as an indication that the data are highly
sensitive to the choice of parametrization of inflationary
models, in particular, the choice of prior distribution for r,
and hence the posterior probability densities reflect far
more the choice of volume of prior parameter space than
the impact of the data.

IV. CONCLUSION

Our paper makes explicit an important and well-known
fact regarding the effort to constrain cosmological parame-
ters: the importance of prior assumptions in the analysis

must not be neglected. We have demonstrated in a variety
of ways that this situation is relevant to the current issue of
a possible nonzero value of r and expectations for future
CMB missions. In the absence of clear theoretical direc-
tion, it is important therefore to consider the divergence of
results obtained by presumably equally well motivated
priors. We have demonstrated here how to relate flat priors
on different parametrizations of the same physics, and
applied a change of parametrization to the reconstruction
of the inflaton potential, choosing a flat prior on the pa-
rameters that may be better motivated by the physics of
inflation, as opposed to parameters describing the observ-
able quantities. The main change, seen in Figs. 4 and 5, is
an increase of the preferred value for the tensor-to-scalar
ratio r, moving from 0< r < 0:18 to 0:061< r < 0:243 at
68%CL.We stress once again that this new preferred range
does not imply that the data now prefer a nonzero value of
r, since at 95% CL r is consistent with zero under all used
priors. The fact that for certain choices of parametrization
the complexity is less than the number of free parameters,
eight, indicates that the data are currently insufficient to
fully constrain the models. Rather, our calculation of the
complexity shows that for prior B, which gives the in-
creased range in r, the data are simply sensitive to more
of the parameter volume. Thus we consider the mean
likelihood to be a more meaningful quantity here. In par-
ticular, information on the parameters r and HInf under
prior B is primarily gained on the upper bound.
As a result we emphasize that the mean likelihood for

the parameters we considered gives an indication of neither
a nonzero scale of inflation nor a nonzero tensor-to-scalar
ratio. Nevertheless, the fact that one plausible parametri-
zation of the data increases the posterior probability of
these quantities to be nonzero suggests that from a
Bayesian point of view the motivation for probing for
tensor modes may be slightly enhanced as a result of our
analysis.
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