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Extending the approach developed by Araújo and Stoeger [M. E. Araújo and W.R. Stoeger, Phys. Rev.

D 60, 104020 (1999)] and improved in Araújo et al. [M. E. Araújo, S. R.M.M. Roveda, and W.R. Stoeger,

Astrophys. J. 560, 7 (2001)], we have shown how to construct dust-filled � � 0 Friedmann-Lemaı̂tre-

Robertson-Walker (FLRW) cosmological models from FLRW cosmological data on our past light cone.

Apart from being of interest in its own right—demonstrating how such data fully determines the models—

it is also illustrated in the flat case how the more general spherically symmetric Einstein field equations

can be integrated in observational coordinates with data fit to FLRW forms arrayed on our past light cone,

thus showing how such data determines an FLRW universe—which is not a priori obvious. It is also

shown how to integrate these exact sypherically symmetric equations, in cases where the data are not

FLRW, and the space-time is not known to be flat. It is essential for both flat and nonflat cases to have data

giving the maximum of the observer area (angular-diameter) distance, and the redshift zmax at which that

occurs. This enables the determination of the vacuum-energy density ��, which would otherwise remain

undetermined.
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I. INTRODUCTION

The recent WMAP results (see Spergel et al. [1] and
references therein) strongly support the inflationary sce-
nario and are consistent with a nearly flat Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) universe with a cos-
mological constant � and dust (� � 1, with �m � 0:27
and �� � 0:73), and with an almost scale-invariant spec-
trum for the primordial perturbations. It is obviously very
important to test and confirm this result. One observatio-
nally sensitive theoretical approach to doing so begins by
establishing a more general framework than FLRW—say a
general perturbed spherically symmetric space-time—and
then using the data itself to determine the more specific
model. Can we obtain perturbed FLRW by doing this?

In two papers Araújo and Stoeger [2] and Araújo,
Roveda and Stoeger [3] demonstrated in detail how to
solve exactly the spherically symmetric (SS) Einstein field
equations for dust in observational coordinates without
assuming FLRW and with cosmological data representing
galaxy redshifts, observer area distances and galaxy-
number counts as functions of redshift. These data are
given, not on a spacelike surface of constant time, but
rather on our past light cone C�ðp0Þ, which is centered at
our observational position p0 ‘‘here and now’’ on our
world line C. These results demonstrate how cosmologi-
cally relevant astronomical data can be used to determine
the space-time structure of the Universe—the cosmologi-
cal model which best fits it. This has been the aim of a
series of papers going back to the Physics Reports paper by

Ellis et al. [4]. The motivation and history of this ‘‘obser-
vational cosmology (OC) program’’ is summarized in
Araújo and Stoeger [2]. All these papers assumed
that� ¼ 0. In this paper we demonstrate how this program
may be carried out when � � 0. As a simple, and very
relevant example, we take a flat SS universe, and suppose
that the redshift, observer area-distance and number-count
data can be fit to FLRW functional forms (these are
very special forms the data must take, if the Universe is
FLRW). Then we show how such data determines a
bona fide FLRW universe—which is not a priori obvious.
We then go on to indicate how the solution can be obtained
in the more general nonflat case, with no constrains on
the functional form of the data functions. In doing this
for � � 0, we also need another necessary piece of data,
the maximum of the observer area distance, and the
redshift at which it occurs. Without these extra observ-
ables, we do not have enough independent data to deter-
mine the model—in particular to determine the extra
parameter �.
The primary aim of the OC program is to strengthen the

connections between astronomical observations and cos-
mological theory. We do this by allowing observational
data to determine the geometry of space-time as much as
possible, without relying on a priori assumptions more
than is necessary or justified. Basically, we want to find
out not only how far our observable Universe is from being
isotropic and spatially homogeneous (that, is describable
by an FLRW cosmological model) on various length
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scales, but also to give a dynamic account of those devia-
tions (Stoeger et al. [5]).

By using observational coordinates, we can thus formu-
late Einstein’s equations in a way which reflects both the
geodesic flow of the cosmological fluid and the null ge-
ometry of C�ðp0Þ, along which practically all of our
information about the distant reaches of our Universe
comes to us—in photons. In this formulation the field
equations split naturally into two sets, as can be easily
seen: a set of equations which can be solved on C�ðp0Þ,
that is on our past light cone, specified by w ¼ w0, where
w is the observational time coordinate; and a second set
which evolves these solutions off C�ðp0Þ to other light
cones into the past or into the future. The solution to the
first set is directly determined from the data, and those
solutions constitute the ‘‘initial conditions’’ for the solu-
tion of the second set.

There are many reasons for investigating FRLW in ob-
servational coordinates from this more general starting
point. It is clear from the cosmic background radiation
(CBR) anisotropies measured by the Cosmic Backgroung
Explorer (COBE) and by WMAP that the Universe is not
exactly described by the FLRW models (this follows from
the analysis by Sachs and Wolfe [6], and see Stoeger,
Araújo and Gebbie [7] for an analysis related to the view-
point of this paper). But on the largest scales its deviations
from FLRWare small. So on those scales the Universe can
be described by an almost FLRW model. Therefore, our
first step towards a strictly observationally based approach
to this realistic model involves a complete understanding
of the inner workings of the integration procedure in ob-
servational coordinates for FLRW data.

In this paper, for completeness, we review some aspects
of the problem of determining the solution of the exact
spherically symmetric Einstein equations for dust in ob-
servational coordinates and then integrate the field equa-
tions with FLRW data to obtain the FLRW (k ¼ 0 and
� � 0) solution explicitly. We refer the reader to Ellis
et al. [4], Kristian and Sachs [8], Araújo and Stoeger [2]
and references therein for a complete account of the phi-
losophy and the foundations of the OC approach leading to
the integration of Einstein field equations in observational
coordinates.

In the next section we define observational coordinates,
write the general spherically symmetric metric using them
and present the very important central conditions for the
metric variables. Section III summarizes the basic obser-
vational parameters we shall be using and presents several
key relationships among the metric variables. Section IV
presents the full set of field equations for the spherically
symmetric case, with dust and with � � 0. Section V
shows the integration procedure for the flat case, with
FLRW data. In Section VI, we present the integration for
the general, nonflat case, and in Sec. VII we briefly discuss
our conclusions.

II. THE SPHERICALLY SYMMETRIC METRIC IN
OBSERVATIONAL COORDINATES

We are using observational coordinates (which were first
suggested by Temple [9]). As described by Ellis et al. [4]
the observational coordinates xi ¼ fw; y; �;�g are cen-
tered on the observer’s world line C and defined in the
following way:
(i) w is constant on each past light cone along C, with

ua@aw > 0 along C, where ua is the 4-velocity of
matter (uaua ¼ �1). In other words, each w ¼
constant specifies a past light cone along C. Our
past light cone is designated as w ¼ w0.

(ii) y is the null radial coordinate. It measures distance
down the null geodesics—with affine parameter �—
generating each past light cone centered on C. y ¼ 0
on C and dy=d� > 0 on each null cone—so that y
increases as one moves down a past light cone away
from C.

(iii) � and� are the latitude and longitude of observation,
respectively—spherical coordinates based on a par-
allelly propagated orthonormal tetrad along C, and
defined away fromC by ka@a� ¼ ka@a� ¼ 0, where
ka is the past-directed wave vector of photons
(kaka ¼ 0).

There are certain freedoms in the specification of these
observational coordinates. In w there is the remaining
freedom to specify w along our world line C. Once speci-
fied there it is fixed for all other world lines. There is
considerable freedom in the choice of y—there are a large
variety of possible choices for this coordinate—the affine
parameter, z, the area-distance Cðw; yÞ itself. We normally
choose y to be comoving with the fluid, that is ua@ay ¼ 0.
Once we have made this choice, there is still a little bit of
freedom left in y, which we shall use below. The remaining
freedom in the � and� coordinates is a rigid rotation at one
point on C.
In observational coordinates the spherically symmetric

metric takes the general form:

ds2 ¼ �Aðw; yÞ2dw2 þ 2Aðw; yÞBðw; yÞdwdy
þ Cðw; yÞ2d�2; (1)

where we assume that y is comoving with the fluid, so that
the fluid 4-velocity is ua ¼ A�1�a

w.
The remaining coordinate freedom which preserves the

observational form of the metric is a scaling of w and of y:

w ! ~w ¼ ~wðwÞ; y ! ~y ¼ ~yðyÞ
�
d ~w

dw
� 0 �

d~y

dy

�
:

(2)

The first, as we mentioned above, corresponds to a
freedom to choose w as any time parameter we wish along
C, along our world line at y ¼ 0. This is usually effected by
choosing Aðw; 0Þ. The second corresponds to the freedom
to choose y as any null distance parameter on an initial
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light cone—typically our light cone at w ¼ w0. Then that
choice is effectively dragged onto other light cones by the
fluid flow—y is comoving with the fluid 4-velocity, as we
have already indicated. We shall use this freedom to choose
y by setting

Aðw0; yÞ ¼ Bðw0; yÞ: (3)

We should carefully note here that setting Aðw; yÞ ¼
Bðw; yÞ off our past light cone w ¼ w0 is too restrictive.

In general, these freedoms in w and y imply the metric
scalings:

A ! ~A ¼ dw

d ~w
A; B ! ~B ¼ dy

d~y
B: (4)

It is important to specify the central conditions for the
metric variables Aðw; yÞ, Bðw; yÞ and Cðw; yÞ in Eq. (1)—
that is, their proper behavior as they approach y ¼ 0. These
are

as y ! 0: Aðw; yÞ ! Aðw; 0Þ � 0;

Bðw; yÞ ! Bðw; 0Þ � 0;

Cðw; yÞ ! Bðw; 0Þy ¼ 0;

Cyðw; yÞ ! Bðw; 0Þ: (5)

III. THE BASIC OBSERVATIONAL QUANTITIES

The basic observable quantities on C are the following:
(i) Redshift. The redshift z at time w0 on C for a

comoving source a null radial distance y down
C�ðp0Þ is given by

1þ z ¼ Aðw0; 0Þ
Aðw0; yÞ : (6)

This is just the observed redshift, which is directly
determined by source spectra, once they are cor-
rected for the Doppler shift due to local motions.

(ii) Observer Area Distance. The observer area distance,
often written as r0, measured at time w0 on C for a
source at a null radial distance y is simply given by

r0 ¼ Cðw0; yÞ; (7)

provided the central condition (5), determining the
relation between Cðw; yÞ and Bðw; yÞ for small val-
ues of y, holds. This quantity is also measurable as
the luminosity distance dL because of the reciprocity
theorem of Etherington [10] (see also Ellis [11]),

dL ¼ ð1þ zÞ2Cðw0; yÞ: (8)

(iii) The Maximum of Observer Area Distance.
Generally speaking, Cðw0; yÞ reaches a maximum
Cmax for a relatively small redshift zmax (Hellaby
[12]; see also Ellis and Tivon [13] and Araújo and
Stoeger [14]). At Cmax, of course, we have

dCðw0; zÞ
dz

¼ dCðw0; yÞ
dy

¼ 0; (9)

further conditioned by

d2Cðw0; zÞ
dz2

< 0: (10)

Furthermore, of course, as we shall review below, the
data set will give us y ¼ yðzÞ, from which we shall
be able to find ymax ¼ ymaxðzmaxÞ. These Cmax and
zmax data provide additional independent informa-
tion about the cosmology. Without Cmax and zmax we
cannot constrain the value of �.

(iv) Galaxy Number Counts. The number of galaxies
counted by a central observer out to a null radial
distance y is given by

NðyÞ ¼ 4�
Z y

0
�ðw0; ~yÞm�1Bðw0; ~yÞCðw0; ~yÞ2d~y;

(11)

where � is the mass-energy density and m is the
average galaxy mass. Then the total energy density
can be written as

�ðw0; yÞ ¼ mnðw0; yÞ ¼ M0ðzÞ dzdy
1

Bðw0; yÞ ; (12)

where nðw0; yÞ is the number density of sources at
ðw0; yÞ, and where

M0 � m

J

1

d�

1

r20

dN

dz
: (13)

Here d� is the solid angle over which sources are counted,
and J is the completeness of the galaxy count; that is, the
fraction of sources in the volume that are counted is J. The
effects of dark matter in biasing the galactic distribution
may be incorporated via m and/or J. In particular, strong
biasing is needed if the number counts have a fractal
behavior on local scales (Humphreys et al. [15]). In order
to effectively use number counts to constrain our cosmol-
ogy, we shall also need an adequate model of galaxy
evolution. We shall not discuss this important issue in
this paper. But, fundamentally, it would give us an expres-
sion for m ¼ mðzÞ in Eqs. (12) and (13) above.
There are a number of other important quantities which

we catalogue here for completeness and for later reference.
First, there are the two fundamental four-vectors in the

problem, the fluid 4-velocity ua and the null vector ka,
which points down the generators of past light cones.
These are given in terms of the metric variables as

ua ¼ A�1�a
w; ka ¼ ðABÞ�1�a

y: (14)

Then, the rate of expansion of the dust fluid is 3H ¼
rau

a, so that, from the metric (1) we have
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H ¼ 1

3A

� _B

B
þ 2

_C

C

�
; (15)

where a ‘‘dot’’ indicates @=@w and a ‘‘prime’’ indicates
@=@y, which will be used later. For the central observer H
is precisely the Hubble expansion rate. In the homogene-
ous (FLRW) case, H is constant at each instant of time t.
But in the general inhomogeneous case, H varies with
radial distance from y ¼ 0 on t ¼ t0. From our central
conditions above (3), we find that the central behavior of
H is given by

as y ! 0: Hðw; yÞ ! 1

Aðw; 0Þ
_Bðw; 0Þ
Bðw; 0Þ ¼ Hðw; 0Þ: (16)

At any given instant w ¼ w0 along y ¼ 0; this expression
is just the Hubble constant H0 � Hðw0; 0Þ ¼ A�1

0 B�1
0 ð _BÞ0

as measured by the central observer. In the above we have
also written A0 � Aðw0; 0Þ and B0 � Bðw0; 0Þ.

Finally, from the normalization condition for the fluid 4-
velocity, we can immediately see that it can be given (in
covariant vector form) as the gradient of the proper time t
along the matter world lines: ua ¼ �t;a. It is also given by
(1) and (14) as

ua ¼ gabu
b ¼ �Aw;a þ By;a: (17)

Comparing these two forms implies

dt ¼ Adw� Bdy , A ¼ tw; B ¼ �ty; (18)

which shows that the surfaces of simultaneity for the
observer are given in observational coordinates by Adw ¼
Bdy. The integrability condition of Eq. (18) is simply then

A0 þ _B ¼ 0: (19)

This turns out precisely to be the momentum conserva-
tion equation, which is the key equation in the system and
essential to finding a solution.

IV. THE SPHERICALLY SYMMETRIC FIELD
EQUATIONS IN OBSERVATIONAL COORDINATES

Using the fluid-ray tetrad formulation of the Einstein’s
equations developed by Maartens [16] and Stoeger et al.
[17], one obtains the spherically symmetric field equations
in observational coordinates with� � 0 (see Stoeger et al.
[5] for a detailed derivation). Besides the momentum con-
servation Eq. (19), they are as follows.

A set of two very simple fluid-ray tetrad time-derivative
equations:

_�m ¼ �2�m

� _B

2B
þ

_C

C

�
; (20)

_! ¼ �3
_C

C

�
!þ��

6

�
; (21)

where �m again is the relativistic mass-energy density of

the dust, including dark matter, and

!ðw; yÞ � � 1

2C2
þ

_C

AC

C0

BC
þ 1

2

�
C0

BC

�
2

is a quantity closely related to �m0
ðyÞ � �mðw0; yÞ (see

Eq. (30) below).
Equations. (20) and (21) can be quickly integrated to

give

�mðw; yÞ ¼ �m0
ðyÞBðw0; yÞ

Bðw; yÞ
C2ðw0; yÞ
C2ðw; yÞ ; (22)

!ðw; yÞ ¼
�
!0ðyÞ þ��

6

�
C3ðw0; yÞ
C3ðw; yÞ ���

6

¼ � 1

2C2
þ

_C

AC

C0

BC
þ 1

2

�
C0

BC

�
2
; (23)

where !0ðyÞ � !ðw0; yÞ and the last equality in (23) fol-
lows from the definition of ! given above. In deriving and
solving these equations, and those below, we have used the
typical � equation of state, p� ¼ ���, where p� and

�� � �
8�G are the pressure and the energy density due to

the cosmological constant. Both !0 and �0 are specified
by data on our past light cone, as we shall show. �� will
eventually be determined from the measurement of Cmax

and zmax.
The fluid-ray tetrad radial equations are

C00

C
¼ C0

C

�
A0

A
þ B0

B

�
� 1

2
B2�m; (24)

��
!0ðyÞ þ��

6

�
C3ðw0; yÞ

�0 ¼ � 1

2
�m0

Bðw0; yÞC2ðw0; yÞ

�
� _C

A
þ C0

B

�
; (25)

_C0

C
¼ _B

B

C0

C
�

�
!þ��

2

�
AB: (26)

The remaining ‘‘independent’’ time-derivative equations
given by the fluid-ray tetrad formulation are

€C

C
¼

_C

C

_A

A
þ

�
!þ��

2

�
A2; (27)

€B

B
¼ _B

B

_A

A
� 2!A2 � 1

2
�mA

2: (28)

From Eq. (25) we see that there is a naturally defined
‘‘potential’’ (see Stoeger et al. [5]) depending only on the
radial null coordinate y—since the left-hand side depends
only on y, the right-hand side can only depend on y:

FðyÞ � N?
0

N0 ¼
_C

A
þ C0

B
; (29)
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where N?ðyÞ is an arbitrary function, whose central behav-
ior is the same as that of number counts (Stoeger et al. [5]).
Thus,

!0ðyÞ ¼ ���

6
� 1

2C3ðw0; yÞ
�

Z
�m0

ðyÞBðw0; yÞC2ðw0; yÞFðyÞdy: (30)

Connected with this relationship is Eq. (23), which we
rewrite as

_C

C

C0

C
þ A

2B

C02

C2
� AB

2C2
¼ AB

C3

�
C3
0

�
!0 þ��

6

�
���

6
C3

�
;

(31)

where C0 � Cðw0; yÞ.
Stoeger et al. [5] and Maartens et al. [18] have shown

that Eqs. (29) and (31) can be transformed into equations
for A and B, thus reducing the problem to determining C:

A ¼
_C

½F2 � 1� 2ð!0 þ��=6ÞC3
0=Cþ ð��=3ÞC2�1=2

(32)

B ¼ C0

F� ½F2 � 1� 2ð!0 þ��=6ÞC3
0=Cþ ð��=3ÞC2�1=2 :

(33)

The Lemaı̂tre-Tolman-Bondi (LTB) exact solution
(Lemaı̂tre [19]), Tolman [20], Bondi [21]; and cf.
Humphreys [22] and references therein) is obtained by
integration of (32) along the matter flow y ¼ constant
using (18)

t� TðyÞ
¼

Z dC

½F2 � 1� 2ð!0 þ��=6ÞC3
0=Cþ ð��=3ÞC2�1=2 ;

(34)

where TðyÞ is arbitrary, provided we identify

F2 ¼ 1� kf2; k ¼ 0;�1: (35)

Here f ¼ fðyÞ is a function commonly used in describing
LTB models in the 3þ 1 coordinates (Bonnor [23]).

V. INTEGRATION WITH FLRW (k ¼ 0AND � � 0)
DATA

In this section and the next we use a generalization (to
incorporate the Cmax and zmax data) of the integration
procedure described in detail in Araújo et al. [3], which
in turn is an improvement of the integration scheme devel-
oped by Araújo and Stoeger [2], to solve the above system
of SS field equations when � � 0. First, we consider a
concrete, simplified, but very relevant example. Suppose
that we know that the Universe is flat. Then FðyÞ ¼ 1. This

means that we need only the observer area distance, or the
galaxy-number counts—not both. F ¼ 1 establishes a re-
lation between these data functions. Suppose also that,
though we do not know that the Universe is FLRW, we
find that our observer-area-distanceand galaxy-number-
count data can be fit—or very closely approximated—by
the FLRW, � � 0 observational relationships as functions
of the redshift z. For the flat case these are (Araújo and
Stoeger [14])

r0ðzÞ ¼ ½QðzÞ � 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

ffiffiffi
3

pq
H0½ð1þ

ffiffiffi
3

p ÞQðzÞ � ð1� ffiffiffi
3

p Þ�
� fcn�1½QðzÞ; �� � cn�1½Qð0Þ; ��g;

QðzÞ �
ð1� ffiffiffi

3
p Þ þ ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
��

� 13

q
ð1þ ffiffiffi

3
p Þ þ ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
��

� 13

q ;

�� � �

3H0
2
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
p

4

s
;

(36)

and

M0ðzÞ ¼
�m0

ð1þ zÞ2
A0H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�� þ ð1þ zÞ3ð1���Þ�
p : (37)

cn�1ðu; �Þ is the inverse of the Jacobi elliptic function
cnðu; �Þ, where � is the modulus. Equation (36) can clearly
also be written in terms of elliptic integrals of the first kind
(Araújo and Stoeger [14]).
Equations (36) and (37) are the � � 0 analogues of the

familiar characteristic FLRW r0 ¼ r0ðzÞ and M0 ¼ M0ðzÞ
relationships for � ¼ 0 (Ellis and Stoeger [24]; Stoeger,
et al. [5]): If the Universe is FLRW and � ¼ 0, r0ðzÞ and
M0ðzÞ will have those functional forms. Equations (36) and
(37)—or their elliptic-integral equivalents—are the corre-
sponding characteristic functional forms for flat FLRW,
� � 0 cases. As in the � ¼ 0 cases, however, it is not a
trivial conclusion that data which satisfies Eqs. (36) and
(37) implies an FLRW, � � 0 universe. This must be
demonstrated—and can be demonstrated—by using
Eqs. (36) and (37) as data functions to solve the field
equations and obtain an FLRW solution. This was done
for the flat � ¼ 0 case by Araújo and Stoeger [2]. We now
do the same for these flat � � 0 cases.
Because of the additional parameter (�) in the equa-

tions, though, in the general (nonflat) case we need more
data than supplied simply by Eqs. (36) and (37). When we
know the Universe is flat, this extra data can be supplied by
Eq. (37), which will then automatically enable us to cal-
culate ��—from the flatness condition. But also on w ¼
w0 we can observationally determine where C0 � r0
reaches its maximum value C0max and the redshift zmax at
which this occurs. These measurements provide the needed
extra data in the general case, and can also be used, instead
of the data in Eq. (37), in the flat case. From Eq. (36), we
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can immediately determine the equation for this maximum
redshift, which will be

dr0ðzÞ=dz ¼ 0: (38)

Plugging the observationally determined values of zmax

into this equation, we obtain a unique relationship between
zmax and �� (Araújo and Stoeger [14]), since H0 cancels
out of Eq. (38). Using this relationship along with C0max in
Eq. (36) will also determine H0. The precise interpretation
and definition of these parameters, e.g. that ��—depend-
ing not only on � but also on H0, the FLRW Hubble
parameter—is the density parameter for �, is in reference
to a supposed FLRW universe (H0, and therefore ��,
cannot be unambiguously defined in a general exactly
spherically symmetric—also often referred to as a
Lemaı̂tre-Tolman-Bondi —universe; the definition of the
rate of expansion given in Eq. (15) is not the only one that
could be chosen, or measured). That assumption is vali-
dated by continuing with the integration and showing that a
universe with such data is indeed FLRW.

Of course, this is a somewhat contrived case, since we
would not attempt to fit the data to such a functional form
(36) unless we already suspected that the Universe may be
FLRW, and that therefore �� and H0, the FLRW density
parameter and the Hubble parameter at w ¼ w0 and y ¼ 0,
can be defined in terms of an FLRW model. But besides
being a very relevant simple case, it serves to illustrate the
integration procedure with definite meaningful data input
functions.

Solving the null Raychaudhuri Eq. (24) on w ¼ w0 with
this data (see Stoeger et al. [5], and also Araújo and Stoeger
[2]) yields the following relation between redshift and the
null coordinate y:

1þ z ¼ ð1� ffiffiffi
3

p Þ � ð1þ ffiffiffi
3

p ÞcnðLyþ �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
��

� 13

q
½cnðLyþ �Þ � 1�

;

L � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

ffiffiffi
3

pq
A0H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s
¼ � 1

w0

;

� � cn�1½Qð0Þ; ��:

(39)

Using Eq. (6) we can now write Aðw0; yÞ as a function of
y as

Aðw0; yÞ ¼ �A0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s �

� ½1� CnðLyþ �Þ�
½ð1� ffiffiffi

3
p Þ � ð1þ ffiffiffi

3
p ÞCnðLyþ �Þ� : (40)

A0 � Aðw0; 0Þ is a constant scaling factor which can be
chosen arbitrarily.

If we wish to continue using our assumption that this
will be an FLRW universe, then the observer area distance
Cðw0; yÞ as a function of y can be written as

Cðw0; yÞ ¼ �A0y

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s �

� ½1� CnðLyþ �Þ�
½ð1� ffiffiffi

3
p Þ � ð1þ ffiffiffi

3
p ÞCnðLyþ �Þ� : (41)

If we do not wish to assume FLRW here, we can still find
Cðw0; yÞ by using Eq. (36) in conjunction the result given
in Eq. (39).
Furthermore, we can clearly now determine what ymax is,

corresponding to zmax, from Eq. (39).
Now we begin to move our solution off our past light

cone, w ¼ w0. Since y is chosen to be a comoving radial
coordinate, the functional dependence of Aðw; yÞ with
respect to y cannot change as we move off our light
cone. We have already mentioned the freedom we have,
temporally setting aside central-condition considerations,
to rescale the time coordinate w, which is affected by
choosing Aðw; 0Þ. Therefore, this freedom effectively cor-
responds to choosing the functional dependence of Aðw; yÞ
with respect to w in any way we like, constrained only by
the form of Aðw0; yÞ (later this choice may have to be
adjusted to satisfy all the central conditions, those on
Cðw; yÞ and Bðw; yÞ). In our expression for Aðw0; yÞ is
hidden an implicit dependence on w. We need to extract
that dependence and make it explicit, so that we can then
determine the general dependence of A on w and proceed
with the integration. In general, this is not simply achieved
by replacing w0 with w, because—besides the w0 depen-
dence arising from setting w ¼ w0 when we write
Eq. (6)—there is another part of the w0 dependence which
derives from integration constants of the null
Raychaudhuri equation and remains through the entire
problem.
At this point, accordingly to what we just pointed out,

we arbitrarily set the w dependence for A and proceed with
the integration. The next step is then the solution of
Eqs. (19) and (32) to determine B and C respectively.
Their formal general solutions are:

B ¼ �
Z

A0dwþ lðyÞ; (42)

where lðyÞ is determined from the condition Aðw0; yÞ ¼
Bðw0; yÞ, and

C ¼
�
�
�
6!0

��

þ 1

�
C0

3sinh2
� ffiffiffiffiffiffiffiffiffiffi

3��

4

s Z
Adw

�
þ hðyÞ

�
1=3

;

(43)

where hðyÞ is determined from the data r0 ¼ Cðw0; yÞ.
Since we know Cðw0; yÞ from Eq. (41), or from Eq. (36)
with Eq. (39), !0ðyÞ is obtained from Eq. (33) and is given
by

!0 ¼ � 1

2C2

�
1� ð1þ zÞC0

A0

�
2
; (44)
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where we have used (3) and (6) to write

Bðw0; yÞ ¼ Aðw0; 0Þ=½1þ zðyÞ�: (45)

Here zðyÞ is given by Eq. (39). When we do not know that
the Universe is flat, we must, of course, first determine
_Cðw0; yÞ, in order to determine FðyÞ from Eq. (29). This
can be easily done, as explained in Maartens et al. [18], in
Araújo and Stoeger [14] and in the next section.

Bðw; yÞ and Cðw; yÞ are then determined by integrating
Eqs. (19) and (32) with respect to w. Bðw; yÞ and Cðw; yÞ
are further constrained, as discussed above, by the fact that
they have to satisfy the central conditions (5). Now, it is
clear from an examination of these equations that unless
Aðw; yÞ has a very specific functional dependence on w the
resulting solutions Bðw; yÞ and Cðw; yÞ will not satisfy the
central conditions. That implies that, although we can find
solutions to the field equations, it does not guarantee that
the null surface on which we assume we have the data is a
past light cone of our world line (Ellis et al. [4]). So we
conclude that given the fulfilment of the following con-
ditions:

(1) Aðw0; yÞ is determined by the data and the central
conditions;

(2) The coordinate y is chosen to be a comoving radial
coordinate;

(3) The central conditions (5);
we can remove the freedom of rescaling the time coordi-
nate w and completely determine Aðw; yÞ. Thus, all the
coordinate freedom in y and w has been used up at this
stage.

Therefore, following the above analysis we find that the
appropriate form for Aðw; yÞ is

Aðw; yÞ ¼ �A0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s �

� 1� Cn½ð�� 1Þ þ w�y
w0

�
ð1� ffiffiffi

3
p Þ � ð1þ ffiffiffi

3
p ÞCn½ð�� 1Þ þ w�y

w0
� ;

(46)

where zðyÞ is given by Eq. (39). Now, observing that

dz

dy
¼ A0H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� þ ð1þ zÞ3ð1���Þ

q
; (47)

we substitute A0ðw; yÞ and Aðw; yÞ into Eqs. (42) and (43)
and determine the arbitrary functions of y that arise from
these integrations by the conditions Bðw0; yÞ ¼ Aðw0; yÞ
and Cðw0; yÞ ¼ r0ðyÞ, respectively. Thus,

Bðw; yÞ ¼ Aðw; yÞ

¼ �A0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s �

� 1� Cn½ð�� 1Þ þ w�y
w0

�
ð1� ffiffiffi

3
p Þ � ð1þ ffiffiffi

3
p ÞCn½ð�� 1Þ þ w�y

w0
� ;

(48)

and

Cðw; yÞ ¼ Aðw; yÞy

¼ �A0y

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

��

� 1
3

s �

� 1� Cn½ð�� 1Þ þ w�y
w0

�
ð1� ffiffiffi

3
p Þ � ð1þ ffiffiffi

3
p ÞCn½ð�� 1Þ þ w�y

w0
� ;

(49)

which are the FLRW form of the solutions for � � 0 in
observational coordinates. One can easily check (after
some algebra) that the central conditions (5) are all satis-
fied, which in turn guarantees that the null surface on
which we assume we have the data is indeed a past light
cone of our world line.

VI. THE GENERAL SOLUTION IN THE NONFLAT
CASE

We now outline the integration procedure in the case
where we do not know whether the Universe is flat or not,
and where data gives us redshifts z, observer area distances
(angular-diameter distances) r0ðzÞ, ‘‘mass source den-
sities’’ M0ðzÞ which cannot be fit by the FLRW functional
form and the angular-distance maximum Cmaxðw0; zÞ at
zmax. It is important to specify the latter, because, as we
have already emphasized, without them, we do not have
enough information to determine all the parameters of the
space-time in the � � 0 case. For instance, although we
can determine Cðw0; zÞ with good precision (by obtaining
luminosity distances dL and employing the reciprocity
theorem, Eq. (8)) out to relatively high redshifts, at present
we do not yet have reliable data deep enough to determine
Cmax and zmax. But this has just recently become possible
with precise space-telescope distance measurements of
distance for supernovae Ia.
In pursuing the general integration with these data, we

use the framework and the intermediate results we have
presented in Sec. IV. Obviously, one of the key steps we
must take now is the determination of the ‘‘potential’’ FðyÞ,
given by Eq. (29). This was done in a similar way for � ¼
0 by Araújo and Stoeger [2], as indicated above. This
means we need to determine C0ðw0; yÞ and _Cðw0; yÞ, which
we now write as C0

0 and _C0, respectively. We also need

Aðw0; yÞ. We remember, too, that on w ¼ w0 we have
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chosen Bðw0; yÞ ¼ Aðw0; yÞ, which we have the freedom to
do.

Clearly, C0
0 can be determined from the r0ðzÞ � Cðw0; zÞ

data, through fitting, along with the solution of the null
Raychaudhuri Eq. (24), as indicated in Sec. V, to obtain
z ¼ zðyÞ. Aðw0; yÞ, too, is obtained from redshift data along
with this same zðyÞ result. _C0 is somewhat more difficult to
determine. But the procedure is straightforward.

We determine _C0 by solving Eq. (26) for it on w ¼ w0.
Using Eqs. (3) and (19), we can write this now as

_C0
0ðyÞ

C0ðyÞ
¼ �A0

0ðyÞC0
0ðyÞ

A0ðyÞC0ðyÞ � A2
0ðyÞð!0ðyÞ þ��=2Þ: (50)

But, from Eq. (23) we can write !0ðyÞ in terms of C0ðyÞ,
C0
0ðyÞ and _C0ðyÞ. So Eq. (50) becomes

_C0
0ðyÞ þ

C0
0ðyÞ _C0ðyÞ
C0ðyÞ ¼ A2

0ðyÞ
2C0ðyÞ �

A0
0ðyÞ

A0ðyÞC
0
0ðyÞ �

ðC0
0ðyÞÞ2

2C0ðyÞ
þ A2

0ðyÞC0ðyÞ
2

��: (51)

This is a linear differential equation for _C0ðyÞ, where from
data we know everything on our past light cone, w ¼ w0,
(once the null Raychaudhuri Eq. (24) has been solved)
except _C0ðyÞ itself and ��, which is a constant that can
be carried along and determined subsequently from
Cðw0; zmaxÞ and zmax measurements (see below). Thus,
we can easily solve Eq. (51) for _C0ðyÞ, which will also
depend on the unknown constant ��.

However, introducing this result back into Eq. (51), and
evaluating it at ymax, which corresponds to zmax, we have
simply

_C 0
0ðymaxÞ ¼ A2

0ðymaxÞ
2C0ðymaxÞ �

A2
0ðymaxÞC0ðymaxÞ

2
��; (52)

where _C0
0ðymaxÞ, as we have already emphasized, also

depends on the unknown ��. Since everything else is

now known, Eq. (52) is now an algebraic equation for
��ðymaxÞ, or equivalently for ��ðzmaxÞ. Obviously, we
could have simply worked out this result in terms of zmax

to begin with.
With this determination of ��, we know _C0ðyÞ com-

pletely, and can now determine FðyÞ from Eq. (29). From
there on, we can follow the solution off w ¼ w0 for all w,
as we have outlined in Sec. V. Obviously, we shall obtain
very different results than we did there for flat FLRW
data—depending on the exact character of our more gen-
eral data. This completes the framework for solving these
exact spherically symmetric field equations for adequate
data when � � 0 and the space-time is not flat.

VII. CONCLUSION

In this paper we have shown in detail how to construct
flat dust-filled � � 0 Friedmann-Lemaı̂tre-Robertson-
Walker cosmological models from FLRW cosmological
data on our past light cone, by integrating the exact spheri-
cally symmetric Einstein field equations in observational
coordinates, extending the approach developed by Araújo
and Stoeger [2] and improved in Araújo et al. [3]. Besides
being of interest in its own right—demonstrating how such
data fully determines the models—it also illustrates in a
simple case how the more general SS Einstein equations
can be integrated in observational coordinates with data
arrayed on our past light cone, w ¼ w0. Then, we have
gone on to show how to integrate these exact spherically
symmetric (LBT) equations, also for� � 0 in cases where
the data are not FLRW, and the space-time is not known to
be flat. It is essential for these to have data giving the
maximum of the observer area (angular-diameter) dis-
tance, C0ðw0; zmaxÞ, and the redshift zmax at which that
occurs. This enables the determination of the vacuum-
energy density ��, which would otherwise remain
undetermined.
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[7] W. R. Stoeger, M. E. Araújo, and T. Gebbie, Astrophys. J.

476, 435 (1997).
[8] J. Kristian and R.K. Sachs, Astrophys. J. 143, 379 (1966).
[9] G. Temple, Proc. R. Soc. A 168, 122 (1938).

[10] I.M.H. Etherington, Philos. Mag. 15, 761 (1933).
[11] G. F. R. Ellis, in General Relativity and Gravitation, edited

by R.K. Sachs (Academic, New York, 1971), p. 104.
[12] C.W. Hellaby, Mon. Not. R. Astron. Soc. 370, 239 (2006).
[13] G. F. R. Ellis and G. Tivon, Observatory 105, 189 (1985).
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