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It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological

constant � gives a reasonable fit to observation. However, a realistic model of the multiverse has a

physical volume that diverges with time, and the predicted distribution of � depends on how the

spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which

avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff

avoids the ‘‘youngness problem’’ (high probability of living in a much younger universe) and the ‘‘Q and

G catastrophes’’ (high probability for the primordial density contrast Q and gravitational constant G to

have extremely large or small values). We apply the scale-factor cutoff measure to the probability

distribution of �, considering both positive and negative values. The results are in good agreement with

observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of � that

are more than about 10 times the observed value. We also discuss qualitatively the prediction for the

density parameter �, indicating that with this measure there is a possibility of detectable negative

curvature.
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I. INTRODUCTION

The present understanding of inflationary cosmology
suggests that our Universe is one among an infinite number
of ‘‘pockets’’ in an eternally inflating multiverse. Each of
these pockets contains an infinite, nearly homogeneous and
isotropic universe and, when the fundamental theory ad-
mits a landscape of metastable vacua, each may be char-
acterized by different physical parameters, or even
different particles and interactions, than those observed
within our pocket. Predicting what physics we should
expect to observe within our region of such a multiverse
is a major challenge for theoretical physics. (For recent
reviews of this issue, see e.g. [1–5].)

The attempt to build a calculus for such predictions is
complicated in part by the need to regulate the diverging
spacetime volume of the multiverse. A number of different
approaches to this measure problem have been explored: a
cutoff at a fixed global time [6–8],1 the so-called ‘‘gauge-
invariant’’ measures [11,12], where different cutoff times
are used in different pockets in order to make the measure
approximately time-parametrization invariant, the pocket-
based measure [13–16], which avoids reference to global
time by focusing on pocket abundances and regulates the

diverging volume within each pocket with a spherical
volume cutoff, and finally the causal-patch measures
[17,18], which restrict consideration to the spacetime vol-
ume accessible to a single observer.2 Different measures
make different observational predictions. To help decide
which, if any, is on the right track, one can take an
empirical approach, working out the predictions of candi-
date measures and comparing them with observation.
Although currently available predictions are not precise
enough to determine the measure, many proposals can be
rejected due to clear conflicts with observation, and in
other cases the quantitative predictions can at least be
suggestive. In this spirit, we investigate one of the simplest
global-time measure proposals: the scale-factor cutoff
measure.
To begin, we discuss the predictions of the scale-factor

cutoff measure for issues that have proven problematic for
many other measures. For example, another member of the
global-time measure family—the proper-time cutoff mea-
sure—predicts a population of observers that is extremely
youth-dominated [2,21,22]. Observers who take a little less
time to evolve are hugely more numerous than their
slower-evolving counterparts, suggesting that we should
most likely have evolved at a very early cosmic time, when
the conditions for life were rather hostile. This counter-
factual prediction is known as ‘‘the youngness paradox.’’
Furthermore, the ‘‘gauge-invariant’’ and pocket-based

1Much of the early work sought to calculate the relative
volumes occupied by different pockets on hypersurfaces of
constant time [9,10]. In Ref. [6] the probabilities were expressed
in terms of the fluxes appearing in the Fokker-Planck equation
for eternal inflation. In most (but not all) cases, this method is
equivalent to imposing a cutoff at a constant time. The prescrip-
tion of a global-time cutoff was first explicitly formulated in [7].

2We also note the recent measure proposals in Refs. [19,20].
Observational predictions of these measures have not yet been
worked out, so we shall not discuss them any further.
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measures suffer from a ‘‘Q catastrophe,’’ exponentially
preferring either very large or very small values of the
primordial density contrastQ [23,24]. In fact, this problem
is not restricted toQ—there are similar expectations for the
gravitational constant G [25]. We show that the youngness
bias is very mild in the scale-factor cutoff, and that there is
no Q (or G) catastrophe. We also describe qualitative
expectations for the distributions of Q and of the density
parameter �.

The above considerations establish the scale-factor cut-
off as a promising candidate for the spacetime measure,
motivating the study of its more detailed predictions. The
main focus of this paper is on the prediction of the cosmo-
logical constant � [7,26–30], which is arguably a major
success of the multiverse picture. Most calculations of the
distribution of � in the literature [29–34] do not explicitly
specify the measure, but in fact correspond to using the
pocket-based measure. The distribution of positive � in a
causal-patch measure has also been considered [35,36].
The authors of Ref. [35] emphasize that the causal-patch
measure gives a strong suppression for values of � more
than about 10 times the observed value, while anthropic
constraints alone might easily allow values 1000 times
larger than observed, depending on assumptions. Here,
we calculate the distribution for� in the scale-factor cutoff
measure, considering both positive and negative values of
�, and compare our results with those of other approaches.
We find that our distribution is in a good agreement with
the observed value of �, and that the scale-factor cutoff
gives a suppression for large positive values of � that is
very similar to that of the causal-patch measure.

This paper is organized as follows. In Sec. II we describe
the scale-factor cutoff, commenting on its more salient
features, including its very mild youngness bias and as-
pects of the distributions of Q and �. In Sec. III we
compute the probability distribution of �, calculating it
first for the pocket-based measure, reproducing previous
results, and then calculating it for the scale-factor cutoff. In
both cases we study positive and negative values of �. Our
main results are summarized in Sec. IV. Finally, we include
two appendices. In Appendix Awe consider the possibility
that the landscape splits into several disconnected sectors,
and show that even in this situation the scale-factor cutoff
measure is essentially independent of the initial state of the
Universe. Appendix B contains an analysis of the evolution
of the collapse density threshold, along with a description
of the linear growth function of density perturbations.

II. THE SCALE-FACTOR CUTOFF

A. Global-time cutoffs

To introduce a global-time cutoff, we start with a patch
of a spacelike hypersurface � somewhere in the inflating
part of spacetime, and follow its evolution along the con-
gruence of geodesics orthogonal to �. The spacetime
region covered by this congruence will typically have

infinite spacetime volume, and will include an infinite
number of pockets. In the global-time cutoff approach we
introduce a time coordinate t, and restrict our attention to
the finite spacetime region �ð�; tcÞ swept out by the geo-
desics prior to t ¼ tc, where tc is a cutoff which is taken to
infinity at the end of the calculation. The relative proba-
bility of any two types of events A and B is then defined to
be

pðAÞ
pðBÞ � lim

tc!1
nðA;�ð�; tcÞÞ
nðB;�ð�; tcÞÞ ; (1)

where nðA;�Þ and nðB;�Þ are the number of events of
types A and B, respectively, in the spacetime region �. In
particular, the probability Pj of measuring parameter val-

ues corresponding to a pocket of type j is proportional to
the number of independent measurements made in that
type of pocket, within the spacetime region �ð�; tcÞ, in
the limit tc ! 1.
The time coordinate t is ‘‘global’’ in the sense that

constant-time surfaces cross many different pockets.
Note, however, that it does not have to be global for the
entire spacetime, so the initial surface � does not have to
be a Cauchy surface for the multiverse. It need not be
monotonic, either, where for nonmonotonic t we limit
�ð�; tcÞ to points along the geodesics prior to the first
occurrence of t ¼ tc.
As we will discuss in more detail in Appendix A, proba-

bility distributions obtained from this kind of measure are
independent of the choice of the hypersurface �.3 They do
depend, however, on how one defines the time parameter t.
To understand this sensitivity to the choice of cutoff, note
that the eternally inflating universe is rapidly expanding,
such that at any time most of the volume is in pockets that
have just formed. These pockets are therefore very near the
cutoff surface at t ¼ tc, which explains why distributions
depend on exactly how that surface is drawn.
A natural choice of the time coordinate t is the proper

time � along the geodesic congruence. But as we have
already mentioned, and will discuss in more detail in the
following subsection, this choice is plagued with the
youngness paradox, and therefore does not yield a satis-
factory measure. Another natural option is to use the
expansion factor a along the geodesics as a measure of
time. The scale-factor time is then defined as

t � lna: (2)

The use of this time parameter for calculating probabilities

3Here, and in most of the paper, we assume an irreducible
landscape, where any metastable inflating vacuum is accessible
from any other such vacuum through a sequence of transitions.
Alternatively, if the landscape splits into several disconnected
sectors, each sector will be characterized by an independent
probability distribution and our discussion will still be applicable
to any of these sectors. The distribution in case of a reducible
landscape is discussed in Appendix A.
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is advocated in Ref. [37] and is studied in various contexts
in Refs. [6,8–10].4 It amounts to measuring time in units of
the local Hubble time H�1,

dt ¼ Hd�: (3)

The scale-factor cutoff is imposed at a fixed value of t ¼
tc, or, equivalently, at a fixed expansion factor ac.

The term ‘‘scale factor’’ is often used in the context of
homogeneous and isotropic spaces, but it is easily gener-
alized to spacetimes with no such symmetry. In the general
case, the scale-factor time can be defined by Eq. (3) with

H ¼ ð1=3Þu�;�; (4)

where u�ðxÞ is the four-velocity vector along the geode-
sics. This definition has a simple geometric meaning,
which can be seen by imagining that the congruence of
geodesics describes the flow of a ‘‘dust’’ of test particles. If
the dust of particles is assumed to have a uniform density
�0 on the initial surface �, then the four-current of the dust
can be described by j�ðxÞ ¼ �ðxÞu�ðxÞ, where � ¼ �0 on
�. Conservation of the current then implies that u�@��þ
�u�;� ¼ 0, which with Eqs. (3) and (4) implies that

D� ln� ¼ �u�;� ¼ �3D�t; (5)

where D� � u�@� is the derivative with respect to proper

time along the geodesics. The solution is then � ¼ �0e
�3t.

From Eq. (2) we then have a / ��1=3, so the scale-factor
cutoff is triggered when the density �ðxÞ of the dust in its
own rest frame drops below a certain specified level.

The divergence of geodesics during inflation or homo-
geneous expansion can be followed by convergence during
structure formation or in regions dominated by a negative
cosmological constant. The scale-factor time then ceases to
be a good time variable, but this does not preclude one
from using it to impose a cutoff. A geodesic is terminated
when the scale factor first reaches the cutoff value ac. If the
scale factor turns around and starts decreasing before
reaching that value, we continue the geodesic all the way
to the crunch. When geodesics cross we can still define the
scale-factor time along each geodesic according to Eqs. (3)
and (4); then one includes a point in �ð�; tcÞ if it lies on any
geodesic prior to the first occurrence of t ¼ tc on that
geodesic.

To facilitate further discussion, it will be useful to
review some general features of eternally inflating space-
times, and how they are reflected in proper time and scale-
factor time slicings. Regions of an eternally inflating multi-
verse may evolve in two distinct ways. In the case of

quantum diffusion [38,39], inflation is driven by the po-
tential energy of some light scalar fields, the evolution of
which is dominated by quantum fluctuations and is de-
scribed by the Fokker-Planck equation (see e.g. Ref. [10]).
Pockets formwhen the scalar field(s) fluctuate into a region
of parameter space where classical evolution dominates,
and slow-roll inflation ensues. One can define spacelike
hypersurfaces separating the quantum and classical re-
gimes (see, for example, Ref. [15]), which we denote by
�q. In universes like ours, slow-roll inflation is followed by

thermalization (reheating) and the standard post-
inflationary evolution. We denote the hypersurface of ther-
malization, which separates the inflationary and post-
inflationary epochs, as ��.
The multiverse may also (or instead) feature massive

fields associated with large false-vacuum energies.
Evolution is then governed by bubble nucleation through
quantum tunneling [40,41] and can be described to good
approximation by a suitable master equation [15,42]. The
tunneling may proceed into another local minimum, into a
region of quantum diffusion, or into a region of classical
slow-roll inflation. In the latter case, the bubble interiors
have the geometry of open Friedmann-Robertson-Walker
(FRW) universes [43]. Bubbles of interest to us here have a
period of slow-roll inflation followed by thermalization.
The role of the hypersurface�q is played in this case by the

surface separating the initial curvature-dominated regime
and the slow-roll regime inside the bubble. The differences
between quantum diffusion and tunneling are not impor-
tant for most of the discussion below, so we shall use
notation and terminology interchangeably.
The number of objects of any type that have formed

prior to some time t is proportional to e�t, where � is the
largest eigenvalue of the physical-volume Fokker-Planck
or master equation. This is because the asymptotic behav-
ior is determined by the eigenstate with the largest eigen-
value. Similarly, the physical volume that thermalizes into
pockets of type j between times t and tþ dt has the form

dV�j ¼ Cje
�tdt; (6)

where Cj is a constant that depends on the type of pocket.

(This was derived in Ref. [6] for models with quantum
diffusion and in Refs. [22,44] for models with bubble
nucleation.)
The value of � in Eq. (6) is the same for all pockets, but

it depends on the choice of time variable t. With a proper-
time slicing, it is given by

�� 3Hmax ðt ¼ �Þ; (7)

where Hmax is the expansion rate of the highest-energy
vacuum in the landscape, and corrections associated with
decay rates and upward tunneling rates have been ignored.
In this case the overall expansion of the multiverse is
driven by this fastest-expanding vacuum, which then
‘‘trickles down’’ to all of the other vacua. With scale-factor

4The measure studied in Ref. [37] is a comoving-volume
measure on surfaces of constant scale-factor time; it is different
from the scale-factor cutoff measure being discussed here. In
particular, the former measure has a strong dependence on the
initial state at the hypersurface �. Our measure is very similar to
one studied in Ref. [8], which is called the ‘‘pseudo-comoving
volume-weighted measure.’’
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slicing, all regions would expand as a3 ¼ e3t if it were not
for the continuous loss of volume to terminal vacua with
negative or zero �. Because of this loss, the value of � is
slightly smaller than 3, and the difference is determined
mostly by the rate of decay of the slowest-decaying (domi-
nant) vacuum in the landscape [45],

� � 3� �D ðt ¼ lnaÞ: (8)

Here,

�D ¼ ð4�=3Þ�D=H
4
D; (9)

where �D is the decay rate of the dominant vacuum per unit
spacetime volume, and HD is its expansion rate. The
vacuum decay rate is typically exponentially suppressed,
so for the slowest-decaying vacuum we expect it to be
extremely small. Hence,

3� � � 1: (10)

B. The youngness bias

As we have already mentioned, the proper-time cutoff
measure leads to rather bizarre predictions, collectively
known as the youngness paradox [2,21,22]. With proper-
time slicing, Eqs. (6) and (7) tell us that the growth of
volume in regions of all types is extremely fast, so at any
time the thermalized volume is exponentially dominated
by regions that have just thermalized. With this superfast
expansion, observers who take a little less time to evolve
are rewarded by a huge volume factor. This means most
observers form closer to the cutoff, when there is much
more volume available. Assuming thatHmax is comparable
to the Planck scale, as one might expect in the string theory
landscape, then observers who evolved faster than us by
�� ¼ 109 years would have an available thermalized vol-
ume which is larger than the volume available to us by a
factor of

e��� � e3Hmax�� � expð1060Þ: (11)

Unless the probability of life evolving so fast is suppressed
by a factor greater than expð1060Þ, then these rapidly
evolving observers would outnumber us by a huge factor.
Since these observers would measure the cosmic micro-
wave background (CMB) temperature to be T ¼ 2:9 K, it
would be hard to explain why we measure it to be T ¼
2:73 K. Note that because Hmax�� appears in the expo-
nent, the situation is qualitatively unchanged by consider-
ing much smaller values of Hmax or ��.

The situation with a scale-factor cutoff is very different.
To illustrate methods used throughout this paper, let us be
more precise. Let �t denote the interval in scale-factor
time between the time of thermalization, t�, and the time
when some class of observers measures the CMB tempera-
ture. A time cutoff excludes the counting of observers who
measure the CMB temperature at times later than tc, so the
number of counted observers is proportional to the total

volume V� that thermalizes at any time t� < tc ��t. (The
volume of each region contributing to V� is measured at the
time of its thermalization. For simplicity we focus on
pockets that have the same low-energy physics as ours.)
The volume of regions thermalized per unit time is given
by Eq. (6). A tiny fraction of this volume may decay by
tunneling transitions during the subsequent time interval
�t, but we will ignore this effect. For a given �t, the
volume that thermalizes before tc ��t, as counted by
the scale-factor cutoff measure, is

V�ð�tÞ /
Z tc��t

�1
e�t�dt� / e���t: (12)

To compare with the results above, consider the relative
amounts of volume (measure at thermalization) available
for the subsequent evolution of two different civilizations,
which form at two different time intervals since thermal-
ization, �t1 and �t2:

V�ð�t1Þ
V�ð�t2Þ

¼ e�ð�t2��t1Þ ¼ ða2=a1Þ�; (13)

where ai is the scale factor at time t� þ �ti. Thus, taking
� � 3, the relative volumes available for observers who
measure the CMB at the present value (T ¼ 2:73 K),
compared to observers who measure it at the value of 109

years ago (T ¼ 2:9 K), is given by

V�ð2:73 KÞ
V�ð2:9 KÞ �

�
2:73 K

2:9 K

�
3 � 0:8: (14)

Thus, the youngness bias is very mild in the scale-factor
cutoff measure. Yet, as we shall see, it can have interesting
observational implications.

C. Expectations for the density contrast Q and the
density parameter �

Pocket-based measures, as well as ‘‘gauge-invariant’’
measures, suffer from a ‘‘Q catastrophe’’ where one ex-
pects to measure extreme values of the primordial density
contrast Q. To see this, note that these measures exponen-
tially prefer parameter values that generate a large number
of e-folds of inflation. This by itself does not appear to be a
problem, but Q is related to parameters that determine the
number of e-folds. The result of this is a selection effect
that exponentially prefers the observation of either very
large or very small values ofQ, depending on the model of
inflation and on which inflationary parameters scan (i.e.,
which parameters vary significantly across the landscape)
[23,24]. On the other hand, we observe Q to lie comfort-
ably in the middle of the anthropic range [46], indicating
that no such strong selection effect is at work.5 Note that a
similar story applies to the magnitude of the gravitational
constant G [25].

5Possible resolutions to this problem have been proposed in
Refs. [23,24,47,48].
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With the scale-factor cutoff, on the other hand, this is not
a problem. To see this, consider a landscape in which the
only parameter that scans is the number of e-folds of
inflation; all low-energy physics is exactly as in our
Universe. Consider first the portions of the hypersurfaces
�q that begin slow-roll inflation at time tq in the interval

dtq. These regions begin with a physical volume propor-

tional to e�tqdtq, and those that do not decay grow by a

factor of e3Ne before they thermalize at time t� ¼ tq þ Ne.

If �I is the transition rate out of the slow-roll inflationary
phase [as defined in Eq. (9)], then the fraction of volume
that does not undergo decay is e��INe .

After thermalization at time t�, the evolution is the same
in all thermalized regions. Therefore we ignore this com-
mon evolution and consider the number of observers mea-
suring a given value of Ne to be proportional to the volume
of thermalization hypersurfaces that appear at times earlier
than the cutoff at scale-factor time tc. This cutoff requires
t� ¼ tq þ Ne < tc. Summing over all times tq gives

PðNeÞ / eð3��IÞNe

Z tc�Ne

�1
e�tqdtq / eð3����IÞNe: (15)

Even though the dependence on Ne is exponential, the
factor

3� �� �I � �D � �I (16)

is exponentially suppressed. Thus we find PðNeÞ is a very
weak function of Ne, and there is not a strong selection
effect for a large number of e-folds of slow-roll inflation. In
fact, since the dominant vacuum D is by definition the
slowest-decaying vacuum, we have �I > �D. Thus the
scale-factor cutoff introduces a very weak selection for
smaller values of Ne.

6

Because of the very mild dependence on Ne, we do not
expect the scale-factor measure to impose significant cos-
mological selection on the scanning of any inflationary
parameters. Thus, there is no Q catastrophe—nor is there
the related problem for G—and the distribution of Q is
essentially its distribution over the states in the landscape,
modulated by inflationary dynamics and any anthropic
selection effects.

The distribution PðNeÞ is also important for the expected
value of the density parameter �. This is because the
deviation of � from unity decreases during an inflationary
era,

j�� 1j / e�2Ne: (17)

Hence pocket-based and ‘‘gauge-invariant’’ measures,
which exponentially favor large values of Ne, predict a
universe with� extremely close to unity. The distributions

of� from a variety of models have been calculated using a
pocket-based measure in Refs. [13,44].
On the other hand, as we have just described, the scale-

factor cutoff measure does not significantly select for any
value of Ne. There will still be some prior distribution of
Ne, related to the distributions of inflationary parameters
over the states in the landscape, but it is not necessary that
Ne be driven strongly toward large values (in fact, it has
been argued that small values should be preferred in the
string landscape, see e.g. Ref. [49]). Thus, it appears that
the scale-factor cutoff allows for the possibility of a de-
tectable negative curvature. The probability distribution of
� in this type of measure has been discussed qualitatively
in Ref. [49]; a more detailed quantitative analysis will be
given elsewhere [50].

III. THE DISTRIBUTION OF �

A. Model assumptions

We now consider a landscape of vacua with the same
low-energy physics as we observe, except for an essentially
continuous distribution of possible values of �. According
to Eq. (6), the volume that thermalizes between times t�
and t� þ dt� with values of cosmological constant between
� and �þ d� is given by

dV�ð�Þ ¼ Cð�Þd�e�t�dt�: (18)

The factor of Cð�Þ plays the role of the ‘‘prior’’ distribu-
tion of �; it depends on the spectrum of possible values of
� in the landscape and on the dynamics of eternal inflation.
The standard argument [26,29] suggests that Cð�Þ is well
approximated by

Cð�Þ � const; (19)

because anthropic selection restricts � to values that are
very small compared to its expected range of variation in
the landscape. The conditions of validity of this heuristic
argument have been studied in simple landscape models
[45,51,52], with the conclusion that it does in fact apply to
a wide class of models. Here, we shall assume that Eq. (19)
is valid.
Anthropic selection effects are usually characterized by

the fraction of matter that has clustered in galaxies. The
idea here is that a certain average number of stars is formed
per unit galactic mass and a certain number of observers
per star, and that these numbers are not strongly affected by
the value of �. Furthermore, the standard approach is to
assume that some minimum halo mass MG is necessary to
drive efficient star formation and heavy element retention.
Sincewe regulate the volume of the multiverse using a time
cutoff, it is important for us to also track at what time
observers arise. We assume that after halo collapse, some
fixed proper time lapse �� is required to allow for stellar,
planetary, and biological evolution before an observer can
measure �. Then the number of observers measuring �
before some time � in a thermalized volume of size V� is

6We are grateful to Ben Freivogel for pointing out to us the
need to account for vacuum decay during slow-roll inflation. He
has also suggested that this effect will lead to preference for
smaller values of Ne.
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roughly

N / FðMG; ����ÞV�; (20)

where F is the collapse fraction, measuring the fraction of
matter that clusters into objects of mass greater than or
equal to MG, at time �� ��.

Anthropic selection for structure formation ensures that
within each relevant pocket matter dominates the energy
density before � does. Thus, all thermalized regions
evolve in the same way until well into the era of matter
domination. To draw upon this common evolution, within
each pocket we define proper time �with respect to a fixed
time of thermalization, ��. It is convenient to also define a
reference time �m such that �m is much larger than the time
of matter-radiation equality and much less than the time of
matter-� equality. Then evolution before time �m is the
same in every pocket, while after �m the scale factor
evolves as

~að�Þ ¼
�
H�2=3

� sinh2=3ð32H��Þ for �> 0

H�2=3
� sin2=3ð32H��Þ for �< 0:

(21)

Here we have defined

H� �
ffiffiffiffiffiffiffiffiffiffiffiffi
j�j=3

q
; (22)

and use units with G ¼ c ¼ 1. The prefactors H�2=3
� en-

sure that early evolution is identical in all thermalized
regions. This means the global scale factor a is related to
~a by some factor that depends on the scale-factor time t� at
which the region of interest thermalized.

In the case �> 0, the rate at which halos accrete matter
decreases with time and halos may settle into galaxies that
permit quiescent stellar systems such as ours. The situation
with �< 0 is quite different. At early times, the evolution
of overdensities is the same; but when the proper time
reaches �turn ¼ �=3H�, the scale factor begins to decrease
and halos begin to accrete matter at a rate that increases
with time. Such rapid accretion may prevent galaxies from
settling into stable configurations, which in turn would
cause planetary systems to undergo more frequent close
encounters with passing stars. This effect might become
significant even before turnaround, since our present envi-
ronment benefits from positive� slowing the collision rate
of the Milky Way with other systems.

For this reason, we use Eq. (20) to estimate the number
of observers if �> 0, but for �< 0 we consider two
alternative anthropic hypotheses:

(A) we use Eq. (20), but of course taking account of the
fact that the proper time � cannot exceed �crunch ¼
2�=3H�; or

(B) we use Eq. (20), but with the hypothesis that the
proper time � is capped at �turn ¼ �=3H�.

Here �crunch refers to the proper time at which a thermal-
ized region in a collapsing pocket reaches its future singu-

larity, which we refer to as its ‘‘crunch.’’ Anthropic
hypothesis A corresponds to the assumption that life can
form in any sufficiently massive collapsed halo, while
anthropic hypothesis B reflects the assumption that the
probability for the formation of life becomes negligible
in the tumultuous environment following turnaround.
Similar hypotheses for �< 0 were previously used in
Ref. [34]. It seems reasonable to believe that the truth
lies somewhere between these two hypotheses, perhaps
somewhat closer to hypothesis B.

B. Distribution of � using a pocket-based measure

Before calculating the distribution of � using a scale-
factor cutoff, we review the standard calculation [29–34].
This approach assumes an ensemble of equal-size regions
with a flat prior distribution of �. The regions are allowed
to evolve indefinitely, without any time cutoff, so in the
case of �> 0 the selection factor is given by the asymp-
totic collapse fraction at � ! 1. For �< 0 we shall con-
sider anthropic hypotheses A and B. This prescription
corresponds to using the pocket-based measure, in which
the ensemble includes spherical regions belonging to dif-
ferent pockets and observations are counted in the entire
comoving history of these regions. The corresponding
distribution function is given by

Pð�Þ /
8<
:
FðMG; � ! 1Þ for �> 0
FðMG; �crunch � ��Þ for �< 0ðAÞ
FðMG; �turn � ��Þ for �< 0ðBÞ;

(23)

where, again, �crunch ¼ 2�=3H� is the proper time of the
crunch in pockets with �< 0, while �turn ¼ �=3H�.
We approximate the collapse fraction F using the Press-

Schechter (PS) formalism [53], which gives

FðMG; �Þ ¼ erfc

�
�cð�Þffiffiffi

2
p

�ðMG; �Þ
�
; (24)

where �ðMG; �Þ is the root-mean-square fractional density
contrast �M=M averaged over a comoving scale enclosing
mass MG and evaluated at proper time �, while �c is the
collapse density threshold. As is further explained in
Appendix B, �cð�Þ is determined by considering a ‘‘top-
hat’’ density perturbation in a flat universe, with an arbi-
trary initial amplitude. �cð�Þ is then defined as the ampli-
tude reached by the linear evolution of an overdensity of
nonrelativistic matter ��m=�m that has the same initial
amplitude as a top-hat density perturbation that collapses
to a singularity in proper time �. �cð�Þ has the constant
value of 1.686 in an Einstein-de Sitter universe (i.e., flat,
matter-dominated universe), but it evolves with time when
� � 0 [54,55]. We simulate this evolution using the fitting
functions (B23), which are accurate to better than 0.2%.
Note, however, that the results do not change by more than
a few percent if one simply uses the constant value �c ¼
1:686.
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Aside from providing the collapse fraction, the PS for-
malism describes the ‘‘mass function,’’ i.e. the distribution
of halo masses as a function of time. N-body simulations
indicate that PS model overestimates the abundance of
halos near the peak of the mass function, while under-
estimating that of more massive structures [56].
Consequently, other models have been developed (see
e.g. Refs. [57]), while others have studied numerical fits
to N-body results [34,58]. From each of these approaches,
the collapse fraction can be obtained by integrating the
mass function. We have checked that our results are not
significantly different if we use the fitting formula of
Ref. [34] instead of Eq. (24). Meanwhile, we prefer
Eq. (24) to the fit of Ref. [34] because the latter was
performed using only numerical simulations with �> 0.

The evolution of the density contrast � is treated line-
arly, to be consistent with the definition of the collapse
density threshold �c. Thus we can factorize the behavior of
�ðMG; �Þ, writing

�ðMG; �Þ ¼ ��ðMGÞG�ð�Þ; (25)

where G�ð�Þ is the linear growth function, which is nor-
malized so that the behavior for small � is given by

G�ð�Þ � ð3H��=2Þ2=3. In Appendix B we will give exact
integral expressions for G�ð�Þ, and also the fitting formu-
lae (B12) and (B13), taken from Ref. [34], that we actually
used in our calculations. Note that for � � 0 the growth
rate _G�ð�Þ always decreases with time [ €G�ð�Þ< 0], while
for �< 0 the growth rate reaches a minimum at � �
0:24�crunch and then starts to accelerate. This accelerating
rate of growth is related to the increasing rate of matter
accretion in collapsed halos after turnaround, which we
mentioned above in motivating the anthropic hypothesis B.

The prefactor ��ðMGÞ in Eq. (25) depends on the scale
MG at which the density contrast is evaluated. According to
our anthropic model, MG should correspond to the mini-
mum halo mass for which star formation and heavy ele-
ment retention is efficient. Indeed, the efficiency of star
formation is seen to show a sharp transition: it falls
abruptly for halo masses smaller than MG � 2� 1011M	,
whereM	 is the solar mass [59]. Peacock [34] showed that
the existing data on the evolving stellar density can be well
described by a Press-Schechter calculation of the collapsed
density for a single mass scale, with a best fit correspond-
ing to �ðMG; �1000Þ � 6:74� 10�3, where �1000 is the
proper time corresponding to a temperature T ¼ 1000 K.
Using cosmological parameters current at the time,
Peacock found that this perturbation amplitude corre-
sponds to an effective galaxy mass of 1:9� 1012M	.
Using the more recent WMAP-5 parameters [60], as is
done throughout this paper,7 we find (using Ref. [61] and

the CMBFAST program) that the corresponding effective
galaxy mass is 1:8� 1012M	.
Unless otherwise noted, in this paper we set the prefactor

��ðMGÞ in Eq. (25) by choosing MG ¼ 1012M	. Using the
WMAP-5 parameters and CMBFAST, we find that at the
present cosmic time �ð1012M	Þ � 2:03. This corresponds
to �ð1012M	; �1000Þ � 7:35� 10�3.
We are now prepared to display the results, plotting

Pð�Þ as determined by Eq. (23). We first reproduce the
standard distribution of �, which corresponds to the case
when �> 0. This is shown in Fig. 1. We see that the value
of � that we measure is between one and two standard
deviations from the mean. Throughout the paper, the ver-
tical bars in the plots merely highlight the observed value
of � and do not indicate its experimental uncertainty. The
quality of the fit depends on the choice of scale MG; in
particular, choosing smaller values of MG weakens the fit
[33,62]. Note, however, that the value ofMG that we use is
already less than that recommended by Ref. [34].
Figure 2 shows the distribution of � for positive and

negative values of �. We use �� ¼ 5� 109 years, corre-
sponding roughly to the age of our solar system. The left
column corresponds to choosing anthropic hypothesis A
while the right column corresponds to anthropic hypothesis
B. To address the question of whether the observed value of
j�j lies improbably close to the special point� ¼ 0, in the
second row we plot the distributions for Pðj�jÞ. We see that
the observed value of � lies only a little more than 1
standard deviation from the mean, which is certainly ac-
ceptable. (Another measure of the ‘‘typicality’’ of our
value of � has been studied in Ref. [33]).

FIG. 1. The normalized distribution of � for �> 0, with � in
units of the observed value, for the pocket-based measure. The
vertical bar highlights the value we measure, while the shaded
regions correspond to points more than one and two standard
deviations from the mean. Here and in subsequent graphs with
logarithmic abscissas, the vertical axis shows the probability
density per e-fold, �Pð�Þ.

7The relevant values are �� ¼ 0:742, �m ¼ 0:258, �b ¼
0:044, ns ¼ 0:96, h ¼ 0:719, and �2

Rðk ¼ 0:02 Mpc�1Þ ¼
2:21� 10�9.
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C. Distribution of � using the scale-factor cutoff

We now turn to the calculation of Pð�Þ using a scale-
factor cutoff to regulate the diverging volume of the multi-
verse. When we restrict attention to the evolution of a small
thermalized patch, a cutoff at scale-factor time tc corre-
sponds to a proper-time cutoff �c, which depends on tc and
the time at which the patch thermalized, t�. Here we take
the thermalized patch to be small enough that scale-factor
time t is essentially constant over hypersurfaces of constant
�. Then the various proper and scale-factor times are
related by

tc � t� ¼
Z �c

��
Hð�Þd� ¼ ln½~að�cÞ=~að��Þ
: (26)

Recall that all of the thermalized regions of interest
share a common evolution up to the proper time �m, after
which they follow Eqs. (21). Solving for the proper-time
cutoff �c gives

�c ¼ 2
3H

�1
� arcsinh½32H��me

3=2ðtc�t��CÞ
; (27)

for the case �> 0 , and

�c ¼ 2
3H

�1
� arcsin½32H��me

ð3=2Þðtc�t��CÞ
; (28)

for �< 0. The term C ¼ 2
3 lnð�m=��Þ is a constant that

accounts for evolution from time �� to time �m. Note that
as tc � t� is increased in Eq. (28), �c grows until it reaches
the time of scale-factor turnaround in the pocket, �turn ¼
�=3H�, after which the expression is ill defined.
Physically, the failure of Eq. (28) corresponds to when a
thermalized region reaches turnaround before the scale-
factor time reaches its cutoff at tc. After turnaround, the
scale factor decreases; therefore these regions evolve with-
out a cutoff all the way up to the time of crunch, �crunch ¼
2�=3H�.
When counting the number of observers in the various

pockets using a scale-factor cutoff, one must keep in mind
the dependence on the thermalized volume V� in Eq. (20),

FIG. 2. The normalized distribution of �, with � in units of the observed value, for the pocket-based measure. The left column
corresponds to anthropic hypothesis A while the right column corresponds to anthropic hypothesis B. Meanwhile, the top row shows
Pð�Þ while the bottom row shows j�jPðj�jÞ. The vertical bars highlight the value we measure, while the shaded regions correspond to
points more than one and two standard deviations from the mean.
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since in this case V� depends on the cutoff. As stated
earlier, we assume the rate of thermalization for pockets
containing universes like ours is independent of �. Thus,
the total physical volume of all regions that thermalized
between times t� and t� þ dt� is given by Eq. (6), and is
independent of �. Using Eq. (20) to count the number of
observers in each thermalized patch, and summing over all
times below the cutoff, we find

Pð�Þ /
Z tc

�1
F½MG; �cðtc; t�Þ � ��
e�t�dt�: (29)

Note that regions thermalizing at a later time t� have a
greater weight / e�t� . This is an expression of the young-
ness bias in the scale-factor measure. The� dependence of
this distribution is implicit in F, which depends on
�cð�; �c � ��Þ=�rmsð�; �c � ��Þ, and in turn on �cð�Þ,
which is described below.
For pockets with �> 0, the cutoff on proper time �c is

given by Eqs. (27) and (28). Meanwhile, when�< 0, �c is

FIG. 3. The normalized distribution of � for �> 0, with � in
units of the observed value, for the scale-factor cutoff. The
vertical bar highlights the value we measure, while the shaded
regions correspond to points more than one and two standard
deviations from the mean.

FIG. 4. The normalized distribution of �, with � in units of the observed value, for the scale-factor cutoff. The left column
corresponds to anthropic hypothesis A while the right column corresponds to anthropic hypothesis B. Meanwhile, the top row shows
Pð�Þ while the bottom row shows j�jPðj�jÞ. The vertical bars highlight the value we measure, while the shaded regions correspond to
points more than one and two standard deviations from the mean.
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given by Eq. (28), when that expression is well defined. In
practice, the constant C of Eqs. (27) and (28) is unimpor-
tant, since a negligible fraction of structures form before
the proper time �m. Furthermore, for a reference time �m
chosen deep in the era of matter domination, the normal-
ized distribution is independent of �m. As mentioned
above, for sufficiently large tc � t� Eq. (28) becomes ill
defined, corresponding to the thermalized region reaching
its crunch before the scale-factor cutoff. In this case we set
�c ¼ �crunch or �c ¼ �turn, corresponding to the anthropic
hypothesis A or B described above.

To compare with previous work, we first display the
distribution of positive � in Fig. 3. We have set � ¼ 3
and use �� ¼ 5� 109 years. Clearly, the scale-factor cut-
off provides an excellent fit to observation, when attention
is limited to �> 0. Note that the scale-factor-cutoff dis-
tribution exhibits a much faster falloff at large � than the
pocket-based distribution in Fig. 1. The reason is not
difficult to understand. For larger values of �, the vacuum
energy dominates earlier. The Universe then begins ex-
panding exponentially, and this quickly triggers the scale-
factor cutoff. Thus, pockets with larger values of� have an
earlier cutoff (in terms of the proper time) and have less
time to evolve observers. This tendency for the cutoff to
kick in soon after �-domination may help to sharpen the
anthropic explanation [31,63] of the otherwise mysterious
fact that we live so close to this very special epoch
(matter-� equality) in the history of the Universe.

The distribution of � for positive and negative values of
� is displayed in Fig. 4, using the same parameter values as
before. We see that the distribution with anthropic hy-
pothesis A provides a reasonable fit to observation, with
the measured value of � appearing just within two stan-
dard deviations of the mean. Note that the weight of this
distribution is dominated by negative values of �, yet

anthropic hypothesis A may not give the most accurate
accounting of observers in pockets with �< 0. Anthropic
hypothesis B provides an alternative count of the number
of observers in regions that crunch before the cutoff, and
we see that the corresponding distributions provide a very
good fit to observation. This is the main result of this work.
The above distributions all use �� ¼ 5� 109 years and

MG ¼ 1012M	. These values are motivated, respectively,
by the age of our solar system and by the mass of our
galactic halo, the latter being a good match to an empirical
fit determining the halo mass scale characterizing efficient
star formation [34]. Yet, to illustrate the dependence of our
main result on �� and MG, in Fig. 5 we display curves for
anthropic hypothesis B, using �� ¼ 3, 5, and 7�
109 years and using MG ¼ 1010, 1011, and 1012M	. The
distribution varies significantly as a result of these changes,
but the fit to the observed value of � remains good.

IV. CONCLUSIONS

To date, several qualitatively distinct measures have
been proposed to regulate the diverging volume of the
multiverse. Although theoretical analysis has not provided
much guidance as to which of these, if any, is correct, the
various regulating procedures make different predictions
for the distributions of physical observables. Therefore,
one can take an empirical approach, comparing the pre-
dictions of various measures to our observations, to shed
light on what measures are on the right track. With this in
mind, we have studied some aspects of a scale-factor cutoff
measure. This measure averages over the spacetime vol-
ume in a comoving region between some initial spacelike
hypersurface � and a final hypersurface of constant time,
with time measured in units of the local Hubble rate along
the comoving geodesics. At the end of the calculation, the

FIG. 5. The normalized distribution of �, with � in units of the observed value, for anthropic hypothesis B in the scale-factor cutoff.
The left panel displays curves for �� ¼ 3 (solid line), 5 (dashed line), and 7ðdottedÞ � 109 years, withMG ¼ 1012M	, while the right
panel displays curves for MG ¼ 1010M	 (solid line), 1011M	 (dashed line), and 1012M	 (dotted line), with �� ¼ 5� 109 years. The
vertical bars highlight the value of � that we measure.
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cutoff on scale-factor time is taken to infinity. We shall now
summarize what we have learned about the scale-factor
measure and compare its properties to those of other pro-
posed measures.

The ‘‘empirical approach’’ that we follow focuses atten-
tion on measures that avoid basic conflicts between pre-
diction and observation. The most severe of these conflicts
is the ‘‘youngness paradox’’—the prediction of an ex-
tremely youth-dominated distribution of observers—which
follows from the proper-time cutoff measure. The scale-
factor cutoff measure, on the other hand, predicts only a
very mild youngness bias, which is consistent with obser-
vation. Another problem, which arises in pocket-based and
‘‘gauge-invariant’’ measures, is the Q catastrophe, where
one expects to measure the amplitude of the primordial
density contrast Q to have an unfavorably large or small
value. This problem ultimately stems from an exponential
preference for a large number of e-folds of slow-roll in-
flation in these measures. The scale-factor cutoff does not
strongly select for more inflation, and thus does not suffer
from a Q catastrophe. An unattractive feature of causal-
patch and comoving-volume measures is that their predic-
tions are sensitive to the assumptions one makes about the
initial conditions for the multiverse. In contrast, the scale-
factor cutoff measure is essentially independent of the
initial state. This property reflects the attractor character
of eternal inflation: the asymptotic late-time evolution of
an eternally inflating universe is independent of the starting
point.

With any measure over the multiverse, one must also be
wary that it does not overpredict ‘‘Boltzmann brains’’—
observers that pop in and out of existence as a result of rare
quantum fluctuations [64]. This issue has not been ad-
dressed here, but our preliminary analysis suggests that,
with some assumptions about the landscape, the scale-
factor cutoff measure does not have a Boltzmann brain
problem. We shall return to this issue in a separate pub-
lication [65].

As mentioned above, a key feature of the scale-factor
cutoff measure is that, unlike the pocket-based or ‘‘gauge-
invariant’’ measures, it does not reward large amounts of
slow-roll inflation. As a result, it allows for the possibility
of a detectable negative curvature. This issue will be dis-
cussed in detail in Ref. [50].

The main focus of this paper has been on the probability
distribution for the cosmological constant �. Although the
statistical distribution of� among states in the landscape is
assumed to be flat, imposing a scale-factor cutoff modu-
lates this distribution to prefer smaller values of �.
Combined with appropriate anthropic selection effects,
this gives a distribution of � that is in a good fit with
observation. We have calculated the distribution for posi-
tive and negative values of �, as well as for the absolute
value j�j. For �> 0, we adopted the standard assumption
that the number of observers is proportional to the fraction

of matter clustered in halos of mass greater than 1012M	,
and allowed a fixed proper-time interval �� ¼
5� 109 years for the evolution of observers in such halos.
For �< 0, we considered two possible scenarios, which
probably bracket the range of reasonable possibilities. The
first (scenario A) assumes that observations can be made all
the way to the big crunch, so we count all halos formed
prior to time �� before the crunch. The second (scenario
B) assumes that the contracting negative-� phase is haz-
ardous to life, so we count only halos that formed at time
�� or earlier before the turnaround.
Our results show that the observed value of � is within

two standard deviations from the mean for scenario A, and
within one standard deviation for scenario B. In the latter
case, the fit is better than that obtained in the ‘‘standard’’
calculations [29–34], which assume no time cutoff (this is
equivalent to choosing a pocket-based measure on the
multiverse). The causal-patch measure also selects for
smaller values of � providing, in the case of positive �,
a fit to observation similar to that of the scale-factor cutoff
[35]. Note, however, that the approach of Ref. [35] used an
entropy-based anthropic weighting (as opposed to the
structure-formation-based approach used here) and that
the distribution of negative � has not been studied in this
measure.
We have verified that our results are robust with respect

to changing the parameters MG and ��. The agreement
with the data remains good for MG varying between 1010

and 1012M	 and for �� varying between 3� 109 and 7�
109 years. It would be interesting to know how robust these
results are with respect to allowing other cosmological
parameters to scan along with �; we leave this to future
work.
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APPENDIX A: INDEPENDENCE OF THE INITIAL
STATE

In Sec. II we assumed that the landscape is irreducible,
so that any vacuum is accessible through quantum diffu-
sion or bubble nucleation from any other (de Sitter) vac-
uum. If instead the landscape splits into several
disconnected sectors, the scale-factor cutoff can be used

to find the probability distributions PðAÞ
j in each of the

sectors (labeled by A). These distributions are determined
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by the dominant eigenstates of the Fokker-Planck or master
equation, which correspond to the largest eigenvalues �A,
and are independent of the choice of the initial hyper-
surfaces �A that are used in implementing the scale-factor
cutoff. But the question still remains, how do we compare
the probabilities of vacua belonging to different sectors?

Since different sectors are inaccessible from one an-
other, the probability PA of being in a given sector must
depend on the initial state of the universe. For definiteness,
we shall assume here that the initial state is determined by
the wave function of the universe, although most of the
following discussion should apply to any theory of initial
conditions. According to both tunneling [66] and Hartle-
Hawking [67] proposals for the wave function, the universe
starts as a 3-sphere S	 filled with some positive-energy
vacuum 	. The radius of the 3-sphere is r	 ¼ H�1

	 , where
H	 is the de Sitter expansion rate. The corresponding
nucleation probability is

Pð	Þ
nucl / exp

�
� �

H2
	

�
; (A1)

where the upper sign is for the Hartle-Hawking and the
lower is for the tunneling wave function. Once the universe
has nucleated, it immediately enters de Sitter inflationary
expansion, transitions from	 to other vacua, and populates
the entire sector of the landscape to which the vacuum 	
belongs. We thus have an ensemble of eternally inflating
universes with initial conditions at 3-surfaces S	 and the

probability distribution Pð	Þ
nucl given by Eq. (A1).

If the landscape were not disconnected, we could apply
the scale-factor cutoff measure to any single component 	
of the initial wave function, and the result would be the
same in all cases. To generalize the scale-factor cutoff
measure to the disconnected landscape, the most straight-
forward prescription is to apply the scale-factor cutoff
directly to the initial probability ensemble. In that case,

Pj;A / lim
tc!1

X
	2A

Pð	Þ
nuclN

ð	Þ
j ðtcÞ: (A2)

Here,

N ð	Þ
j ðtcÞ ¼ RðAÞ

	 PðAÞ
j e�Atc (A3)

is the number of relevant observations in the entire closed
universe, starting from the hypersurface S	, with a cutoff at

scale-factor time tc. The R
ðAÞ
	 are determined by the initial

volume of the 3-surface S	, and also by the efficiency with
which this initial state couples to the leading eigenvector of

Eq. (6). In other words, the N ð	Þ
j ðtcÞ are calculated using

S	 as the initial hypersurface�A. Note that only the overall

normalization of N ð	Þ
j depends on the initial vacuum 	;

the relative probabilities of different vacua in the sector do
not. In the limit of tc ! 1, only the sectors corresponding
to the largest of all dominant eigenvalues,

�max ¼ maxf�Ag; (A4)

have a nonzero probability. If there is only one sector with
this eigenvalue, this selects the sector uniquely.
Since the issue of initial state dependence is new, one

might entertain an alternative method of dealing with the
issue, in which the probability PA for each sector is deter-
mined immediately by the initial state, with

PA / X
	2A

Pð	Þ
nucl: (A5)

Then one could calculate any probability of interest within
each sector, using the standard scale-factor cutoff method,
and weight the different sectors by PA. However, although
this prescription is well defined, we would advocate the
first method that we described as the natural extension of
the scale-factor cutoff measure. First, it seems to be more
closely related to the description of the scale-factor cutoff
measure in a connected landscape: the only change is to
replace the initial state by an ensemble of states, deter-
mined in principle by one’s theory of the initial wave
function. Second, in a toy theory, one could imagine ap-
proaching a disconnected landscape from a connected one,
by gradually decreasing all the cross-sector tunneling rates
to zero. In that case, the limit clearly corresponds to the
first description, where one sector is selected uniquely if it
has the largest dominant eigenvalue.
Assuming the first of these prescriptions, the conclusion

is that the probability distribution (A2) defined by the
scale-factor measure is essentially independent of the ini-

tial distribution (A1). Some dependence on Pð	Þ
nucl survives

only in a restricted class of models where the landscape
splits into a number of sectors with strictly zero probability
of transitions between them and, in addition, where the
maximum eigenvalue �max is degenerate. Even then, this
dependence is limited to the relative probability of the
sectors characterized by the eigenvalue �max.

APPENDIX B: THE COLLAPSE DENSITY
THRESHOLD �c

The collapse density threshold �c is determined by
comparing the linearized evolution of matter perturbations
with the nonlinear evolution of a spherical top-hat density
perturbation, which can be treated as a closed FRW uni-
verse. The collapse density threshold �cð�Þ is defined as the
amplitude reached by the linear evolution of an overdensity
� � ��m=�m that has the same initial amplitude as a top-
hat density perturbation that collapses to a singularity in
proper time �. In a matter-dominated universe with zero
cosmological constant, �c is a constant; however, it is well
known that �c depends on the collapse time when � is
nonzero (see e.g. Refs. [54,55]). In this appendix we first
outline the calculation of the time evolution of �c, then
display the results for positive and negative �, and finally
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describe how we apply it in our analysis of the collapse
fraction F of Eq. (24).

As suggested by the definition above, both linear and
nonlinear analyses are involved at different stages of the
calculation of the collapse density. Arbitrarily small per-
turbations obey linearized equations of motion, and their
evolution defines the linear growth function G�ð�Þ:

�ð�Þ / G�ð�Þ; (B1)

where G�ð�Þ is normalized so that the behavior for small �

is given by G�ð�Þ � ð3H��=2Þ2=3, where H� ¼ ffiffiffiffiffiffiffiffiffiffiffiffij�j=3p
.

The exact nonlinear analysis is used to determine the time
at which an overdensity with a given initial amplitude will
collapse to a singularity. For simplicity, this is worked out
for the ‘‘top-hat’’ model, where the overdensity is assumed
to be uniform and spherically symmetric. Such a region is
embedded in a flat FRW universe containing only non-
relativistic matter and cosmological constant.

By Birkhoff’s theorem, the evolution of the spherical
overdensity is equivalent to that of a closed FRW universe.
The Friedmann equation for a closed FRW universe, with
scale factor a, may be written as

H2 ¼ H2
�

�
signð�Þ þ Bð�Þ

a3
� �

a2

�
; (B2)

whereH ¼ d lna=d� ¼ _a=a and Bð�Þ is an arbitrary quan-
tity that fixes the normalization of a. We will always
choose Bð0Þ ¼ 1, so for � ¼ 0 the scale factor is normal-
ized in such a way that �m ¼ j��j at a ¼ 1, where �� ¼
�=ð8�Þ is the vacuum energy density.

Let us first focus our attention on the evolution of a
linearized density perturbation in a flat FRW universe with
positive cosmological constant; the case with negative
cosmological constant proceeds similarly. Consider a
closed FRW universe obtained by ‘‘perturbing’’ the flat
universe with a small curvature term ��. The proper-time
parameter �̂ in such a universe, as a function of the scale
factor, is given by an expansion with respect to the flat
background: �̂ðaÞ ¼ �ðaÞ þ ��ðaÞ, where to linear order in
��

��ðaÞ ¼ ��

2H�

Z a

0

ffiffiffiffiffi
a0

p ½a0 � dB
d� ð0Þ
da0

ð1þ a03Þ3=2 : (B3)

The scale factor of the closed universe is obtained by
inverting the function �̂ðaÞ:

âð�Þ ¼ að�Þ � _að�Þ��ðað�ÞÞ: (B4)

As mentioned above, the evolution of this closed FRW
universe also gives the evolution of a small density pertur-
bation. Using �m ¼ ð3=8�ÞH2

�Bð�Þ=a3, one has

� ¼ ��m

�m

¼ �3
�a

a
þ dB

d�
ð0Þ ¼ 3H��þ dB

d�
ð0Þ; (B5)

where the last equality follows from Eq. (B4). From here

on, unless noted otherwise, we normalize a so that Bð�Þ ¼
1. It is convenient to introduce the ‘‘time’’ variable

x � j��j
�m

¼ a3; (B6)

for both choices of the sign of �. To be consistent with
Eq. (B2), the solutions for � ¼ 0 are not normalized as in
Eq. (21), but instead are given by

að�Þ ¼
�
sinh2=3ð32H��Þ for �> 0

sin2=3ð32H��Þ for �< 0:
(B7)

We can then find the evolution function �ðxÞ from Eq. (B5),
using Eq. (B3) and also Eq. (B2) with � ¼ 0:

�ðxÞ ¼ 1

2
��

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x

s Z x

0

dy

y1=6ð1þ yÞ3=2 ¼
3

5
��GþðxÞ;

(B8)

where the linear growth function (for �> 0),

GþðxÞ ¼ 5

6

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x

s Z x

0

dy

y1=6ð1þ yÞ3=2 ; (B9)

is normalized so that the behavior for small x is given by

GþðxÞ � x1=3 ¼ a� ð3H��=2Þ2=3.
In the �< 0 case, the calculation proceeds along the

same steps as before and the formula (B8) is indeed valid
also for negative �, after replacing the growth function
with G�ðxÞ. This function now has two branches G�

I ðxÞ
and G�

II ðxÞ, corresponding to the expanding and contract-
ing phases of the universe, respectively. The first branch of
the growth function introduces no new complications, and
is found to be

G�
I ðxÞ ¼

5

6

ffiffiffiffiffiffiffiffiffiffiffiffi
1

x
� 1

s Z x

0

dy

y1=6ð1� yÞ3=2 : (B10)

For the second branch, the integration is first performed
over the whole history of the universe, from x ¼ 0 to x ¼ 1
and back to x ¼ 0, and then one integrates back to the
value of interest x. There is a complication, however,

because for this case the denominator in Eq. (B3) is ð1�
a03Þ3=2, so the integral diverges when the upper limit is
equal to 1. The cause of the problem is that for �� � 0,
amax is no longer equal to 1. A simple cure is to choose
Bð�Þ ¼ 1þ � for this case, which ensures that amax ¼ 1
for any �, and which correspondingly provides an addi-
tional term in Eq. (B3) which causes the integral to con-
verge. After some manipulation of the integrals, the result
can be written as

G�
II ðxÞ ¼

5

6

ffiffiffiffiffiffiffiffiffiffiffiffi
1

x
� 1

s �
4

ffiffiffiffi
�

p
�ð56Þ

�ð13Þ
þ

Z x

0

dy

y1=6ð1� yÞ3=2
�
:

(B11)

The time dependence of the linear growth functions can be
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made explicit by expressing x as a function of �, through
Eqs. (B6) and (B7).

In practice, we carry out our calculations using fitting
functions for the growth functions, which were devised by
Peacock [34], and which are accurate to better than 0.1%.
These give

Gþ
�ð�Þ ’ tanh2=3ð32H��Þ½1� tanh1:27ð32H��Þ
0:82

þ 1:437H�2=3
� ½1� cosh�4=3ð32H��Þ
; (B12)

G�
�ð�Þ ’ ð32H��Þ2=3½1þ 0:37ð�=�crunchÞ2:18
�1

� ½1� ð�=�crunchÞ2
�1; (B13)

for the cases �> 0 and �< 0, respectively, where the
latter fitting formula is valid for both branches.

We are now prepared to set the calculation of �c. Since
the universe in Eq. (B2) can be viewed as a ‘‘perturbation’’
over a flat universe with �� ¼ �, the time evolution of the
overdensity is described in general by

�ð�Þ ¼ 3
5�G�ð�Þ: (B14)

The quantity ð3=5Þ�a quantifies the size of the initial
inhomogeneity.

In order to find the time at which the spherical over-
density collapses, it is convenient to determine the time of
turnaround �turn, corresponding to when H ¼ 0. The time
of collapse is then given by 2�turn. The turnaround time is
obtained by integrating Eq. (B2), choosing B ¼ 1:

H��turnð�Þ ¼
Z aturnð�Þ

0

ffiffiffi
a

p
daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

signð�Þa3 � �aþ 1
p ; (B15)

where the scale factor at turnaround aturn corresponds to
the smallest positive solution of

sign ð�Þa3turn � �aturn þ 1 ¼ 0: (B16)

For positive �, the universe will collapse only if � >

�min � 3=22=3; for negative �, perturbations that collapse
before the universe has crunched have � > 0.

The numerical evaluation of the integral in Eq. (B15)
allows one to extract the function �turnð�Þ, which can be
inverted to give �turnð�Þ, expressing the value of � that
leads to turnaround at time �. Finally, the collapse density
threshold as a function of the time of collapse is read from
Eq. (B14):

�cð�Þ ¼ 3
5�turnð�=2ÞG�ð�Þ: (B17)

In the limits of small and large collapse times the above
procedure can be carried out analytically to find the limit-
ing values of �c. Let us consider first the large-time regime,
corresponding to small �. In the case�> 0, the smallest �
allowed is �min; therefore

�þ
c ð1Þ ¼ 3

5�minG
þ
�ð1Þ ’ 1:629; (B18)

where Gþ
�ð1Þ ¼ Gþð1Þ ¼ 5�ð2=3Þ�ð5=6Þ=ð3 ffiffiffiffi

�
p Þ ’

1:437. The case �< 0 is a little more complicated. The
collapse time cannot exceed �crunch ¼ 2�=3H�, corre-
sponding to � ¼ 0. At small �, the integral in Eq. (B15)
is expanded to give

H��turnð�Þ ’ 1

2
H��crunch � 2

5

ffiffiffiffi
�

p
�ð116 Þ

�ð13Þ
�: (B19)

On the other hand, the growth function G�ð�Þ in the
neighborhood of �crunch behaves as

G�
�ð� � �crunchÞ ’ 10

3

�ð56Þffiffiffiffi
�

p
�ð13Þ

1

ð1� �=�crunchÞ : (B20)

After using Eqs. (B19) and (B20) in the general formula
(B17), we simply get

��
c ð�crunchÞ ¼ 2: (B21)

In the opposite regimeH�� � 1, corresponding to large

�, the growth functions are G�
�ð�Þ ’ að�Þ ’ ð3H��=2Þ2=3.

The integral (B15) can be analytically solved in this limit:

H��turnð�Þ ¼ �=ð2�3=2Þ. Combining these results leads to

��
c ð0Þ ¼ 3

5

�
3�

2

�
2=3 ’ 1:686; (B22)

which is also the constant value of �c in a � ¼ 0 universe.
The time dependence of �c is displayed in Fig. 6, for

both positive and negative values of�. We also display the
following simple fitting functions:

�þ
c ð�Þ ¼ 1:629þ 0:057e�0:28H2

�
�2 ;

��
c ð�Þ ¼ 1:686þ 0:165

�
�

�crunch

�
2:5 þ 0:149

�
�

�crunch

�
11

(B23)

FIG. 6. The collapse density thresholds �þ
c (for �> 0) and ��

c

(for �< 0), as functions of time. The solid curves represent
numerical evaluations of ��

c , while the dashed curves correspond
to the fitting functions in Eq. (B23). Note that �þ

c decreases with
time, while ��

c increases with time.
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which are accurate to better than 0.2%. Although we
choose to include the effect of the time evolution of �c,
our results are not significantly changed by treating �c as a
constant. This is easy to understand. First of all, �þ

c varies
by only about 3%. The evolution of ��

c is more significant,
about 15%, and most of this happens at very late times. But
our anthropic weight in Eq. (20) never samples ��

c within a
time �� of �crunch.

Finally, we point out that the appearance ofG�ð�Þ in this
discussion is not needed for the calculation, and appears
here primarily to make contact with other work. From
Eq. (24) one sees that the collapse fraction depends only
on the ratio of �cð�Þ=�ðMG; �Þ, which from Eqs. (25) and
(B17) can be seen to equal ð3=5Þ�turnð�=2Þ= ��ðMGÞ.
Expressed in this way, Eq. (24) becomes fairly transparent.
Since � is a measure of the amplitude of an initial pertur-

bation, Eq. (24) is saying that the collapse fraction at time �
depends precisely on the magnitude required for an initial
top-hat perturbation to collapse by time �. In more detail,
Eq. (24) is predicated on a Gaussian distribution of initial
fluctuations, where the complementary error function
erfcðxÞ is the integral of a Gaussian. The collapsed fraction
at time � is given by the probability, in this Gaussian
approximation, for the initial fluctuations to exceed the
magnitude needed for collapse at time �. From a practical
point of view, the use of G�ð�Þ in the discussion of the
collapse fraction can be a helpful simplification if one uses
the approximation that �c � const. We have not used this
approximation, but as described above, our results would
not be much different if we had. We have maintained the
discussion in terms of G�ð�Þ to clarify the relationship
between our work and this approximation.
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