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This paper calculates the amount of baryon/radiation isocurvature fluctuation produced through the

decay of a curvaton field. It is shown, in particular, that if curvaton decay preserves the baryon number and

the curvaton dominates the energy density at the time of decay, the initial curvaton/radiation isocurvature

mode is entirely transferred into a baryon/radiation isocurvature mode. This situation is opposite to that

previously studied in three fluid models of curvaton decay; this difference is related to the conservation of

the preexisting baryon asymmetry and to the efficiency of the annihilation of all baryon/antibaryon pairs

produced in the decay. We study in detail the relevant cases in which the curvaton decay preserves or not

the baryon number and provide analytical and numerical calculations for each situation.
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I. INTRODUCTION

The curvaton scenario [1–9] is a variant of the infla-
tionary scenario in which the field driving the accelerated
expansion (the inflaton field) is not necessarily that which
produces all of the primordial fluctuations. Another field
(the curvaton field), through its decay, can seed part of (or
even all of) the cosmological perturbations. Therefore, in
the most generic situation, these fluctuations originate
from two different sources and the possibility of having
isocurvature modes arises.

The existence of isocurvature fluctuations would lead to
distortions of the multipole moments of cosmic microwave
background anisotropies, as compared to pure adiabatic
modes. It is thus possible to constrain the fraction of
isocurvature modes using high accuracy measurements,
and present-day constraints show that the contribution of
isocurvature modes is subdominant, at least if the isocur-
vature components are considered separately [10–22].
Therefore, the study of the production of isocurvature
fluctuations in the curvaton scenario, although interesting
per se, can also help us to constrain the free parameters
describing the model.

The phenomenology of the curvaton scenario has been
studied in the literature in a variety of cases, in particular,
in multifluid configurations (see for instance Refs. [5–
7,9,23–26]). The purpose of the present paper is to apply
the formalism developed in Ref. [25] to the particular case
of a net baryon/radiation isocurvature mode generated
through curvaton decay. One peculiar feature that will
emerge from the present study is the fact that the curvaton
may induce a maximal isocurvature mode even if it domi-
nates the energy density at the time of its decay, provided
its decay preserves baryon number. This feature stands in
sharp contrast with previous findings which showed that

for curvaton decay into radiation and another fluid such as
dark matter, the decay of a dominating curvaton would
erase any preexisting isocurvature mode. We study this
case in detail and show that this particularity is related to
the conservation of baryon number and to the efficient
annihilation of all b�b pairs produced in curvaton decay
(throughout this paper, ‘‘b’’ stands for a generic baryon,
and ‘‘�b’’ for its antiparticle, not to be confused with bottom
and antibottom quarks).
This paper is organized as follows. In Sec. II, we de-

scribe the model and formulate the equations of motion at
the background and perturbed levels. In Sec. III, we nu-
merically solve these equations in two cases, namely, when
the decay is symmetric in baryons and antibaryons and
when it is asymmetric meaning that the production of a net
baryon number becomes possible. We show that these two
cases correspond to very different phenomenologies.
Finally, In Sec. IV, we discuss and compare our main
results and present our conclusions.

II. DESCRIPTION OF THE MODEL

We consider a model where four fluids are present:
baryons (denoted in what follows with the subscript b),
antibaryons (�b), radiation (‘‘r’’), and the curvaton field
(‘‘�’’). At the fundamental level, the curvaton is a priori
a massive scalar field but can effectively be treated as a
pressureless fluid. One assumes that it can decay into
radiation, baryons, and antibaryons. Each of these pro-
cesses is controlled by a partial decay width denoted ��r,
��b, and ���b, respectively. The curvaton decay occurs
when the condition �� �H is met, where �� is the total
decay width, namely, �� ¼ ��r þ ��b þ ���b, andH is the
Hubble parameter.
We do not discuss the phenomenology of the curvaton to

dark matter decay in the present paper. It is fair to assume
that by curvaton decay, dark matter is effectively de-
coupled from radiation and baryons/antibaryons. Even
though the decay of the curvaton may induce a dark
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matter—radiation isocurvature mode (see Ref. [25] for a
detailed analysis), or a baryon—radiation isocurvature
mode, both the baryonic and the dark matter sector will
evolve independently. In this sense, the constraints ob-
tained on dark matter or baryon isocurvature modes give
complementary constraints on the physics of curvaton
decay.

The freeze-out of baryon/antibaryon annihilations is
controlled by the velocity averaged cross section

h�b�bvi ’ m�2
� ; (1)

where m� ¼ 135 MeV. This relation originates from the
fact that, in the present context, the pion can be viewed as
the gauge boson mediating the strong force. Freeze out of
b�b annihilations occurs when �bjf � n�bjfh�b�bvi and/or

��bjf � nbjfh�b�bvi are of the order of the expansion rate

H which corresponds to a temperature �20 MeV in the
absence of curvaton decay (that is to say, assuming that
radiation always dominates the energy content of the
Universe).

Big-bang nucleosynthesis puts rather extreme upper
bounds on the amount of energy density injected at tem-
peratures T & 1 MeV (see Ref. [27] for a recent compila-
tion). For all practical purposes, it suffices to impose that
Td � 1 MeV to satisfy these constraints. Furthermore, the
late time decay of a scalar field at temperatures of order 1–
10 MeV is a fairly generic case in the framework of moduli
cosmology. As is well known, such fields generically pos-
sess a very large energy density and a very small decay
width �� �m3

�=m
2
Pl, hence they decay after big-bang nu-

cleosynthesis if their mass is of the order of the weak scale.
Therefore, in order to reconcile the existence of such fields
with the success of big-bang nucleosynthesis, one has two
choices: either the energy density of these fields at the time
of big-bang nucleosynthesis is very small or their mass is
large, leading to early enough decay. The mass also cannot
be arbitrarily large, otherwise one has to face a hierarchy
problem, hence the generic decay temperature is 1–
10 MeV. Supersymmetric models with anomaly mediated
supersymmetry breaking provide an explicit realization of
particle physics model building in which the masses of
moduli are of the order of m� � 10–100 TeV, which leads
to decay temperatures of the moduli/curvaton Td �
1–10 MeV [28].

The above motivates the present study of the phenome-
nology of curvaton decay at temperatures of order 1–
10 MeV. Out of simplicity, we keep this temperature fixed
to a value Td ¼ 5:9 MeV in our numerical analysis, which
corresponds to a total decay width �� ¼ 1:6�
10�20 MeV. We will argue that the results obtained remain
unchanged if the decay temperature is higher, in particular,
if Td * 20 MeV.

At the background level, following the approach of
Ref. [25], the above situation can be modeled by the
following set of equations:

d�b

dN
¼ �r�b þ ��b

H
��

� 3h�b�bvim2
Pl

8�

H

mb

ð�b��b ��
eq
b �

eq
�b
Þ; (2)

d��b

dN
¼ �r��b þ

���b

H
��

� 3h�b�bvim2
Pl

8�

H

m�b

ð�b��b ��eq
b �

eq
�b
Þ; (3)

d�r

dN
¼ ð�r � 1Þ�r þ ��r

H
��

þ 2
3h�b�bvim2

Pl

8�

H

mb

ð�b��b ��eq
b �

eq
�b
Þ; (4)

d��

dN
¼ �r�� � ��

H
��; (5)

dH

dN
¼ � 3H

2

�
1þ�r

3

�
: (6)

Let us describe these equations in more detail. As usual,
the parameters �ð�Þ are defined as the ratio of the energy

density of the fluid � to the critical energy density,�ð�Þ �
�ð�Þ=�cr. The time variable is the number of e folds, N �
lna, where a is the scale factor. The quantity�eq

b is defined

by �eq
b � mbn

eq
b =�cr, where neqb is the particle density at

thermal equilibrium, expressed as

neqb ¼ g

�
mbT

2�

�
3=2

exp

�
�mb ��b

T

�
; (7)

with a similar expression for neq�b . The quantity �b is the

chemical potential of the baryons and one has �b ¼ ���b.
The temperature T can be expressed in terms of the vari-
ables of the previous system of equations as

T ¼
�
�2g�
30

8�

3m2
Pl

��1=4
H1=2�1=4

r : (8)

Note that the above description implicitly assumes that the
curvaton decay products thermalize instantaneously. This
assumption will be discussed at the end of Sec. III. One
should already take note that the above ratios ��b=��,
���b=��, and ��r=�� should be understood as characteriz-
ing the fraction of curvaton energy that eventually goes
into thermalized b, �b, and r, rather than the branching ratios
associated with curvaton decay channels.
For the sake of simplicity, we ignore any temperature

dependence of the function g� and we take g� ¼ 10:75. If
we compare with the equations of motion established in
Ref. [25] in the case where the curvaton can decay into
dark matter � (rather than baryons and antibaryons), the
only difference is that terms such as �2

� or �2
�;eq are

replaced by �b��b and �eq
b �

eq
�b
. Notice that, as a conse-
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quence, the evolution of the system does not depend on the
chemical potential which cancels out, thanks to the fact
that �b ¼ ���b. Finally, there is a factor 2 in front of the
last term in Eq. (4). This factor originates from the require-
ment that the total energy density be conserved.

Let us also discuss how the initial conditions are chosen.
Initially, we start with thermal equilibrium and some bary-
ons/antibaryons asymmetry. This implies that

�b��b ¼ �ðeqÞ
b �ðeqÞ

�b
; �b ���b ¼ �: (9)

These two relations lead to

�b ¼ �

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�2
�ðeqÞ

b �ðeqÞ
�b

s �
;

��b ¼
�

2

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�2
�ðeqÞ

b �ðeqÞ
�b

s �
:

(10)

Therefore, if the initial values of �ðeqÞ
b and � are known,

then one can deduce the initial values of �b and ��b. The

quantities �ðeqÞ
b and � can be expressed as

�ðeqÞ
b ¼ g

ð2�Þ3=2
8�

3H2

m4
b

m2
Pl

x�3=2e�x;

� ¼ 8��ð3Þgm4
b	b

3H2m2
Pl�

2x3
;

(11)

where x � mb=T and where the quantity 	b is defined by

	b � nb � n�b

n

: (12)

The present-day value of the baryon asymmetry is 	b ’
5:4� 10�10 [29]. The initial value of 	b well before the
freeze-out of b�b annihilations must therefore be tuned in
order to reproduce the final value after curvaton decay and
entropy transfer from eþe� to the photons. Curvaton decay
may dilute any preexisting asymmetry through entropy
production or even produce a net baryon number if the
curvaton decay process violates the baryon number. In all
our calculations presented further below, we have tuned
this initial asymmetry in order to match the observed
present-day value.

In order to establish Eq. (12), we have used the fact that
the number of photons is given by n
 ¼ �ð3ÞgT3=�2. It is

important to notice that the difference nb � n�b is normal-
ized with respect to the photon energy density (or number)
and not to the total radiation energy density. In these
formulas, x ¼ xini � 10 (for instance) and mb � 0:9 GeV
are known (or chosen). Moreover, the Hubble parameter
and�r are related through Eq. (8). Then, using the fact that
the spacelike sections are flat, i.e., �� þ�r þ�b þ
��b ¼ 1, and considering (the initial value of) ��;ini as a

free quantity, one can derive the following expression:

H2 ¼ 1

1���

8�3g�m4
b

90x4m2
Pl

�
1� 60gx5=2e�x

�2ð2�Þ3=2g�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2ð3Þ	2be2x

�x3

s �
: (13)

Therefore, for a given value of��;ini,Hini can be computed

and the other quantities �r;ini, �b;ini, and ��b;ini simply

follow from the above equations.
Let us now consider the perturbations. In order to estab-

lish the gauge-invariant equations of motion, we follow the
method of Ref. [25]. It consists of formulating the equa-
tions in a covariant way in order to be able to perturb them
consistently. One can write

r�T
�
�ð�Þ ¼ Q�ð�Þ þ Y�ð�Þ; (14)

where Q� ¼ �T��u� is the curvaton decay term, with u�
being the four velocity of a fundamental observer, and the
term Y� is a phenomenological description of the interac-
tion term. It reads

Y� ¼ h�b�bvi
mb

½T�
�ðbÞT

�

ð�bÞ � T�;eq
�ðbÞT

�;eq

ð�bÞ �u: (15)

Of course, a rigorous treatment of the problem would rely
on the full Boltzmann equation but this phenomenological
description will be sufficient for our purpose. In particular,
one can check that Eq. (14) exactly reproduces the back-
ground equations (2)–(6). Moreover, it is straightforward
to perturb Eq. (14). This leads to the following system:

d�b

dN
¼ ���b

H

��

�b

ð�b � ��Þ � 3

2
ð���� þ�r�r

þ�b�b þ��b��bÞ ��

�
3� ��b

H

��

�b

�

� 3h�b�bvim2
Pl

8�

H

mb�b

f½�b��bð�b þ��bÞ

� 2�eq
b �

eq
�b
�eq� þ ð�þ �bÞð�b��b ��eq

b �
eq
�b
Þg;

(16)

d��b

dN
¼ ����b

H

��

��b

ð��b � ��Þ � 3

2
ð���� þ�r�r

þ�b�b þ��b��bÞ ��

�
3� ���b

H

��

��b

�

� 3h�b�bvim2
Pl

8�

H

m�b��b

f½�b��bð�b þ��bÞ

� 2�eq
b �

eq
�b
�eq� þ ð�þ ��bÞð�b��b ��eq

b �
eq
�b
Þg;

(17)
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d�r

dN
¼ ���r

H

��

�r

ð�r � ��Þ � 2ð���� þ�r�r

þ�b�b þ��b��bÞ ��

�
4� ��r

H

��

�r

�

þ 2
3h�b�bvim2

Pl

8�

H

mb�r

f½�b��bð�b þ��bÞ

� 2�
eq
b �

eq
�b
�eq� þ ð�þ �rÞð�b��b ��

eq
b �

eq
�b
Þg;

(18)

d��

dN
¼ � 3

2
ð���� þ�r�r þ�b�b þ��b��bÞ

��

�
3þ ��

H

�
; (19)

d�

dN
¼ ��� 1

2
ð���� þ�r�r þ�b�b þ��b��bÞ; (20)

where �� � ���=�� is the gauge-invariant density con-
trast for the fluid �. The quantity �eq is defined by the
following expression:

�eq � 1

4

�
3

2
þ x

�
�r: (21)

With this definition, it is easy to see that we deal with a
‘‘closed’’ system of equations since x must be viewed as a
function of H and �r; see Eq. (8). Let us now turn to the
discussion of the solutions of the two systems of equations
presented in this section.

III. RESULTS

The main parameters that govern the cosmological con-
sequences of curvaton decay into radiation and baryon/
antibaryons are as follows: (i) the time of decay of the
curvaton, which is encoded in the total decay width ��;
(ii) the respective branching ratios ��b=�� and ���b=��;
(iii) the magnitude of the curvaton energy density at the

time of decay, i.e., �
<d
� when H ¼ ��. The main parame-

ters are therefore the respective branching ratios and �<d
� .

Note that the branching ratios are constrained by the
measured baryon asymmetry 	b ’ 5:4� 10�10. In particu-
lar the baryon asymmetry 	b measured immediately after
curvaton decay should be equal to 1:5� 10�9, in order to
obtain the measured value after the reheating of the photon
fluid by electron/positron annihilations. According to
whether ��b ¼ ���b or not, two possibilities may arise. In
the case of symmetric decay, meaning ��b ¼ ���b, the
baryon asymmetry is generated by some unspecified
mechanism acting at a higher energy scale; it is simply
diluted during curvaton decay by the extra entropy brought
by the curvaton. In the case of asymmetric decay, the
curvaton contributes to the net baryon asymmetry. We
note that direct baryogenesis at a low temperature T �
10 MeV is very contrived; we will nevertheless study this

case for the sake of completeness and discuss the robust-
ness of the results for higher decay temperatures. These
two scenarios indeed exhibit different consequences, as
discussed in turn in the following.
We will use the standard definition of the curvature

perturbation in fluid ð�Þ [30–32]:

�ð�Þ � ���H
��ð�Þ
_�ð�Þ

’ ��þ �ð�Þ
3½1þ!ð�Þ� ; (22)

where, in order to express _�ð�Þ, we have not considered the
interaction term. The corresponding definitions for the
isocurvature modes read

Sbr�3ð�b��rÞ; S�br�3ð��b��rÞ; S�r�3ð����rÞ:
(23)

In particular, we will be interested in the transfer of the
initial curvaton/radiation isocurvature perturbation into the
final baryon/radiation isocurvature mode, as expressed by

the ratio SðfÞbr =S
ðiÞ
�r. The quantity indexed with (f) [respec-

tively, (i)] is evaluated well after the decay (respectively,
well before). In the following, we also express quantities
evaluated immediately before (respectively, after) decay
with the superscript <d (respectively, >d).

A. Symmetric decay

In this section, we explore the phenomenology of mod-
els in which the curvaton decays symmetrically into bary-
ons and antibaryons, i.e., ��b ¼ ���b. We find that two
situations may arise, according to whether the curvaton

dominates the energy density at its decay, i.e.,�<d
� � 1, or

not.
Consider first the case in which the curvaton dominates

the energy density at decay, �<d
� � 1. We find that the

transfer coefficient of the isocurvature mode is maximal, as
exemplified for instance in Fig. 1. The top panel of this
figure shows the evolution of the background energy den-
sity in radiation (solid red line), curvaton (dotted green
line), in baryons (top dashed dark blue line), and in anti-
baryons (bottom dashed light blue line). The middle panel
shows the evolution of the individual �ð�Þ quantities, and
the bottom panel the transfer of the isocurvature fluctua-
tion. This latter shows clearly the emergence of a net
baryon-radiation isocurvature fluctuation after the decay
of the curvaton. The middle panel also reveals that in this
case, the radiation fluid inherits the curvaton fluctuations

(since �
=�
ðiÞ
� ! 1 at T 	 Td), while the baryon fluid

remains unaffected.
This result is quite different from a ‘‘standard’’ scenario

of curvaton decay into radiation and dark matter, in which
the domination of the curvaton at the time of decay ensures
that only adiabatic modes subsist, as all fluids have inher-
ited the same curvaton perturbations. This difference can
be related to the annihilation of all b�b pairs produced by the
curvaton, which effectively reduces to zero the net energy
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transfer of the curvaton to the baryon fluid. In order to put
this statement on quantitative footing, it is useful to evalu-
ate the ratio of the annihilation rates of baryons and anti-
baryons to the expansion rate immediately after curvaton
decay (H ¼ ��):

�b ¼
n>d
�b
h�b�bvi
��

’ 4:6� 1016
�

Td

10 MeV

�
2
�>d

�b
;

��b ¼
n>d

b h�b�bvi
��

’ 4:6� 1016
�

Td

10 MeV

�
2
�>d

b :

(24)

The first equation gives the ratio�b of the annihilation rate
of baryons to the expansion rate, while the second gives the
corresponding ratio ��b of the annihilation rate of antibary-
ons to the expansion rate. Considering �b, the above
formula shows that if ��b exceeds �10�16, annihilations
are effective. In the absence of curvaton, the freeze-out of
b�b annihilations occurs as the abundance of antibaryons is
reduced to below this threshold. In the presence of a
curvaton however, the decay of this field will regenerate
the annihilations provided the amount of curvaton pro-

duced antibaryons is sufficient, i.e.,�>d
�b

��<d
� ���b=�� �

���b=�� * 10�16. Then all pairs of baryon/antibaryon pro-
duced by curvaton decay will annihilate. Of course, if the
branching ratio ���b=�� & 10�16, the regeneration of an-
nihilations will not take place, but the curvaton will not
exert any influence on the preexisting baryon fluid either.

In fact, the behaviors of the different quantities plotted in
Fig. 1 can be understood in more detail along the following
lines. Consider the variables associated to the net baryon
number, in particular, �b ���b. Its equation of motion
reduces to

d

dN
ð�b ���bÞ ¼ �rð�b ���bÞ: (25)

This composite fluid is isolated, as neither annihilation nor
curvaton decay violates baryon number. Therefore, the
curvature perturbation associated with this composite fluid
is conserved, as predicted in Ref. [5]. Furthermore, one has
��b 	 �b before curvaton decay and after annihilation
freeze-out, so that this fluid of ‘‘net baryon number’’
approximately corresponds to the baryon fluid. As annihi-
lations of b�b pairs produced by curvaton decay are effi-
cient, the above inequality remains valid after curvaton
decay, hence net baryon number remains a good approxi-
mation for the baryon fluid. All in all, the above indicates
that the curvature perturbation of the baryon fluid should
remain conserved if curvaton decay preserves baryon num-
ber and if annihilations of b�b pairs are efficient.
This implies that the above results remain unchanged if

the decay temperature Td * 20 MeV. The theorem of
Ref. [33] stipulates that the isocurvature modes between
two fluids sharing thermal equilibrium are erased on a
small time scale, unless there exists a conserved charge.
In the present case, the baryon number is conserved, or
more precisely the net baryon number does not couple to
radiation, hence the above theorem does not apply.
Consequently, once the isocurvature mode is produced, it
remains conserved unless baryon number violating pro-
cesses take place. In other words, one can extrapolate the
above results to temperatures at least as high as the elec-
troweak scale. Let us also remark that, if baryons are
relativistic (at temperatures above the QCD scale), the
above equations are slightly modified, but the above results
remain unmodified.
On a more formal level, one can follow the evolution of

the different variables as follows. Neglecting��b in front of
�b in Eq. (25) above indicates that �b scales as a when
�r � 1 (i.e., after curvaton decay), while �b remains
approximately constant when �r 	 1. These trends are
observed in Fig. 1.
The behavior of ��b is less trivial to obtain (but its

cosmological relevance is also much less). One can ap-
proximate Eq. (3) with the following, after curvaton decay:

d��b

dN
’ � 3m2

Pl

8�

h�b�bviH
mb

�b��b; (26)

where the term �r��b has been neglected as the annihila-
tions are dominant. Using the fact that H / a�2 and �b /
a after curvaton decay, one derives the following late time
value of ��b:

FIG. 1 (color online). Evolution of the background and per-
turbed quantities in the case in which the curvaton decays
symmetrically into baryons and antibaryons: ��b ¼ ���b ¼ 5�
10�4��. The total decay width is �� ¼ 1:6� 10�20 MeV, and

�ðiÞ
� ¼ 0:9 at a temperature T ¼ 94 MeV. The top panel shows

the evolution of �r (solid red line), �� (dotted green line), �b

(upper dashed dark blue line), and ��b (lower dashed light blue
line). The middle panel shows the evolution of �r (solid red line)
and �b (dashed blue line). The bottom panel shows the evolution

of the isocurvature transfer coefficient Sbr=S
ðiÞ
�r. The transfer of

isocurvature perturbation is maximal as the radiation but not the
baryon fluid inherits the curvaton perturbation.
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�ðfÞ
�b

’ �>d
�b
e��

>d
�b : (27)

Since �>d
�b

takes enormous values of order 109, the anni-

hilations regenerated by curvaton decay essentially erase
all trace of antibaryons and the corresponding plateau
cannot be observed in Fig. 1 because it is too small.

Let us now turn to the perturbations and assume that
curvaton decay is instantaneous. If the curvaton dominates
the energy density before decay, and transfers its energy to
radiation, then

� ðfÞr ’ � ðiÞ� : (28)

This relation can be obtained through standard methods
and corresponds to the conservation of the total curvature
perturbation throughout curvaton decay. Similarly, one can
build the variable associated with the perturbation of the
net baryon number, �b�b ���b��b, which for all practical
purposes, can be approximated by �b�b. The equation of
motion for this quantity reads

d

dN
ð�b�b ���b��bÞ ¼ 3

d�

dN
ð�b ���bÞ

þ�rð�b�b ���b��bÞ: (29)

Since� is conserved both before and after curvaton decay,
the first term on the right-hand side (rhs) can be neglected,
and �b�b ���b��b is approximately conserved when
�r 	 1. Approximating �b�b ���b��b with �b�b, this
implies that �b is approximately conserved, since �b is
constant in this case (see before) and, hence, that �b is also
conserved. At late times, after curvaton decay, �r � 1
implies that�b�b scales as a, hence that�b (and therefore
�b) is again approximately constant because �b / a. One
thus finds that

� ðfÞb ’ � ðiÞb : (30)

As mentioned above, this property can be traced back to
the fact that the net baryon number behaves in the present
case as an isolated fluid; hence its curvature perturbation is
a conserved quantity. Finally, one derives from Eqs. (28)
and (30) above the transfer of isocurvature perturbation:

SðfÞbr ’ �SðiÞ�r ð�<d
� ’ 1Þ: (31)

These results match the numerical evolution observed in
Fig. 1.

Obviously, the above discussion suggests that SðfÞbr ! 0

as �<d
� ! 0 since the net baryon number must remain

unaffected, while a decreasing curvaton energy density at
the time of decay implies that a lesser amount of radiation
is produced during the decay. In more detail, one should
obtain

SðfÞbr ’ ��<d
� SðiÞ�r; (32)

since

� ðfÞr ’ ð1��<d
� Þ� ðiÞr þ�<d

� � ðiÞ� : (33)

This trend is confirmed in Fig. 2 which provides an ex-

ample with �ðiÞ
� ¼ 0:01, corresponding to �<d

� ’ 0:09 at
decay (Td ’ 5:9 MeV). The final transfer coefficient is of

order ��<d
� as expected.

B. Asymmetric decay

If the inflaton can decay asymmetrically, ��b � ���b, the
phenomenology is different, as all b and �b produced by the
curvaton will not be able to annihilate with each other. In
particular, the production of the net baryon number during
curvaton decay comes with the transfer of the curvaton
perturbations to the baryon fluid. As already mentioned,
known models of baryogenesis produce a baryon number
at a much higher scale than 1–10 MeV. We nevertheless
discuss this asymmetric case for the sake of completeness
and because it provides useful insights into curvaton cos-
mology. Moreover, as we have argued in the previous
section, the present results can be extrapolated to a higher
decay temperature, possibly as high as the electroweak
scale.
In the present case, one may expect cosmological con-

sequences opposite to those found in the case of symmetric
decay: if the curvaton dominates the energy density of the
Universe shortly before decaying, and produces during its
decay most of the baryon number, both baryon and radia-
tion fluid will inherit its perturbations, hence there should
be no final baryon/radiation isocurvature mode. On the
contrary, if the curvaton energy density is small compared
to the radiation energy density shortly before decay, but the
curvaton still produces most of the baryon number, a
maximal isocurvature mode between baryon and radiation
should be produced.

FIG. 2 (color online). Same as Fig. 1 except that �ðiÞ
� ¼ 0:01,

which corresponds to �<d
� ¼ 0:09. Essentially no isocurvature

fluctuation is produced as neither the baryon nor the radiation
fluctuations have been affected by curvaton decay.
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These trends are confirmed by the numerical computa-
tions, as shown in Figs. 3 and 4. The first figure, Fig. 3,

corresponds to the same value of �ðiÞ
� as in Fig. 1, but with

an asymmetric decay width ð��b � ���bÞ=�� ¼ 2� 10�8.
In what follows, we will use the shorthand notation:

�Bb�b �
��b � ���b

��

: (34)

Assuming that the initial baryon asymmetry vanishes and
that curvaton decay is instantaneous, one can obtain an
order of magnitude of the decay asymmetry needed to
reach the observed value of 	b as follows:

�>d

b ��>d
�b

’ �Bb�b�
<d
� ; (35)

which implies

	b ’ 7:3� 10�2

�
��

10�20 MeV

�
1=2

�Bb�b�
<d
� : (36)

Numerical calculations differ from this simple estimate by
a factor of order unity.

In order to understand these results, it is instructive to
express the time evolution of the baryon asymmetry using
the system of Eqs. (2)–(4) and (6). The baryon asymmetry
can indeed be written as

	b � �4

60�ð3Þ
�
45

4�3

�
1=4

g3=4�
�
mPl

mb

�
1=2

�
H

mb

�
1=2 �b ���b

�3=4
r

’ 2:24� 1010
�
H

mb

�
1=2 �b ���b

�3=4
r

: (37)

Hence the time evolution of the baryon asymmetry is
governed by the following equation:

1

	b

d	b
dN

’ ��

�b ���b

��b � ���b

H
� 3

4

��

�r

��r

H
: (38)

In order to obtain the above equation, we have neglected
the baryon/antibaryon annihilation term in the equation for
�r [Eq. (4)], which is justified insofar as the amount of
radiation produced in baryon/antibaryon annihilations is
negligible at or after freeze-out.
The above equation is interesting because it shows how

the baryon number can be modified: either through baryon
number violating curvaton decay (first term on the rhs), or
through dilution due to entropy production (second term on
the rhs). It also provides an estimate of the conditions
under which the initial curvaton/radiation isocurvature
mode is efficiently transferred to the baryon/radiation
mixture. Such an efficient transfer can indeed be achieved
if j�	b=	bj 
 1 at curvaton decay, without significant
production of radiation by the curvaton. The latter condi-
tion amounts to negligible entropy production, or what is
equivalent, to assuming that the second term on the rhs of
Eq. (38) is negligible compared to unity. The former con-
dition then implies that the first term on the rhs of Eq. (38)
is larger than unity. All in all, efficient transfer of the
isocurvature mode occurs if

�Bb�b�
<d
� * �<d

b ��<d
�b
;

��r

��

�<d
� & �<d

r : (39)

It is interesting to remark that this situation is very similar
to that encountered for curvaton decay in a three-fluid

FIG. 3 (color online). Same as Fig. 1 except that curvaton
decay now violates the baryon number, with ��b � ���b ¼ 1:7�
10�8��. The final baryon number matches the observed value,
for an initial asymmetry 	b ¼ 10�13. Other quantities remain

unchanged, in particular, �ðiÞ
� ¼ 0:9 and �� ¼ 1:6�

10�20 MeV. Essentially no baryon/radiation isocurvature fluc-
tuation results, since the baryon and the radiation fluctuations
have been similarly affected by curvaton decay.

FIG. 4 (color online). Same as Fig. 3 for baryon violating

curvaton decay, except that �ðiÞ
� ¼ 0:01, which corresponds to

�<d
� ¼ 0:09. The baryon violating decay width is such that the

final baryon number produced matches the observed value; this
corresponds to �Bb�b ¼ 1:3� 10�7 for an initial asymmetry
	b ¼ 10�13. A large isocurvature fluctuation is produced as the
baryon (but not the radiation) fluctuations have been affected by
curvaton decay.
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model incorporating radiation and dark matter. Borrowing
from the method of Refs. [23,25], it is possible to express
the final baryon/radiation isocurvature fluctuation in terms
of the initial curvaton and radiation curvature modes, as
follows. One first constructs a composite fluid that has the
property of being isolated, with energy density:

�comp ¼ �b � ��b þ�Bb�b��: (40)

Notice that this construction is possible because each
component of the composite fluid is pressureless. Its cur-
vature perturbation, which is conserved by construction, is

�comp ¼ �b

�b ���b þ �Bb�b��

�b

� ��b

�b ���b þ�Bb�b��

��b

þ �Bb�b��

�b ���b þ�Bb�b��

��: (41)

Then, assuming that curvaton decay is instantaneous, one
can match the value of �comp after decay to that before

decay, which gives

�>d

b 
 �>d
comp ¼ �<d

comp: (42)

In order to obtain the first equality, we have used the fact

that �>d
�b

	 �>d

b as a result of the efficient annihilation of

b�b pairs after curvaton decay. Although the quantity �<d
comp

is evaluated here immediately before decay, it can be
evaluated at any initial time, since it is conserved.

The radiation perturbation is given by Eq. (33), hence
the final baryon/radiation isocurvature perturbation can be
written as

SðfÞbr ¼
�

�Bb�b�
ðiÞ
�

�ðiÞ
b ��ðiÞ

�b
þ �Bb�b�

ðiÞ
�

��<d
�

�
SðiÞ�r; (43)

where we used the fact that SðiÞbr ¼ SðiÞ�br ¼ 0. As expected,

the isocurvature transfer vanishes as �<d
� ! 0 (since this

also implies �ðiÞ
� ! 0). When �<d

� ! 1, one can see that
the first term in the bracket on the rhs of the above equation
also tends to 1, and therefore the transfer coefficient of the
isocurvature mode also vanishes. The initial isocurvature
fraction is transferred efficiently only if the conditions
expressed in Eq. (39) are fulfilled. Note also that in the
limit �Bb�b ! 0, one recovers the result of Sec. III A pre-
sented in Eq. (32).

Finally, a last point is to be made concerning the as-
sumption of instantaneous thermalization of the curvaton

decay products. If the center of mass energy
ffiffiffi
s

p �
ðEEthÞ1=2 for an interaction between a high energy particle
of energy E and a thermalized particle of energy Eth is well
above the QCD scale, then the ratio of rates of thermaliza-
tion processes to b�b producing ones is of the order of
ð�em=�sÞ2 	 1. It is even less if

ffiffiffi
s

p
is smaller than the

QCD scale. Therefore the above approximation is not
strictly speaking justified. However the neglect of these
additional interactions would not modify our conclusions,
for the following reason.
The only effect that could modify our conclusions is if

one fluid (either radiation or baryon) were ‘‘contaminated’’
by the other fluid (respectively, baryon or radiation)
through the interaction of high energy particles produced
through curvaton decay with thermalized particles. One
typical example is given by the transfer of energy from the
photon to the baryon fluid through 
þ 
th ! bþ �b,
where 
 stands for a high energy photon. However, the
net baryon number does not couple to radiation, hence
transfers of energy between these two fluids cannot take
place after curvaton decay (provided this latter occurs after
any baryogenesis event).
Hence all the conclusions remain unaffected by these

processes that occur between curvaton decay and thermal-
ization. It is important to stress, however, that ��r=��,
��b=��, and ���b=�� should not be interpreted strictly
speaking as the branching ratios of curvaton decay into
radiation, baryons, or antibaryons, but rather as the fraction
of curvaton energy eventually transferred into these fluids
after all thermalization processes have occurred.

IV. CONCLUSIONS

In this section, we recap our main results. We have
studied the production of isocurvature perturbations in
the curvaton scenario where the curvaton field can decay
into radiation, baryons, and antibaryons. Two different
cases have been considered. The first one is the symmetric
case in which the curvaton/baryon decay width equals the
curvaton/antibaryon one, i.e., curvaton decay preserves
baryon number. We have found that if the curvaton domi-
nates the energy density before decay, then a baryon/radia-
tion isocurvature mode can be produced. In the opposite
situation in which the curvaton contributes negligibly to
the total energy density immediately before decaying, the
isocurvature mode vanishes. This result is opposite to the
standard prediction of the simplest curvaton scenario in
which any preexisting isocurvature mode is erased by
curvaton decay if this latter dominates the energy density
at the time of decay. This difference can be traced back to
the conservation of the baryon number and to the annihi-
lation of all b�b pairs produced during curvaton decay.
One noteworthy consequence of the above is to forbid

the liberation of a significant amount of entropy by a late
decaying scalar field at temperatures below any baryon
violating processes, such as is often invoked for the dilu-
tion of unwanted relics.
Another consequence of the above is that a baryon-

radiation isocurvature mode Sbr cannot coexist with a
(weakly interacting massive particle) dark matter, radiation
isocurvature mode S�r, since the conditions to produce

these modes are opposite to one another. Since S�b ¼
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S�r � Sbr, the existence of a baryon-dark matter isocurva-

ture mode appears generic in this case (unless �<d
� is so

small at the time of decay that the curvaton exerts essen-
tially no influence on dark matter and baryon
perturbations).

The asymmetric decay presents a different phenomenol-
ogy. Since the curvaton decay does not produce the same
number of baryons and antibaryons, the annihilations can-
not suppress all the baryonic decay product and, as a
consequence, when the curvaton dominates at decay, the
isocurvature perturbations are erased. In this case, most or
all of the baryon and radiation fluctuations indeed originate
from the curvaton. If the curvaton contribution to the
energy density is smaller than unity at the time of decay,
then radiation cannot be affected substantially, while the
baryon fluid may be strongly affected; this situation results

in a large baryon/radiation isocurvature fluctuation. In
some sense, this case appears similar to the case of the
curvaton to dark matter decay studied in Ref. [25].
Contrary to the previous symmetric case, nonvanishing
Sbr and S�r can coexist. We note however, that baryo-

genesis at low scales (below the electroweak phase tran-
sition) is rather contrived.
On more general grounds, the study presented in this

article exemplifies how scenarios where scalar fields can
decay at late times can be constrained not only at the
background level, as it is usually done, but also by inves-
tigating the consequences at the perturbed level. It is clear
that, if this type of information is taken into account, one
can hope to improve our understanding of the feasibility of
such theories. We hope to return to this question in future
publications.
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