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We consider the examples of single-field inflation models predicting large amplitudes of the curvature

perturbation power spectrum at relatively small scales. It is shown that in models with an inflationary

potential of double-well type the peaks in the power spectrum, having, in maximum, the amplitude PR �
0:1, can exist (if parameters of the potential are chosen appropriately). It is shown also that the spectrum

amplitude of the same magnitude (at large k values) is predicted in the model with the running mass

potential, if the positive running, n0, exists and is about 0.005 at cosmological scales. Estimates of the

quantum diffusion effects during inflation in models with the running mass potential are given.
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I. INTRODUCTION

In the last few months several papers appeared [1–4] in
which single-field inflation models predicting (potentially)
large amplitudes of the curvature perturbations on rela-
tively small scales are discussed. It is shown in [1] that a
large class of such models exists, namely, the models with
a potential of hill-top type (the idea of the hill-top inflation
was proposed, to the author’s knowledge, in the earlier
work [5]). In such models, the potential can be of concave-
downward form at cosmological scales (in accordance with
data) and be much flatter at the end of inflation when small
scales leave the horizon. Correspondingly, the amplitude of
the perturbation power spectrum can be rather large. It is
noticed in [1] that the running mass model, having the
potential with the similar behavior, also can predict the
large spectrum amplitude.

The authors of [2] discuss also more general scenarios of
producing large amplitudes of perturbation spectrum. They
show the limitedness of the standard procedure of the
potential reconstruction which can easily miss the poten-
tials leading to a large spectrum amplitude and to notice-
able primordial black hole (PBH) production.

In the recent paper [3] it was shown that PBH production
is possible in single-field models of two-stage type
(‘‘chaoticþ new’’). The idea was proposed ten years ago
in [6]. The authors of [3] carried out the numerical calcu-
lation of the power spectrum using the Coleman-Weinberg
(CW) potential.

In the present paper we continue a study of the problems
discussed in the previous works [1–3]. We investigated
thoroughly, as a particular example, the model of two-stage
inflation with a potential of the double-well (DW) form,
and showed that the characteristic features of the power
spectrum in models of this type (such as an amplitude and a
position of the peak, a degree of tuning of parameters of the
potential) are very sensitive to an exact form of the poten-

tial. Further, we carried out the numerical calculation of the
power spectrum in a running mass model and showed that
the spectrum amplitude at small scales can be rather large.
Our calculation differs from the previous one [7] in several
aspects: we express the results through the values of pa-
rameters s, c, which are used nowadays and prove to be
very convenient for a comparison with data; we studied, in
detail, the difference in predictions of slow-roll and nu-
merical approaches at high k-values; we exactly specified
the value of the positive running, n0, which corresponds to
our spectrum prediction. In the final part of the work we
investigated the quantum diffusion effects in a model with
the running mass potential.
A plan of the paper is as follows. In the second section

we study predictions of two-stage inflation models with
DWand CW potentials, with accent on a mechanism of the
formation of peaks in the power spectrum. In Sec. III all
aspects connected with an obtaining of the predictions of
running mass inflation models are discussed. In Sec. IV we
present our main conclusions.

II. EXAMPLESOF THE POWER SPECTRUMWITH
PEAKS

A. Double-well potential

This form of the inflaton potential having an unstable
local maximum at the origin has been discussed many
times in studies of eternal and new inflation. The main
problem was to realize the initial condition for the new
inflation when the system starts from a top of the hill. Ten
years ago the model of ‘‘chaotic new inflation’’ has been
proposed [6], in which the system climbs on the top
during dynamical evolution of the inflaton field with initial
conditions coinciding with those of chaotic inflation mod-
els. In the approach of [6] the inflation has two stages,
chaotic and new, and during transition from the first stage
to the second the slow-roll conditions break down (in
general).
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The potential has two parameters:

Vð�Þ ¼ �

4
ð�2 � v2Þ2: (1)

The inflaton starts with the rather high value of � (we take
�in � 5mPl) and rolls down to the origin. The parameter �
is fixed by a normalization of the power spectrum on
experimental data, �� 10�13. The evolution of the system
strongly depends on the value of v: if v is finely tuned, �
can spend some time near the origin, i.e. on the top, and
then roll down to one of the two minima. In Figs. 1 and 2(a)
the time evolution for the inflaton and the parameter � for
the definite values of the parameters �, v are shown. One
can see that, really,� � 0 at some period of time and, what
is important, the slow-roll approximation is invalid (�� 1)
just at the time of the transition from a rolling to a tempo-
rary stay at the top of the potential.

It is well known that in situations when there is a failure
of the slow-roll evolution the perturbations on superhor-
izon scales can be amplified and specific features in the
power spectrum can arise [8–12] (see also the recent paper
[13]). In particular, in the earliest work where this problem
was studied [8], the inflation potential with a sudden
gradient discontinuity leading to the power spectrum of a
steplike form was considered. All this means that the
predictions of the slow-roll approximation which are based
on the assumption that perturbations reach an asymptotic
regime outside the horizon cannot be trusted.

The curvature perturbation on comoving hypersurfaces
Rk, as a function of the conformal time �, is a solution of
the differential equation (prime denotes the derivative over
�)

R 00
k þ 2

z0

z
R0

k þ k2Rk ¼ 0; (2)

z0

z
¼ aHð1þ �� �Þ; z � a _�

H
(3)

(� is the inflaton field). The standard initial condition for
this equation, corresponding to the Bunch-Davies [14]
vacuum, is

ukð�Þ ¼ 1ffiffiffiffiffi
2k

p e�ik�; aH � k; (4)

where u ¼ zR. The variable u had been introduced in [15–
17].
The functions � and� in Eq. (3) are the Hubble slow-roll

parameters defined by the expressions [18]

� ¼ � _H

H2
¼ 4�

m2
Pl

_�2

H2
; � ¼ �

€�

H _�
: (5)

Outside the slow-roll limit these functions are not neces-
sarily small.
It had been demonstrated in [11] that solutions of

Eq. (2), at k � aH, i.e., outside the horizon, are well
approximated by a constant if the coefficient of the friction
term, z0=z, does not change sign near the horizon crossing.
In the opposite case, if z0=z changes sign at some time, the
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FIG. 1 (color online). The solution of the background equation
for inflation with the double-well potential (1). The parameters
of the potential are: v ¼ 0:162 867 48mPl, � ¼ 1:7� 10�13.
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FIG. 2 (color online). The time dependence of the parameter �
and the combination 1þ �� � corresponding to the back-
ground field evolution shown in Fig. 1.
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friction term becomes a negative driving term, and one can
expect strong effects on modes which left the horizon near
that time. In the present paper we study the corresponding
features of the power spectrum, following closely the
analysis of [11].

According to Eq. (3), z0=z is proportional to 1þ �� �
and the comoving Hubble wave number aH. The time
dependences of these functions are shown in Fig. 2(b).
One can see that the interruption of inflation correlates
with the change of the sign of 1þ �� �.

The time evolution of curvature perturbations for several
modes is shown in Fig. 3. It is clearly seen that the
perturbationsRk for different modes freeze out at different
amplitudes. The mode which crosses the horizon near the
moment of time when the sign of 1þ �� � changes (i.e.,
near t � 7:5mPl) freezes at maximum amplitude, due to
the exponentially growing driving term in Eq. (2) (which is
most effective just for this mode). It leads to the character-
istic peak in the power spectrum PRðkÞ,

P RðkÞ ¼ 4�k3

ð2�Þ3 jRkj2; (6)

shown in Fig. 4.
The calculations of Rk (Fig. 3) are carried out up to the

end of inflation, and the power spectrum in Fig. 4 also
corresponds to this moment of time. We estimate approxi-

mately the reheat temperature in our case as �ð�v4Þ1=4 �
1014 GeV. The horizon mass at the beginning of the radia-
tion era is

Mhi � 1017 g

�
107 GeV

TRH

�
2 � 103 g; (7)

and the maximum wave number, which equals the Hubble
radius at the end of inflation, is

kend ¼ aeqHeq

�
Meq

Mhi

�
1=2 � 1023 Mpc�1: (8)

In Fig. 5 we show the power spectrum calculated for two
stages of its evolution: at the horizon exit (HE) and at the
end of inflation (END). In the same figure the result of the
calculation with a use of the slow-roll formulae is also
shown. The peak of the HE curve at the region of large k is
due to a failure (forRk) to reach the asymptotic limit. One
can see also that the slow-roll approximation is too crude to
describe perturbations at the end of inflation (thus our
conclusion agrees with general statements of [11]).

B. Coleman-Weinberg potential

The Coleman-Weinberg potential has the form [19]:

Vð�Þ ¼ �

4
�4

�
ln

���������v
��������� 1

4

�
þ �

16
v4: (9)
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FIG. 3 (color online). A time evolution of the curvature per-
turbation RkðtÞ for several different values of wave number k
during inflation with the DW potential. The parameters of the
potential are the same as in Fig. 1.
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FIG. 4 (color online). The numerically calculated power spec-
trum PRðkÞ for the model with the potential (1). Parameters of
the potential used in the calculation are the same as in Fig. 1.
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FIG. 5 (color online). The power spectrum PRðkÞ for the
model with potential (1). END: PRðkÞ is calculated at the end
of inflation; HE: PRðkÞ is calculated at the time of the horizon
exit; SR: the slow-roll result.
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It looks very similar to the previous one, but the important
difference is its behavior near the origin. Namely, the CW
potential behaves as Aþ B�4 lnð�=vÞ near the origin, i.e.,
it is more flat near zero, in comparison with the DW
potential. Therefore, it has more e-folds of ‘‘new inflation’’
[6] and, as a consequence, the peaks of the power spectrum
(arising, as in the previous case, due to the temporary
interruption of inflation) correspond to relatively smaller
k values. Besides, at the beginning of new inflation when
the very flat region of the potential near zero is crossed by
�, quantum fluctuations with a particle creation can be
large (e.g., see below, Sec. III C) and must be taken into
account.

In Fig. 6 two examples of the power spectrum calcula-
tions are shown for two different sets of parameter values.
As before, the peaks are very distinct, although their am-
plitudes are smaller.

C. Possibilities of PBH production

One can see, in particular, from Fig. 4, that, in principle,
the production of primordial black holes (about these
objects, see the original works [20,21] and reviews
[22,23]) can be rather large in single-field inflation models
with potentials of double-well type. The main conclusion is
that it requires a rather large fine-tuning of parameters of
the potential. The characteristic PBH mass is estimated by

MBH � Mh ¼ Mhi

�
kend
kpeak

�
2
; (10)

and in the case of the spectrum of Fig. 4, MBH � 107 g. In
the CW case, Fig. 6, MBH � 100M� for the left peak and
MBH � 1027 g for the right peak (but the amplitudes of the
spectra are too small).

Recently, it has been shown [3] that inflation with the
CW potential is capable to produce a significant number of
PBHs: the parameter v can be chosen (by finest tuning) in

such a way that the inflaton field makes several oscillations
from one minimum to another before it climbs on the top
and ‘‘new inflation’’ starts.
In the present paper we do not consider possibilities of a

constraining of the peak amplitudes, based, for example,
on the effects of PBH evaporation in the early universe
(see, e.g., [24]).

III. RUNNING MASS MODEL

A. Main assumptions and approximations

We consider in more detail a case of the running mass
inflation model [25–31] which predicts a spectral index
with rather strong scale dependence. The potential in this
case takes into account quantum corrections in the context
of softly broken global supersymmetry and is given by the
formula

V ¼ V0 þ 1
2m

2ðln�Þ�2: (11)

The dependence of the inflaton mass on the renormaliza-
tion scale � is determined by the solution of the renormal-
ization group equation (RGE).
(1) The inflationary potential in supergravity theory is

of the order of M4
inf , where Minf is the scale of

supersymmetry breaking during inflation. In turn,
the mass-squared of the inflaton (and any other
scalar field) in supergravity has, in general, the order
of the square of the Hubble expansion rate during
inflation,

jm2j �H2
I ¼

V0

3M2
P

: (12)

We suppose, for simplicity (see [25,26,28,29]), that
Minf �Ms, whereMs is the scale of supersymmetry
breaking in the vacuum,

Ms �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~msMP

p � 1011 GeV� 3� 10�8MP (13)

( ~ms is the scale of squarks and slepton masses, ~ms �
3 TeV). These assumptions give the scale of the
inflationary potential:

V0 �M4
s � 10�30M4

P; HI � 10�15MP: (14)

(2) RGE for the inflaton mass is the following (we
consider a model [28,29] of hybrid inflation using
the softly broken SUSY with gauge group SUðNÞ
and small Yukawa coupling):

m2ðtÞ ¼ m2
0 � A ~m2

0

�
1� 1

ð1þ ~�0tÞ2
�
;

t � ln
�

MP

;

(15)

m2
0 and ~m2

0 are, correspondingly, the inflaton and

gaugino masses at � ¼ MP,
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FIG. 6 (color online). The result for the power spectrum
PRðkÞ calculation for the CW potential (9), for two sets of
parameters. The left peak is for v ¼ 1:113MP, � ¼ 5:5� 10�13.
For the right peak, v ¼ 1:112MP, � ¼ 2:4� 10�13.
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~� 0 ¼ B�0

2�
; (16)

�0 is the gauge coupling constant, �0 ¼ g2=4�. A
and B are positive numbers of order 1, which are
different for different variants of the model, even if
they are based on the same supersymmetric gauge
group SUðNÞ (it depends on a form of the super-
potential, particle content of supermultiplets, etc).
We use in the present paper the variant of [29] and,
correspondingly, put everywhere below A ¼ 2 and
B ¼ N ¼ 2.

(3) A truncated Taylor expansion of the potential
around the particular scale �0 (in our case, �0 is
the inflaton value at the epoch of the horizon exit for
the pivot scale k0 � 0:002h Mpc�1) is

Vð�Þ ¼ V0 þ�2

2

�
m2ðlnð�0ÞÞ � c

V0

M2
P

ln
�

�0

þ . . .

�
: (17)

Here, constant c is defined by the equation

c
V0

M2
P

¼ � dm2

d ln�

���������¼�0

: (18)

In turn, a Taylor expansion of Eq. (15) up to linear

terms gives (t0 ¼ ln�0

MP
):

m2ðtÞ ¼ m2ðt0Þ � 4 ~m2
0

~�0

ð1þ ~�0t0Þ3
ln
�

�0

: (19)

From Eqs. (18) and (19) we obtain the expression
for the constant c,

c
V0

M2
P

¼ 4 ~m2
0

~�0

ð1þ ~�0t0Þ3
: (20)

If jm2
0j � ~m2

0 � H2
I , then

c ¼ 4

3

~�0

ð1þ ~�0t0Þ3
: (21)

It appears [see Fig. 7(b)] that in our example �0 �
10�10MP, so, t0 � ln10�10 � ð�23Þ. Assuming that
�0 � 1=24 (as in SUSY-grand unified theory (GUT)
models), one has ~�0 � 2

2�
1
24 . In such a case, c�

4~�0 � 0:06.

If we would keep terms of higher order in t� t0 ¼
ln�

�0
in the Taylor expansion of m2ðtÞ in Eq. (19) we

would see that the real expansion parameter is

~�0 ln
�
�0

rather than ln�
�0

. The smallest value of �,

�end, in our case is�10�16MP [see Fig. 7(b)]. Even
for such a value of �end, the expansion parameter is

rather small,

~� 0 ln
�end

�0

� ~�0 ln10
�6 � ð�0:1Þ: (22)

Having this in mind, we will use the linear approxi-
mation for the inflaton mass [Eq. (19)] in the entire
region of inflaton field values exploited in the
present paper.
Following the previous papers, we introduce also
another parameter,
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FIG. 7 (color online). (a) Evolution of the inflaton field �ðlnaÞ
in the running mass model. (b) The dependence of the parameter
� on a value of the field �. For both plots, HI ¼ 10�15MP, c ¼
0:062, s ¼ 0:040.

LARGE CURVATURE PERTURBATIONS NEAR HORIZON . . . PHYSICAL REVIEW D 78, 063515 (2008)

063515-5



s ¼ c ln

�
��
�0

�
; (23)

where �� is the inflaton value corresponding to a
maximum of the potential. This parameter connects
the field value �0 with the Hubble parameter during
inflation and with the normalization of the cosmic
microwave background (CMB) power spectrum:

�0s ¼ HI

2�P 1=2
R ðk0Þ

: (24)

(4) The minimum value of the inflaton field which
corresponds to the end of inflation can be deter-
mined from the approximate equation [29]

� ¼ M2
P

V 00

V
ffi M2

P

V0

m2 ¼ 1: (25)

Using RGE, one obtains from this formula the rela-
tion

M2
P

V0

�
m2

0 � A ~m2
0 þ

A ~m2
0

ð1þ ~�0tÞ2
�
¼ 1: (26)

Substituting here A ¼ 2, ~m2
0 ¼ jm2

0j ¼ V0=3M
2
P,

one has finally the approximate expression for �end,

�end ¼ MP exp

�
� 1

~�0

�
1� 1ffiffiffi

3
p

��
; (27)

which shows that the minimum field value is very
sensitive to the value of the model parameter ~�0 and,
in our case, does not depend on V0. More exactly,
the condition � ¼ 1 means the end of the slow-roll
part of inflation. We suppose, as usual (see, e.g.
[25,26]) that in reality inflation ends by a hybrid
mechanism, and the critical value of the inflaton
field, �cr, is determined by the value of the
Yukawa coupling � (in spite of the inequality �2 �
�). One can check [29] that the value of � can
always be chosen such that �cr <�end and slow-
roll ends before the reaching of �cr.
One should note that the accuracy of the approxi-
mate formula (27) is not very good. Luckily, in the
approach based on the numerical calculation of the
power spectrum there is no need to use it, because
the value of �end appears in a course of the calcu-
lation [Fig. 7(b)].

B. Power spectrum of curvature perturbations

An analysis of CMB anisotropy data [32,33], including
other types of observation [34], leads to the following main
qualitative conclusions:

(i) the power spectrum of scalar curvature perturbations
is red, i.e., the spectral index is negative,

n0 ¼ 0:97
 0:01; (28)

(ii) observations are consistent, or, at least, are not in
contradiction with the small positive running of the
spectral index, n00 < 0:01;

(iii) the contribution of tensor perturbations in the value
of the spectral index is small ( & 10�2) and, as a
result, n � 1þ 2�; it means that � is negative, and
the potential must be concave-downward (i.e., of
hill-top type), while cosmological scales cross the
horizon during inflation [1].

One should note that, strictly speaking, the conclusion
(iii) is not grounded firmly enough. According to the recent
analysis [35], the present data still admit any sign of � and
V00.
These conclusions constrain the possible values of the

parameters s and c. Approximately, for the cosmological
scale, one has

n0 � 1 � 2ðs� cÞ; n00 � 2sc: (29)

From the conclusion (iii) it follows that c > 0 (it is con-
sistent with Eq. (24)), from the positivity of n00 (the con-

clusion (ii)) it follows that s > 0. At last, the conclusion
(i) leads to the inequality s < c.
We choose for the power spectrum calculation the fol-

lowing values:

c ¼ 0:062; s ¼ 0:040: (30)

These numbers correspond, at cosmological scales, to the
following values of slow-roll parameters:

� � s�2
0

M2
P

� 10�21; � � s� c� ð�0:02Þ; (31)

that seems to be consistent with the present data [4].
To check the validity of the slow-roll approximation, we

calculate the spectrum by the three ways: (i) using the
approximate analytic slow-roll formula

PRðkÞ
PRðk0Þ

¼ exp

�
2s

c
ðec�NðkÞ � 1Þ � 2c�NðkÞ

�
(32)

(�NðkÞ � lnðk=k0Þ; this expression is easily derived from
the simplest slow-roll prediction

P RðkÞ ¼ H2

��m2
Pl

��������aH¼k
; (33)

which gives the power spectrum to leading order in the
slow-roll approximation [36]); (ii) using the Stewart-Lyth
approximation [37], which is valid to first order in the
slow-roll approximation,

P 1=2
R ðkÞ ¼ ½1� ð2Cþ 1Þ�þ C�� 1

2�

H2

j _�j
��������aH¼k

;

C � �0:73;

(34)
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(iii) by numerical integration of the differential equation
for Rk, Eq. (2).

The results of the calculations are presented in Figs. 7–9.
Figure 7 shows the evolution of the inflaton field�with the
scale factor and a growth of the slow-roll parameter � with
a decrease of � from �0 to �end. The power spectrum is
shown in Fig. 8 for a broad interval of comoving wave
numbers. It is clearly seen that near the end of inflation,
when

�� 10�16MP;

k� kend ¼ aendHend ¼ 3� 1016 Mpc�1;
(35)

the slow-roll formulae are inaccurate: they strongly under-
estimate values of PR. To illustrate this point more clearly,

at the next figure we show the comparison of two curves:
aH-dependence of the spectrum calculated numerically for
a definite value of k, k ¼ 1015:8 Mpc�1, and
aH-dependence of the Stewart-Lyth spectrum. It is seen
that the numerical spectrum at the moment of crossing
horizon (when aH ¼ k) is already almost asymptotical
and its value distinctly exceeds the corresponding value
predicted by the Stewart-Lyth formula.

C. Quantum diffusion effects

We calculated the curvature perturbations in terms of the
classical trajectories of a scalar field associating, in par-
ticular, points in a field space with definite numbers of e-
folds from the end of inflation. This description becomes
incorrect if the quantum diffusion destroys the classical
evolution of the field. In this case we should use the
methods of stochastic inflation. The latter approach oper-
ates with the coarse-grained field, which is defined to be
the spatial average of the field � over a physical volume
with size larger than the Hubble radius H�1.
In the slow-roll approximation, the evolution of the

coarse-grained field ’ is governed by the first order
Langevin-like equation [38–41]

_’þ 1

3H
V 0ð’Þ ¼ H3=2

2�
�ðtÞ; (36)

h�ðtÞi ¼ 0; h�ðtÞ�ðt0Þi ¼ 	ðt� t0Þ: (37)

Here, �ðtÞ is a random noise field and angular brackets
mean ensemble average. The term 1

3H V0ð’Þ describes the
deterministic evolution of the field ’, in the absence of the

noise term H3=2

2� �ðtÞ. The solution of Eq. (36), in the absence
of the noise term, is the deterministic slow-roll trajectory

’srðtÞ. Going to finite time differences, the coefficient H3=2

2�

can be rewritten as
ffiffiffiffiffiffiffiffiffiffi
H3

4�2�t

q
, and the evolution of ’ on time

scales �t � H�1 can be described by a finite-difference
form of Eq. (36),

’ðtþ�tÞ � ’ðtÞ ¼ � 1

3H
V 0ð’Þ�tþ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffi
H3�t

p
�ðtÞ:

(38)

The condition for the deterministic evolution is (see, e.g.,
[42])

1

3H
jV0ð’Þj�t  1

2�

ffiffiffiffiffiffiffiffiffiffiffiffi
H3�t

p
; �t ¼ H�1: (39)

Using the slow-roll connection between V and H, one
obtains

jV0ð’Þj  3

2�
H3 ¼ 1

2�
ffiffiffi
3

p V3=2ð’Þ: (40)

In the approach of [43] the coarse-grained field is con-
sidered as a perturbation of the classical solution ’cl

(which is the solution of the Langevin equation without
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2

0

lg k Mpc 1

lg
P

R

FIG. 8 (color online). Power spectrum PRðkÞ in the running
mass model, calculated numerically (solid line), by the approxi-
mate analytic formula (32) (long-dashed line) and using the
Stewart-Lyth extended slow-roll approximation (short-dashed
line). The parameters of the potential are the same as used in
Fig. 7. The arrow shows the value of kend.
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FIG. 9 (color online). Dependence of PRðk; aÞ calculated
numerically and PR from the Stewart-Lyth formula. The co-
moving wave number for this figure is k ¼ 1015:8 Mpc�1.
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the noise),

’ðtÞ ¼ ’clðtÞ þ 	’1ðtÞ þ 	’2ðtÞ þ . . . (41)

Here, the term 	’iðtÞ depends on the noise at the power i. It
is assumed that the Hubble parameter in the Langevin
equation depends only on the coarse-grained field ’,

H2ð’Þ ¼ 1

3M2
P

Vð’Þ: (42)

Correspondingly, the Hubble parameter can be expanded
perturbatively,

Hð’Þ ¼ Hcl þH0
clð	’1 þ 	’2Þ þH00

cl

2
	’2

1 þ . . . ; (43)

Hcl ¼ Hð’clÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð’clÞ
3M2

P

s
: (44)

This approach permits to calculate the mean value of the
total number of e-folds, hNi, and to compare it with the
corresponding ‘‘classical’’ number,

Ncl
T ¼ � 1

2M2
P

Z ’end

’in

d’cl

Hcl

H0
cl

¼ 1

M2
P

Z ’in

’end

d’cl

�
V

V 0

�
;

(45)

	NT ¼ hNTi � Ncl
T

¼ � 1

2M2
P

Z ’end

’in

�
h	’2i þ H00

cl

2H0
cl

h	’2
1i
�
d’cl: (46)

Besides, one can calculate the mean value of the Gaussian
probability distribution function for the coarse-grained
field and to see how it behaves as a function of the current
field value.

The interval of inflaton field values for which the in-
equality (40) holds and, therefore, the deterministic evolu-
tion dominates, is shown in Fig. 10(a) and 10(b). The
variable x in Fig. 10(b) is defined by the relation

’in

’�
¼ 1� 10�x (47)

(’� is, as before, the point of a maximum of the potential
Vð’Þ). It is seen from the figure that the constraints on the
inflaton field following from the condition (40) are not too
severe,

3� 10�19MP & ’ & ’� � 10�7’�: (48)

An accuracy of the perturbative expansion (41) for the
monomial potential of stochastic inflation models was
studied in [44]. Here we study this accuracy for the running
mass potential, using the parameters V0, s, c, ’end intro-
duced above. The results of the calculation of h	’2

1i andh	’2i are shown in Fig. 11. As one can see, the perturba-
tive expansion is good if the starting value of the inflaton
field, ’in, is chosen to be not too close to the value of ’ at

the maximum of the potential. More exactly, the parameter
x, defined in Eq. (47), must be smaller than 4� 4:5. The
starting value ’in corresponds to a beginning of the evo-
lution, i.e., 	’1ðtinÞ ¼ 	’2ðtinÞ ¼ 0.

V 3 2
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φ end
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2π 3
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φ in

b
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52
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46

44
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3

2

FIG. 10 (color online). (a) Comparison of V0 and V3=2 for the
running mass model [see Eq. (40)]. (b) The same figure in a
different scale: variable x is connected to the field value by the
relation ’ ¼ ð1� 10�xÞ’�.
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FIG. 11 (color online). The result for the calculation of 	’=’
for different values of ’in ¼ ’�ð1� 10�xÞ. From bottom to top,

x equals 3, 4, 5. Here, 	’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h	’2

1i
q

þ h	’2i.
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If the evolution is deterministic, the correction to a
classical e-fold number Ncl

T , given by Eq. (46), is small.
To estimate analytically the upper limit for this correction,
we used the analytic expressions for h	’2

1i and h	’2i
derived in [43], keeping in them leading terms only.
According to these expressions, the following inequalities
hold:

h	’2i<
�
V0

MP

�
4
�
MP

’in

�
2 1

ln2 ’in

’�

’

MP

& 10�10þ2x’; (49)

h	’2
1i<

�
V0

MP

�
4 1

ln2 ’in

’�

� 10�30þ2xM2
P: (50)

Using these upper limits, one can estimate the correspond-
ing upper limits of two integrals in the expression for 	NT

(46). The result is the following:

1

M2
P

Z ’in

’end

h	’2id’cl < 10�30þ2x; (51)

1

M2
P

Z ’in

’end

h	’2
1iH00

cl

H0
cl

d’cl < 10�30þ3x: (52)

It is clear from the inequalities (52) that the quantum
correction to e-fold number, 	NT , is quantitatively small
even if the value of x is as large as 10. But only if x < 4�
4:5, and the perturbative expansion, Eq. (41), is valid, one
really can be sure that

	NT � Ncl
T ; (53)

and the evolution is deterministic.
However, this analysis is still not complete: one must

check also the position of the mean value of the probability
distribution function for the coarse-grained field [43]. The
calculation, with taking into account the volume effects,
leads to the results shown in Fig. 12(a) and 12(b). It is seen
from the figure that in this case also, as in the calculation of
the e-fold number correction, the correct choice of the
initial condition plays a decisive role: there are no effects
of a ‘‘walk’’ of the mean value around the maximum of the
potential (such effects were noticed in [43]) if evolution
starts from the point which is far enough from the maxi-
mum (x & 4:5). Of course, the realization of the initial
condition of this kind is, in itself, a problem. Supposedly, it
could be provided by the previous history of eternal in-
flation [25,26].

IV. CONCLUSIONS

(1) It is shown, by numerical methods, that in the
single-field inflationary model with a simple
double-well potential the parameter values of this
potential can be chosen in such a way that the power
spectrum of curvature perturbations PRðkÞ has a
huge peak (with amplitude �0:1) at large k (and
the right normalization and monotonic behavior at
cosmological scales). The peak arises due to tem-
porary interruption of the slow-roll near points of
the minimum of the potential, 
v. The correspond-
ing mass of PBHs produced in the early universe in a
case of the realization of such a power spectrum is
about 107 g.
The analogous behavior of the power spectrum was
obtained by the authors of [3] in a model with CW
potential. There are some important differences in
the results of [3] and ours, in the peak amplitude and
PBH mass, connected, in particular, with a large
flatness near the origin in a case of the CW potential.

(2) It is shown that the inflation model with running
mass potential predicts a rather large amplitude of
the power spectrum of curvature perturbations
(� 0:1) at k values �1016 Mpc�1. For such a pre-
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FIG. 12 (color online). Calculation of stochastic effects for
various values of initial field ’in. (a) Thin dashed curve: ’in ¼
ð1� 1:5� 10�5Þ’�, no volume effects included; thick dashed
curve: ’in ¼ ð1� 1:5� 10�5Þ’�, volume effects included;
solid thick curve: ’in ¼ ð1� 3� 10�5Þ’�, volume effects in-
cluded. (b) Thick long-dashed and thick short-dashed curves
correspond to the cases with and without the inclusion of volume
effects, respectively, for ’in ¼ ð1� 3� 10�5Þ’�.
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diction, a very small positive spectral index running
at cosmological scales is necessary, n0 � 0:005, as
well as a small negative value for the slow-roll
parameter � ( � �0:02). Both these numbers do
not contradict with the data. It is shown also that
for obtaining the correct quantitative results for the
power spectrum at largest k values a use of numeri-
cal methods is required because, in general, slow-
roll formulas are not accurate enough at the end of
inflation, where � � 1.

(3) Quantum diffusion effects in a model with the run-
ning mass potential are studied in detail. It is shown
that inflationary evolution of the universe in a model
with a scalar field and the running mass potential
can be described by the classic deterministic equa-

tions, and for a possibility of such a description the
correct choice of the initial conditions is crucial.
Concretely, an initial value of the inflaton field (at
the beginning of the evolution) should not be too
close to a point of the maximum of the potential. If
this condition is satisfied, the quantum corrections to
a total e-fold number and to a position of the mean
value of the probability distribution function are
small.
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